首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the long-term flux variation in Cen X-3 using orbital modulation and pulsed fraction in different flux states using observations made with the All-Sky Monitor and the Proportional Counter Array on board the Rossi X-ray Timing Explorer . In the high state, the eclipse ingress and egress are found to be sharp whereas in the intermediate state the transitions are more gradual. In the low state, instead of eclipse ingress and egress, the light curve shows a smooth flux variation with orbital phase. The orbital modulation of the X-ray light curve in the low state shows that the X-ray emission observed in this state is from an extended object. The flux-dependent orbital modulations indicate that the different flux states of Cen X-3 are primarily due to varying degree of obscuration. Measurement of the pulsed fraction in different flux states is consistent with the X-ray emission of Cen X-3 having one highly varying component with a constant pulsed fraction and an unpulsed component and in the low state, the unpulsed component becomes dominant. The observed X-ray emission in the low state is likely to be due to scattering of X-rays from the stellar wind of the companion star. Though we cannot ascertain the origin and nature of the obscuring material that causes the aperiodic long-term flux variation, we point out that a precessing accretion disc driven by radiative forces is a distinct possibility.  相似文献   

2.
We present Swift observations of the black hole X-ray transient, GRO J1655−40, during the recent outburst. With its multiwavelength capabilities and flexible scheduling, Swift is extremely well suited for monitoring the spectral evolution of such an event. GRO J1655−40 was observed on 20 occasions and data were obtained by all instruments for the majority of epochs. X-ray spectroscopy revealed spectral shapes consistent with the 'canonical' low/hard, high/soft and very high states at various epochs. The soft X-ray source (0.3–10 keV) rose from quiescence and entered the low/hard state, when an iron emission line was detected. The soft X-ray source then softened and decayed, before beginning a slow rebrightening and then spending ∼3 weeks in the very high state. The hard X-rays (14–150 keV) behaved similarly but their peaks preceded those of the soft X-rays by up to a few days; in addition, the average hard X-ray flux remained approximately constant during the slow soft X-ray rebrightening, increasing suddenly as the source entered the very high state. These observations indicate (and confirm previous suggestions) that the low/hard state is key to improving our understanding of the outburst trigger and mechanism. The optical/ultraviolet light curve behaved very differently from that of the X-rays; this might suggest that the soft X-ray light curve is actually a composite of the two known spectral components, one gradually increasing with the optical/ultraviolet emission (accretion disc) and the other following the behaviour of the hard X-rays (jet and/or corona).  相似文献   

3.
We report on the results of the first simultaneous X-ray ( RXTE ) and optical [South African Astronomical Observatory (SAAO)] observations of the luminous low-mass X-ray binary (LMXB) GX 9+9 in 1999 August. The high-speed optical photometry revealed an orbital period of 4.1958 h and confirmed previous observations, but with greater precision. No X-ray modulation was found at the orbital period. On shorter time-scales, a possible 1.4-h variability was found in the optical light curves which might be related to the MHz quasi-periodic oscillations seen in other LMXBs. We do not find any significant X-ray/optical correlation in the light curves. In X-rays, the colour–colour and hardness-intensity diagrams indicate that the source shows characteristics of an atoll source in the upper banana state, with a correlation between intensity and spectral hardness. Time-resolved X-ray spectroscopy suggests that two-component spectral models give a reasonable fit to the X-ray emission. Such models consist of a blackbody component which can be interpreted as the emission from an optically thick accretion disc or an optically thick boundary layer, and a hard Comptonized component for an extended corona.  相似文献   

4.
We present X-ray/ γ -ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft state by ASCA , RXTE and CGRO /OSSE in 1996 May and June. The spectra consist of a dominant soft component below ∼2 keV and a power-law-like continuum extending to at least ∼800 keV. We interpret them as emission from an optically thick, cold accretion disc and from an optically thin, non-thermal corona above the disc. A fraction f ≳0.5 of total available power is dissipated in the corona.
We model the soft component by multicolour blackbody disc emission taking into account the torque-free inner-boundary condition. If the disc extends down to the minimum stable orbit, the ASCA RXTE data yield the most probable black hole mass of M X≈10 M and an accretion rate,     , locating Cyg X-1 in the soft state in the upper part of the stable, gas-pressure-dominated, accretion-disc solution branch.
The spectrum of the corona is well modelled by repeated Compton scattering of seed photons from the disc off electrons with a hybrid, thermal/non-thermal distribution. The electron distribution can be characterized by a Maxwellian with an equilibrium temperature of kT e∼30–50 keV, a Thomson optical depth of τ ∼0.3 and a quasi-power-law tail. The compactness of the corona is 2≲ℓh≲7, and a presence of a significant population of electron–positron pairs is ruled out.
We find strong signatures of Compton reflection from a cold and ionized medium, presumably an accretion disc, with an apparent reflector solid angle, Ω/2π∼0.5–0.7. The reflected continuum is accompanied by a broad iron K α line.  相似文献   

5.
We calculate the disc and boundary layer luminosities for accreting rapidly rotating neutron stars with low magnetic fields in a fully general relativistic manner. Rotation increases the disc luminosity and decreases the boundary layer luminosity. A rapid rotation of the neutron star substantially modifies these quantities as compared with the static limit. For a neutron star rotating close to the centrifugal mass shed limit, the total luminosity has contribution only from the extended disc. For such maximal rotation rates, we find that well before the maximum stable gravitational mass configuration is reached, there exists a limiting central density, for which particles in the innermost stable orbit will be more tightly bound than those at the surface of the neutron star. We also calculate the angular velocity profiles of particles in Keplerian orbits around the rapidly rotating neutron star. The results are illustrated for a representative set of equation of state models of neutron star matter.  相似文献   

6.
SAX J2103.5+4545 is the Be/X-ray binary (BeX) with the shortest orbital period. It shows extended bright and faint X-ray states that last for a few hundred days. The main objective of this work is to investigate the relationship between the X-ray and optical variability and to characterize the spectral and timing properties of the bright and faint states. We have found a correlation between the spectral and temporal parameters that fit the energy and power spectra. Softer energy spectra correspond to softer power spectra. That is to say, when the energy spectrum is soft, the power at high frequencies is suppressed. We also present the results of our monitoring of the Hα line of the optical counterpart since its discovery in 2003. There is a correlation between the strength and shape of the Hα line, originated in the circumstellar envelope of the massive companion and the X-ray emission from the vicinity of the neutron star. Hα emission, indicative of an equatorial disc around the B-type star, is detected whenever the source is bright in X-rays. When the disc is absent, the X-ray emission decreases significantly. The long-term variability of SAX J2103.5+4545 is characterized by fast episodes of disc loss and subsequent reformation. The time-scales for the loss and reformation of the disc (about 2 yr) are the fastest among BeXs.  相似文献   

7.
We have investigated multiband optical photometric variability and stability of the Hα line profile of the transient X-ray binary IGR J01583+6713. We set an upper limit of 0.05 mag on photometric variations in the V band over a time-scale of three months. The Hα line is found to consist of non-Gaussian profile and quite stable for a duration of two months. We have identified the spectral type of the companion star to be B2 IVe while the distance to the source is estimated to be ∼4.0 kpc. Along with the optical observations, we have also carried out analysis of X-ray data from three short observations of the source, two with the Swift –XRT and one with the RXTE –PCA. We have detected a variation in the absorption column density, from a value of  22.0 × 1022 cm−2  immediately after the outburst down to  2.6 × 1022 cm−2  four months afterwards. In the quiescent state, the X-ray absorption is consistent with the optical reddening measurement of   E ( B − V ) = 1.46  mag. From one of the Swift observations, during which the X-ray intensity was higher, we have a possible pulse detection with a period of 469.2 s. For a Be X-ray binary, this indicates an orbital period in the range of 216–561 d for this binary system.  相似文献   

8.
We present an exhaustive analysis of five broad-band observations of GRS 1915+105 in two variability states, χ and ω, observed simultaneously by the Proportional Counter Array (PCA) and High-Energy X-ray Timing Experiment (HEXTE) detectors aboard the Rossi X-ray Timing Explorer , and the Oriented Scintillation Spectrometer Experiment (OSSE) detector aboard the Compton Gamma-ray Observatory . We find all the spectra well fitted by Comptonization of disc blackbody photons, with very strong evidence for the presence of a non-thermal electron component in the Comptonizing plasma. Both the energy and the power spectra in the χ state are typical of the very high/intermediate state of black hole binaries. The spectrum of the ω state is characterized by a strong blackbody component Comptonized by thermal electrons and a weak non-thermal tail. We then calculate rms spectra (fractional variability as functions of energy) for the PCA data. We accurately model the rms spectra by coherent superposition of variability in the components implied by the spectral fits, namely a less variable blackbody and more variable Comptonization. The latter dominates at high energies, resulting in a flattening of the rms at high energies in most of the data. This is also the case for the spectra of the quasi-periodic oscillations present in the χ state. Then, some of our data require a radial dependence of the rms of the disc blackbody. We also study the distance to the source, and find   d ≃ 11 kpc  as the most likely value, contrary to a recent claim of a much lower value.  相似文献   

9.
Observations of the black hole X-ray binary V404 Cyg with the very long baseline interferometer the High Sensitivity Array (HSA) have detected the source at a frequency of 8.4 GHz, providing a source position accurate to 0.3 mas relative to the calibrator source. The observations put an upper limit of 1.3 mas on the source size (5.2 au at 4 kpc) and a lower limit of  7 × 106  K on its brightness temperature during the normal quiescent state, implying that the radio emission must be non-thermal, most probably synchrotron radiation, possibly from a jet. The radio light curves show a short flare, with a rise time of ∼30 min, confirming that the source remains active in the quiescent state.  相似文献   

10.
We have obtained high time resolution (seconds) photometry of LMC X-2 in 1997 December, simultaneously with the Rossi X-ray Timing Explorer ( RXTE ), in order to search for correlated X-ray and optical variability on time-scales from seconds to hours. We find that the optical and X-ray data are correlated only when the source is in a high, active X-ray state. Our analysis shows evidence for the X-ray emission leading the optical with a mean delay of <20 s. The time-scale for the lag can be reconciled with disc reprocessing, driven by the higher-energy X-rays, only by considering the lower limit for the delay. The results are compared with a similar analysis of archival data of Sco X-1.  相似文献   

11.
We present the results of a systematic investigation of spectral evolution in the Z source GX 349+2, using data obtained during 1998 with the Proportional Counter Array (PCA) on-board the RXTE satellite. The source traced a extended normal branch (NB) and flaring branch (FB) in the colour–colour diagram (CD) and the hardness-intensity diagram (HID) during these observations. The spectra at different positions of the Z-track were best fitted by a model consisting of a disc blackbody and a Comptonized spectrum. A broad (Gaussian) iron line at ∼6.7 keV is also required to improve the fit. The spectral parameters showed a systematic and significant variation with the position along the Z-track. The evolution in spectral parameters is discussed in view of the increasing mass accretion rate scenario, proposed to explain the motion of Z sources in the CD and the HID.  相似文献   

12.
Spectra of Seyfert 1s are commonly modelled as emission from an X-ray-illuminated flat accretion disc orbiting a central black hole. This provides both reprocessed and direct components of the X-ray emission, as required by observations of individual objects, and possibly a fraction of the cosmological X-ray background. There is some observational motivation for us to at least consider the role that an effectively concave disc surface might play: (1) a reprocessed fraction ≳1/2 in some Seyferts and possibly in the X-ray background, and (2) the commonality of a sharp iron line peak for Seyferts at 6.4 keV despite a dependence of peak location on inclination angle for flat disc models. Here it is shown that a concave disc may not only provide a larger total fraction of reprocessed photons, but can also reprocess a much larger fraction of photons in its outer regions compared with a flat disc. This reduces the sensitivity of the 6.4-keV peak location to the inner disc inclination angle because the outer regions are less affected by Doppler and gravitational effects. If the X-ray source is isotropic, the reprocessed fraction is directly determined by the concavity. If the X-ray source is anisotropic, the location of iron line peak can still be determined by concavity but the total reflected fraction need not be as large as for the isotropic emitter case. The geometric calculations herein are applicable to general accretion disc systems illuminated from the centre.  相似文献   

13.
The variation of the specific intensity across the stellar disc is an essential input parameter in surface brightness reconstruction techniques such as Doppler imaging, where the relative intensity contributions of different surface elements are important in detecting star-spots. We use phoenix and atlas model atmospheres to model light curves derived from high precision (signal-to-noise ratio ≃ 5000) Hubble Space Telescope ( HST ) data of the eclipsing binary SV Cam (F9V+K4V), where the variation of specific intensity across the stellar disc will determine the contact points of the binary system light curve. For the first time, we use χ2 comparison fits to the first derivative profiles to determine the best-fitting model atmosphere. We show the wavelength dependence of the limb darkening and that the first derivative profile is sensitive to the limb-darkening profile very close to the limb of the primary star. It is concluded that there is only a marginal difference (<1σ) between the χ2 comparison fits of the two model atmospheres to the HST light curve at all wavelengths. The usefulness of the second derivative of the light curve for measuring the sharpness of the primary's limb is investigated, but we find that the data are too noisy to permit a quantitative analysis.  相似文献   

14.
We reanalyse archival Ginga data of the soft X-ray transient source GS 2023+338 covering the beginning of its 1989 May outburst. The source showed a number of rather unusual features: very high and apparently saturated luminosity, dramatic flux and spectral variability (often on ∼1 s time-scale), and generally very hard spectrum, with no obvious soft thermal component characteristic for soft/high state.
We describe the spectrum obtained at the maximum of flux and we demonstrate that it is very different from spectra of other soft X-ray transients at similar luminosity. We confirm previous suggestions that the dramatic variability was the result of heavy and strongly variable photoelectric absorption. We also demonstrate that for a short time the spectrum of the source did look like a typical soft/high state spectrum but that this coincided with very heavy absorption.  相似文献   

15.
The white dwarf in the eclipsing binary system V471 Tau is viewed through the atmosphere of the active K star prior to ingress and after egress. In the far UV the surface brightness of the hot white dwarf far outshines the K star emission. We can use this to probe the structure of the extended K star atmosphere along one line of sight, in absorption, on spatial scales of the radius of the white dwarf (10,000 km). The time series of HST/STIS spectra which show a hot (>250,000 K) extended (>1 K star radius) atmosphere around the K star. We see discrete structures in the velocity‐resolved spectra, on spatial scales of less than 100,000 km. The mean velocity is that expected of gas in co‐rotation with the K star, but the discrete velocity structures have excursions of up to 70 km/s from the mean. The mean temperature seems to increase with height above the K star photosphere. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We report on a campaign of X-ray and soft γ-ray observations of the black hole candidate (BHC) H1743−322 (also named IGR J17464-3213), performed with the RXTE , INTEGRAL and Swift satellites. The source was observed during a short outburst between 2008 October 03 and November 16. The evolution of the hardness–intensity diagram throughout the outburst is peculiar, in that it does not follow the canonical pattern through all the spectral states (the so-called q-track pattern) seen during the outburst of black hole transients. On the contrary, the source only makes a transition from the hard state to the hard–intermediate state. After this transition, the source decreases in luminosity and its spectrum hardens again. This behaviour is confirmed by both spectral and timing analyses. This kind of outburst has been rarely observed before in a transient BHC.  相似文献   

17.
We argue that the quiescent value of the viscosity parameter of the accretion disc in WZ Sge may be  αcold∼ 0.01  , in agreement with estimates of αcold for other dwarf novae. Assuming the white dwarf in WZ Sge to be magnetic, we show that, in quiescence, material close to the white dwarf can be propelled to larger radii, depleting the inner accretion disc. The propeller therefore has the effect of stabilizing the inner disc and allowing the outer disc to accumulate mass. The outbursts of WZ Sge are then regulated by the (magnetically determined) evolution of the surface density of the outer disc at a radius close to the tidal limit. Numerical models confirm that the recurrence time can be significantly extended in this way. The outbursts are expected to be superoutbursts since the outer disc radius is forced to exceed the tidal (3:1 resonance) radius. The large, quiescent disc is expected to be massive, and to be able to supply the observed mass accretion rate during outburst. We predict that the long-term spin evolution of the white dwarf spin will involve a long cycle of spin-up and spin-down phases.  相似文献   

18.
Multiwavelength observations are reported here of the Be/X-ray binary pulsar system GRO J1008−57. Over ten years worth of data are gathered together to show that the periodic X-ray outbursts are dependant on both the binary motion and the size of the circumstellar disc. In the first instance an accurate orbital solution is determined from pulse periods, and in the second case the strength and shape of the Hα emission line is shown to be a valuable indicator of disc size and its behaviour. Furthermore, the shape of the emission line permits a direct determination of the disc size which is in good agreement with theoretical estimates. A detailed study of the pulse period variations during outbursts determined the binary period to be 247.8 ± 0.4 d, in good agreement with the period determined from the recurrence of the outbursts.  相似文献   

19.
We present 10-μm ISO -SWS and Australia Telescope Compact Array observations of the region in the cluster Wd1 in Ara centred on the B[e] star Ara C. An ISO -SWS spectrum reveals emission from highly ionized species in the vicinity of the star, suggesting a secondary source of excitation in the region. We find strong radio emission at both 3.5 and 6.3 cm, with a total spatial extent of over 20 arcsec. The emission is found to be concentrated in two discrete structures, separated by ∼ 14 arcsec. The westerly source is resolved, with a spectral index indicative of thermal emission. The easterly source is clearly extended and non-thermal (synchrotron) in nature. Positionally, the B[e] star is found to coincide with the more compact radio source, while the southerly lobe of the extended source is coincident with Ara A, an M2 I star. Observation of the region at 10 μm reveals strong emission with an almost identical spatial distribution to the radio emission. Ara C is found to have an extreme radio luminosity in comparison with prior radio observations of hot stars such as O and B supergiants and Wolf–Rayet stars, given the estimated distance to the cluster. An origin in a detatched shell of material around the central star is therefore suggested; however given the spatial extent of the emission, such a shell must be relatively young (τ ∼ 103 yr). The extended non-thermal emission associated with the M star Ara A is unexpected; to the best of our knowledge this is a unique phenomenon. SAX (2–10 keV) observations show no evidence of X-ray emission, which might be expected if a compact companion were present.  相似文献   

20.
A succession of near-infrared (near-IR) spectroscopic observations, taken nightly throughout an entire cycle of SS 433's orbit, reveal (i) the persistent signature of SS 433's accretion disc, having a rotation speed of  ∼500 km s−1  , (ii) the presence of circumbinary disc recently discovered at optical wavelengths by Blundell, Bowler & Schmidtobreick (2008) and (iii) a much faster outflow than has previously been measured for the disc wind, with a terminal velocity of  ∼1500 km s−1  . The increased wind terminal velocity results in a mass-loss rate of  ∼10−4 M yr−1  . These, together with the newly (upwardly) determined masses for the components of the SS 433 system, result in an accurate diagnosis of the extent to which SS 433 has super-Eddington flows. Our observations imply that the size of the companion star is comparable with the semiminor axis of the orbit which is given by     , where e is the eccentricity. Our relatively spectral resolution at these near-IR wavelengths has enabled us to deconstruct the different components that comprise the Brackett-γ (Brγ) line in this binary system, and their physical origins. With this line being dominated throughout our series of observations by the disc wind, and the accretion disc itself being only a minority (∼15 per cent) contribution, we caution against use of the unresolved Brγ line intensity as an 'accretion signature' in X-ray binaries or microquasars in any quantitative way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号