首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several authors have suggested that a link exists between the flux of galactic cosmic rays (GCR) and cloudiness. Here we review the evidence for such a connection from studies of cloud factors using both satellite and ground-based data. In particular, we search for evidence for the low cloud decrease predicted by the rising levels of solar activity and the low cloud-cosmic ray flux correlation indicated by satellite data. Sunshine and synoptic cloud records both indicate that the global total cloud cover has increased during the past century. This increase in total cloud cover argues against a dominating role by solar activity (via GCR) over cloud formation on centennial time scales. Either the predicted low cloud decrease has not occurred or the medium-high level cloud has increased to a greater extent than low cloud has decreased.As there is no accurate long term data available on low cloud behaviour during the last century, we are not able to totally dismiss the link between GCR and cloudiness, but we list a number of arguments for and against the proposed cosmic ray-cloud connection.  相似文献   

2.
Contrail frequency over Europe from NOAA-satellite images   总被引:1,自引:0,他引:1  
Contrail cloudiness over Europe and the eastern part of the North Atlantic Ocean was analyzed for the two periods September 1979 - December 1981 and September 1989 - August 1992 by visual inspection of quicklook photographic prints of NOAA/AVHRR infrared images. The averaged contrail cover exhibits maximum values along the transatlantic flight corridor around 50 °N (of almost 2%) and over western Europe resulting in 0.5% contrail cloudiness on average. A strong yearly cycle appears with a maximum (<2%) in spring and summer over the Atlantic and a smaller maximum (<1%) in winter over southwestern Europe. Comparing the two time periods, which are separated by one decade, shows there is a significant decrease in contrail cloudiness over western Europe and a significant increase over the North Atlantic between March and July. Contrail cloud cover during daytime is about twice as high as during nighttime. Contrails are found preferentially in larger fields of 1000 km diameter which usually last for more than a day. Causes, possible errors and consequences are discussed.  相似文献   

3.
Various aspects of the connection between cloud cover (CC) and cosmic rays (CR) are analyzed. Most features of this connection viz. an altitude dependence of the absolute values of CC and CR intensity, no evidence for the correlation between the ionization of the atmosphere and cloudiness, the absence of correlations in short-term low cloud cover (LCC) and CR variations indicate that there is no direct causal connection between LCC and CR in spite of the evident long-term correlation between them. However, these arguments are indirect. If only some part of the LCC is connected and varies with CR, then its value, obtained from the joint analysis of their 11-year variations and averaged over the Globe, should be most likely less than 20%.The most significant argument against causal connection of CR and LCC is the anticorrelation between LCC and the medium cloud cover (MCC). The scenario of the parallel influence of the solar activity on the Global temperature and CC from one side and CR from the other side, which can lead to the observed correlations, is discussed and advocated.  相似文献   

4.
Considerable variations in the cloud cover level and air temperature, related to the variations in GCRs and IMF, have been revealed based on an analysis of the meteorological and aerological data obtained at Vostok station from 1974 to 1994. It has been found out that the cloud cover at Vostok decreased, on average, by 35% a day after powerful Forbush decreases in GCRs following a considerable increase in the southward IMF component. In the years of solar activity minimum, when the variations in SCRs and GCRs are insignificant, the cloudiness and surface temperature increase on a day of B z minimum and decrease on a day of maximum as compared to the average level. On days of B z minimum, the air temperature rises at altitudes of h = 3.5–7 km, remains almost unchanged at an altitude of h = 8 km, and slightly decreases at higher altitudes. An increase in cloudiness at altitudes below 8 km causes warming, probably due to the greenhouse effect, because the temperature of the Earth’s surface decreases.  相似文献   

5.
The cloud amount summer nighttime data obtained from the 1994 to 2007 NASA satellite infrared and visible range measurements taken within the framework of the International Satellite Cloud Climatology Project (ISCCP) were analyzed, and the contribution by lunar signal to the cloud amount was extracted. Although the fact of lunar influence on cloudiness is known, this investigation has made it possible to separate the lunar-phase and lunar-declination effects on cloudiness. The relative cloud amount tends to grow with a change in lunar phase from a quadrature to the New Moon or Full Moon and with an increase in lunar declination by absolute value. Both the effects are statistically significant, the lunar-declination effect is a little stronger. The obtained results do not seem to contradict the theory of lunar tides.  相似文献   

6.
Summary Monthly and seasonal variations of cloudiness have been studied for different zones of Iraq. It was found to be very low over the entire country and descends as we proceed southwards, except in summer, when it was found to be higher in the south than in the north. From the daily records of the Campbell-Stokes sunshine recorders at Mosul, Baghdad and Basrah, during a period of 10 years from 1961 to 1970, the actual hours and the percentage of possible hours of sunshine duration have been studied in detail and the results obtained are presented in a practical form. It has also been found that the pyrheliometric conditions for Baghdad could be considered representative of the entire country.Taking the incoming solar radiation for clear days during different months of the year, and radiation received on a horizontal surface at Baghdad into consideration, and applying Ångström empirical formulae, it was possible to estimate graphically the amount of solar radiation received at any location in Iraq at any time of the year when the cloudiness or the percentage of possible hours of sunshine is known.  相似文献   

7.
Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and high-resolution modeling on large domains are discussed.  相似文献   

8.
Using the National Center for Atmospheric Research (NCAR) general circulation model (CCM2), a suite of alternative cloud radiation parameterizations has been tested. Our methodology relies on perpetual July integrations driven by ±2 K sea surface temperature forcing. The tested parameterizations include relative humidity based clouds and versions of schemes involving a prognostic cloud water budget. We are especially interested in testing the effect of cloud optical thickness feedbacks on global climate sensitivity. All schemes exhibit negative cloud radiation feedbacks, i.e., cloud moderates the global warming. However, these negative net cloud radiation feedbacks consist of quite different shortwave and longwave components between a scheme with interactive cloud radiative properties and several schemes with specified cloud water paths. An increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn negative shortwave feedbacks for the interactive radiative scheme, while a decrease in cloud amount leads to a positive shortwave feedback for the other schemes. For the longwave feedbacks, a decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while no distinct changes in effective high cloudiness and the resulting feedback are exhibited for the scheme with interactive radiative properties. The resulting magnitude of negative net cloud radiation feed-back is largest for the scheme with interactive radiative properties. Even though the simulated values of cloud radiative forcing for the present climate using this method differ most from the observational data, the approach shows great promise for the future.  相似文献   

9.
Summary The equation of the planetary radiation balance of the Earth is derived and discussed. The changes of the temperature of the Earth due to the change in the cloud cover, the cloud albedo and the Earth's surface albedo are analysed in detail.  相似文献   

10.
Based on satellite data and the estimated inversion strength (EIS) derived by Wood et al. (2006), a feasible and uncomplicated stratocumulus scheme is proposed, referred to as EIS scheme. It improves simulation of cloud radiative forcing (CRF) in the Grid-point Atmospheric Model of IAP/LASG version 2 (GAMIL2.0) model. When compared with the original lower troposphere stability (LTS) scheme, the EIS scheme reproduces more reasonable climatology distributions of clouds and CRF. The parameterization partly corrects CRF underestimation at mid and high latitudes and overestimation in the convective region. Such improvements are achieved by neglecting the effect of free-tropospheric stratification changes that follow a cooler moist adiabat at middle and high latitude, thereby improving simulated cloudiness. The EIS scheme also improves simulation of the CRF interannual variability. The positive net CRF and negative stratiform anomaly in the East Asian and western North Pacific monsoon regions (EAWNPMR) are well simulated. The EIS scheme is more sensitive to sea surface temperature anomalies (SSTA) than the LTS. Therefore, under the effect of a warmer SSTA in the EAWNPMR, the EIS generates a stronger negative stratiform response, which reduces radiative heating in the low and mid troposphere, in turn producing strong subsidence and negative anomalies of both moisture and cloudiness. Consequent decreases in cloud reflection and shading effects ultimately improve simulation of incoming surface shortwave radiative fluxes and CRF. Because of the stronger subsidence, a stronger anomalous anticyclone over the Philippines Sea is simulated by the EIS run, which leads to a better positive precipitation anomaly in eastern China during ENSO winter.  相似文献   

11.
Changes in the cloudiness above the Antarctic station Vostok during the winter season were examined in relation to strong disturbances in the interplanetary magnetic field (IMF). A reliable relationship between cloud formation and IMF has been found: cloudiness increased under the influence of a strong southward IMF and decreased under the northward IMF. The surface temperature at Vostok station, which is derivative of the constant radiation cooling of air situated at the ice sheet and adiabatic warming of the air masses, incoming into the central Antarctica from the middle and upper troposphere, is enhanced or reduced. Quite opposite regularity in the temperature changes is typical of altitudes higher than the suggested cloud layer position (5–8 km). The processes occurring on the Antarctic ridge leads to anomalous winds at the ice dome and decay of the circumpolar vortex at the periphery of the Antarctic continent. As a result, the surface easterlies at the coast stations are replaced by southerlies, and the cold air masses flow from Antarctica out over the Southern Ocean.  相似文献   

12.
Summary Seasonal variations of cloudiness have been studied for the different zones of the United Arab Republic. It was found to be very low and to decrease more towards lower latitudes.From the records of a Campbell Stokes Sunshine recorder, installed at the Agro-meteorological Station at Giza, during a period of six years from 1956 to 1961, the monthly and daily variations of the hours of sunshine duration, have been also studied in detail and presented in a practical form.  相似文献   

13.
D. Markovic  M. Koch 《水文研究》2014,28(4):2202-2211
Long‐term variations and temporal scaling of mean monthly time series of river flow, precipitation, temperature, relative humidity, air pressure, duration of bright sunshine, degree of cloud cover, short wave radiation, wind speed and potential evaporation within or in vicinity of the German part of the Elbe River Basin are analyzed. Statistically significant correlations between the 2–15 year scale‐averaged wavelet spectra of the hydroclimatic variables and the North Atlantic Oscillation‐ and Arctic Oscillation index are found which suggests that such long‐term patterns in hydroclimatic time series are externally forced. The Hurst parameter estimates (H) based on the Detrended Fluctuation Analysis (DFA) indicate persistence for discharge, precipitation, wind speed, air pressure and the degree of cloud cover, all having an annual cycle and a broad low‐frequency distribution. Also, DFA H parameter estimates are higher for discharge than for precipitation. The major long‐term quasi‐periodic variability modes of precipitation detected using Singular Spectrum Analysis coincide with those detected in the discharge time series. Upon subtraction of these low‐frequency quasi‐periodic modes, the DFA H parameter estimates suggest absence of the persistence for both precipitation and discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Galactic cosmic rays (GCR) have been suggested as a possible contributory mechanism to cloud formation. If these are significant then, in addition to the similarity between long-term (years) changes in GCR and cloud cover, there should also be a similarity over shorter (days) time scales. This paper reports an analysis of changes in global cloud cover and GCR recorded at 3 hourly intervals over 22 years. There is a significant correlation between short-term changes in low cloud cover over northern and southern hemispheres, consistent with about 3% of the variation arising from common factors. However, GCR is not a major factor responsible for cloud cover changes. There is an association between short-term changes in low cloud cover and galactic cosmic radiation over a period of several days. This could arise if approximately 3% of the variations in cloud cover resulted from GCR.  相似文献   

15.
Three kinds of the widely-used cloudiness parameterizations are compared with data produced from the cloud-resolving model(CRM) simulations of the tropical cloud system. The investigated schemes include those based on relative humidity(RH), the semi-empirical scheme using cloud condensate as a predictor, and the statistical scheme based on probability distribution functions(PDFs). Results show that all three schemes are successful in reproducing the timing of cloud generation, except for the RH-based scheme, in which low-level clouds are artificially simulated during cloudless days. In contrast, the low-level clouds are well simulated in the semi-empirical and PDF-based statistical schemes, both of which are close to the CRM explicit simulations. In addition to the Gaussian PDF, two alternative PDFs are also explored to investigate the impact of different PDFs on cloud parameterizations. All the PDF-based parameterizations are found to be inaccurate for high cloud simulations, in either the magnitude or the structure. The primary reason is that the investigated PDFs are symmetrically assumed, yet the skewness factors in deep convective cloud regimes are highly significant, indicating the symmetrical assumption is not well satisfied in those regimes. Results imply the need to seek a skewed PDF in statistical schemes so that it can yield better performance in high cloud simulations.  相似文献   

16.
Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total) compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth’s surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40○N and 60○N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.  相似文献   

17.
The temporal and spatial continuity of spatially distributed estimates of snow‐covered area (SCA) are limited by the availability of cloud‐free satellite imagery; this also affects spatial estimates of snow water equivalent (SWE), as SCA can be used to define the extent of snow telemetry (SNOTEL) point SWE interpolation. In order to extend the continuity of these estimates in time and space to areas beneath the cloud cover, gridded temperature data were used to define the spatial domain of SWE interpolation in the Salt–Verde watershed of Arizona. Gridded positive accumulated degree‐days (ADD) and binary SCA (derived from the Advanced Very High Resolution Radiometer (AVHRR)) were used to define a threshold ADD to define the area of snow cover. The optimized threshold ADD increased during snow accumulation periods, reaching a peak at maximum snow extent. The threshold then decreased dramatically during the first time period after peak snow extent owing to the low amount of energy required to melt the thin snow cover at lower elevations. The area having snow cover at this later time was then used to define the area for which SWE interpolation was done. The area simulated to have snow was compared with observed SCA from AVHRR to assess the simulated snow map accuracy. During periods without precipitation, the average commission and omission errors of the optimal technique were 7% and 11% respectively, with a map accuracy of 82%. Average map accuracy decreased to 75% during storm periods, with commission and omission errors equal to 11% and 12% respectively. The analysis shows that temperature data can be used to help estimate the snow extent beneath clouds and therefore improve the spatial and temporal continuity of SCA and SWE products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The warming over the Tibetan Plateau(TP) is very significant during last 30 years,but the thermal forcing has been weakened.The thermal weakening is attributed mainly to the enhancement of the TOA(top of atmosphere) outgoing radiation.This enhancement is opposite to the greenhouse-gas-induced weakening of the global mean TOA outgoing radiation and is also unable to be explained by the observed decrease of total cloud cover.This study presents the importance of cloud height change and the warming over the TP in modulating the TOA radiation budget and thus the thermal forcing during spring and summer.On the basis of surface observations and satellite radiation data,we found that both the TOA outgoing shortwave radiation and longwave radiation were enhanced during this period.The former enhancement is due mainly to the increase of low-level cloud cover,which has a strong reflection to shortwave radiation,especially in summer.The latter enhancement is caused mainly by the planetary warming,and it is further enhanced by the decrease of total cloud cover in spring,as clouds extinguish outgoing longwave radiation emitted from the land surface.Therefore,the radiative cooling enhancement and thus the thermal weakening over the TP is a response of the earth-atmosphere system to the unique change of cloud cover configuration and the rapid warming of the land surface.However,these trends in cloud cover and TOA outgoing radiation are not well represented in four reanalyses.  相似文献   

19.
The effect of cloud feedback on the response of a radiative-convective model to a change in cloud model parameters, atmospheric CO2 concentration, and solar constant has been studied using two different parameterization schemes. The method for simulating the vertical distribution of both cloud cover and cloud optical thickness, which depends on the relative humidity and on the saturation mixing ratio of water vapor, respectively, is the same in both approaches, but the schemes differ with respect to modeling the water vapor profile. In scheme I atmospheric water vapor is coupled to surface parameters, while in scheme II an explicit balance equation for water vapor in the individual atmospheric layers is used. For both models the combined effect of feedbacks due to variations in lapse rate, cloud cover, and cloud optical thickness results in different relationships between changes in surface temperature, planetary temperature, and cloud cover. Specifically, for a CO2 doubling and a 2% increase in solar constant, in both models the surface warming is reduced by cloud feedback, in contrast to no feedback, with the greater reduction in scheme I as compared to that of scheme II.  相似文献   

20.
We study the relationships among precipitation, vegetation, and morphological characteristics of watersheds draining either side of the Dhofar Mountains in southeastern Oman to understand the geomorphic signature of water availability in a semi-arid carbonate landscape. Water availability is expressed in terms of vegetation and cloud cover. The integral and the statistical moments of the hypsometric curve were used to determine whether hyper-arid, inland-draining watersheds are significantly different from seasonally wet watersheds on the coast side of the mountain range. We demonstrate that the vegetation and cloud cover are correlated, with locations with longer cloud periods also having a longer period with a vegetation canopy. The analysis shows that the hypsometric curve and its statistical moments capture the morphological difference between wet watersheds shaped by groundwater sapping and dry watersheds with fluvial morphology. Specifically, the curves exhibit two shapes: watersheds with more vegetation and cloud cover are characterized by higher convexity, and those with less vegetation and cloud cover are characterized by higher concavity. A variance analysis of cloud cover, vegetation, and hypsometric integral shows that they are significantly different between the wet and dry watersheds. The link between hydrology and morphology is not strong at the scale of a single watershed, but it is significant when the watersheds are aggregated in zones. The statistical moments of the hypsometric curve in the range of values of the integral and skewness show good separation between watersheds dominated by sapping and fluvial erosion processes. We can separate the watersheds draining the mountain range in two distinct groups on the basis of their bimodal hydrological and morphological characteristics. Our findings support other studies that hypothesize a trade-off from chemical- to mechanical-dominated denudation in carbonate terranes as precipitation decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号