首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper continues the cycle of authors’ works on the detection of precursors of large flares (M5 and higher classes) in active regions (ARs) of the Sun by their microwave radiation and magnetographic characteristics. Generalization of the detected precursors of strong flares can be used to develop methods for their prediction. This paper presents an analysis of the development of NOAA AR 12242, in which an X1.8 flare occurred on December 20, 2014. The analysis is based on regular multiazimuth and multiwavelength observations with the RATAN-600 radio telescope in the range 1.65–10 cm with intensity and circular polarization analysis and data from the Solar Dynamics Observatory (SDO). It was found that a new component appeared in the AR microwave radiation two days before the X-flare. It became dominant in the AR the day before the flare and significantly decreased after the flare. The use of multiazimuth observations from RATAN-600 and observations at 1.76 cm from the Nobeyama Radioheliograph made it possible to identify the radio source that appeared before the X-flare with the site of the closest convergence of opposite polarity fields near the neutral line in the AR. It was established that the X-flare occurred 20 h after the total gradient of the magnetic field of the entire region calculated from SDO/HMI data reached its maximum value. Analysis of the evolution of the microwave source that appeared before the X-flare in AR 12242 and comparison of its parameters with the parameters of other components of the AR microwave radiation showed that the new source can be classified as neutral line associated sources (NLSs), which were repeatedly detected by the RATAN-600 and other radio telescopes 1–3 days before the large flares.  相似文献   

2.
As deduced from the data with high spatial resolution obtained at the radio heliographs of the Siberian Solar Radio Telescope (SSRT, 5.7 GHz) and the Nobeyama radio heliograph (NoRH, 17 GHz), radio brightness centers in the distribution of the Stokes parameter I are shifted relative to the distribution of the parameter V 1–2 days before an intense flare. It has been shown that this phenomenon can be related to the behavior of quasi-stationary sources over the inversion line of the radial component of the magnetic field (neutral-line associated sources (NLSs)). These sources have a brightness temperature up to 106 K and a circular polarization up to 90%. The origination of NLSs is associated with the outflow of a new magnetic flux into the atmosphere of an active region that is a classical factor of the flare activity. Therefore, an NLS is a precursor of power solar flares and can be used as a forecast factor. Owing to the high resolution of the SSRT, the deviation of the observed polarization distribution of microwave radiation of the active region from the normal one within the solar disk zone containing the active region can be used as a precursor of the preflare state of the active region. As a result, the single-frequency Tanaka-Enome criterion is modified. The use of the data from two radio heliographs (SSRT and NoRH) allows us to propose a two-frequency criterion of normal longitudinal zones that is more efficient for short-term forecasting of solar flares. Preflare features associated with the displacement of brightness centers in I and V, which is manifested as the transformation of NLSs into spot sources, are fine attributes added to forecast according to the two-frequency criterion. This is illustrated by an example of active region 10930, which produced power proton flares on December 6 and 13, 2006.  相似文献   

3.
A weak active region (NOAA 11158) appeared on the solar disk near the eastern limb. This region increased rapidly and, having reached the magnetic flux higher than 1022 Mx, produced an X-class flare. Only weak field variations at individual points were observed during the flare. An analysis of data with a resolution of 45 s did not indicate any characteristic features in the photospheric field dynamics during the flare. When the flux became higher than 3 × 1022 Mx, active region NOAA 10720 produced six X-class flares. The field remained quiet during these flares. An increase in the magnetic flux above ~1022 Mx is a necessary, but not sufficient, condition for the appearance of powerful flares. Simple active regions do not produce flares. A flare originates only when the field distribution in an active region is complex and lines of polarity inversion have a complex shape. Singular lines of the magnetic field can exist only above such active regions. The current sheets, in the magnetic field of which the solar flare energy is accumulated, originate in the vicinity of these lines.  相似文献   

4.
The analysis of observations of large solar flares made it possible to propose a hypothesis on existence of a skin-layer in magnetic flux ropes of coronal mass ejections. On the assumption that the Bohm coefficient determines the diffusion of magnetic field, an estimate of the skin-layer thickness of ~106 cm is obtained. According to the hypothesis, the electric field of ~0.01–0.1 V/cm, having the nonzero component along the magnetic field of flux rope, arises for ~5 min in the surface layer of the eruptive flux rope during its ejection into the upper corona. The particle acceleration by the electric field to the energies of ~100 MeV/nucleon in the skin-layer of the flux rope leads to their precipitation along field lines to footpoints of the flux rope. The skin-layer presence induces helical or oval chromospheric emission at the ends of flare ribbons. The emission may be accompanied by hard X-ray radiation and by the production of gamma-ray line at the energy of 2.223 MeV (neutron capture line in the photosphere). The magnetic reconnection in the corona leads to a shift of the skin-layer of flux rope across the magnetic field. The area of precipitation of accelerated particles at the flux-rope footpoints expands in this case from the inside outward. This effect is traced in the chromosphere and in the transient region as the expanding helical emission structures. If the emission extends to the spot, a certain fraction of accelerated particles may be reflected from the magnetic barrier (in the magnetic field of the spot). In the case of exit into the interplanetary space, these particles may be recorded in the Earth’s orbit as solar proton events.  相似文献   

5.
The evolution of the microwave radiation from four active regions, where strong X-ray flares (X-class, GOES) occurred in 2011, has been studied. Daily multiwavelength RATAN-600 radio observations of the Sun in the 1.6–8.0 cm range have been used. It has been indicated that the radiosource above the photospheric magnetic field neutral line (above the region with the maximal convergence of the fields opposite in sign) becomes predominant in the structure of the active region microwave radiation one to two days before a powerful flare as in the eruptive events previously studied with RATAN-600. The appearance of such a radiosource possibly reflects the current sheet formation in the corona above the active region. The energy necessary for a flare is stored in the magnetic field of active region, which can be considered as a factor for predicting a powerful flare.  相似文献   

6.
The oscillations with a period of about 6 and 12 s in the nonthermal radiation of a solar flare occurred on November 5, 1992, are identified. The time-translated profiles of hard X-ray and microwave radiation flux are characterized by an anticorrelation. The specific features of the radiation fine time structure are interpreted using the model of the coronal magnetic mirror where fast magnetoacoustic modes are excited.  相似文献   

7.
We discuss the results of a study of microwave radiation from three flare-active regions??NOAA 10300, 10930, and 11158??with powerful eruptive events (X-class flares and coronal mass ejections) recorded on July 15, 2002; December 13, 2006; and February 15, 2011, when the regions were in the central part of the disk. There exists evidence of a ??-configuration in the structure of the photospheric magnetic field formed one or two days prior to the eruptive process as a result of the emergence of a new magnetic flux and shifting movements of the sunspots and accompanied by changes in the spectral characteristics of the microwave radiation of the active regions (ARs), which suggests the development of a peculiar radio source. The analysis of these regions continues a series of studies of eruptive events carried out at RATAN-600 in the 1980s?C1990s and gives a reason to conclude that early detections of peculiar sources in the microwave radiation of ARs, which are essentially areas of high energy release in the solar atmosphere, can be used as a factor in predicting powerful eruptive (geoeffective) processes on the Sun.  相似文献   

8.
The magnetic field intensity in the limb solar flare of July 19, 2012, was measured by the Zeeman bisector splitting in the H α line. An average magnetic field is established to attain 200 G at a measurement error of ±100 G in the top of a radiant flare loop at a height of about 40 Mm. The confinement of a strong magnetic field in the high coronal arcade at a relatively weak external field of the corona (about 1–2 G) is considered using a model of a force-free magnetic flux rope with a fine magnetic structure at a scale of about 300 km.  相似文献   

9.
With one example of a coronal mass ejection observed with SOHO/EIT and LASCO we demonstrate the main characteristic of this kind of event: its flux rope nature. These events are commonly responsible for magnetic clouds approaching the Earth. Near the solar surface, the different structures expected during the ejection of a flux rope are observed: post flare loops located under the flux rope, a prominence lying at its lower part, a coronal void located at its upper part. Two additional structures are observed in coronal emission: a bright loop possibly located at the leading edge of the flux rope and a bright front located near the equator and moving along the solar limb. These structures may correspond to the compression of material while the flux rope expands. Finally, the deviation of these structures toward the equator is observed, providing the possible explanation of the discrepancy of the location of the activity in the low corona and in the high corona during the minimum of solar cycle activity.  相似文献   

10.
The kinetics of beam electron precipitation from the top of a loop into the solar atmosphere with density gradients and an increasing magnetic field have been generally described. The Fokker-Planck equations are solved with regard to Coulomb collisions and the effect of the electric field induced by this beam. The photon spectra and polarization degree in hard X-ray (10–300 keV) and microwave (1–80 GHz) emissions are simulated under different assumptions regarding the beam electron distribution function. The simulation results are compared with the flare observations on March 10, 2001, and July 23, 2002, visible at different position angles. It has been indicated that the coincidence of the theoretical photon spectra with simultaneous observations of the hard X-ray and microwave emissions of these flares is the best for models that not only take into account collisions, but also the electric field induced by electron fluxes propagating in flare loops with very weakly or moderately converging magnetic fields.  相似文献   

11.
For electron acceleration during solar flares, it is very important to determine the pitch-angle and energy dependences of the electron distribution function. At present, this cannot be done directly from observations. Therefore, it is necessary to perform a numerical simulation of the propagation of accelerated electrons in the magnetic field of the flare loop (loops) and calculate the X-ray and radio emissions. For the solar flare of November 10, 2002, we have obtained qualitative and quantitative agreements of modeled X-ray and radio maps with the RHESSI satellite and Nobeyama Radioheliograph data. We have determined the flare model parameters that agree with observations. The pitch-angle anisotropy of electrons determined by highly directional functions of the S(α) = cos8(α) type, the energy spectrum consist of two electron populations, the low-energy part of the spectrum up to an energy of break of 350 keV is characterized by a power law with the exponent δ1 = 2.7–2.9, and the energy spectrum is more rigid above 420 keV (δ2 = 2–2.3).  相似文献   

12.
The powerful solar flares that occurred on September 4–10, 2017 are analyzed based on a quantitative diagnostics method for proton flares developed at the Institute of Terrestrial Magnetism, the Ionosphere and Radio-Wave Propagation (IZMIRAN) in the 1970–1980s. We show that the fluxes and energy spectra of the protons reached the Earth with the energies of tens of MeV qualitatively and quantitatively correspond to the intensity and frequency spectra of the microwave radio bursts in the range of 2.7–15.4 GHz. Specifically, the flare of September 4 with a peak radio flux S ~ 2000 sfu at the frequency f ~ 3 GHz (i.e., with the soft radio spectrum) was accompanied by a significant proton flux J (>10 MeV) ~100 pfu and a soft energy spectrum with the index γ ~3.0, while the strong flare on September 10 with S ~ 21000 sfu at f ~ 15 GHz (i.e., with the hard radio spectrum) led to a very intense proton event with J (>10 MeV) ~1000 pfu with a hard spectrum (γ ~ 1.4), including the ground level enhancement (GLE72). This is further evidence that microwave radio data can be successfully used in diagnostics of proton flares independently of a specific source of particle acceleration at the Sun, in particular, with the IZMIRAN method.  相似文献   

13.
The ground magnetic response of deep ore bodies in the Daye iron-ore deposit is relatively weak, and sometimes concealed by the strong magnetic background of shallower sources. Apart from the low-quality ground magnetic data, another critical problem for reconstructing the deep skarn-type ore bodies is developing a versatile inversion scheme that can simultaneously resolve 3D sources with arbitrary shapes. In this case, we resort to interactive 3D forward modeling solution with the joint use of two data sets-total field surface and three-component borehole magnetic data. Joint inversion of the two data sets is expected to help resolve the ambiguity associated with either data set and greatly reduces the nonuniqueness of the magnetic inversion. Such nonuniqueness is especially severe when a 3-D distribution of magnetic susceptibility, instead of a simple body, is sought from the inversion.In this paper, we calculate the magnetic field on the surface and in the borehole caused by 3D arbitrarily-shaped bodies with the triple integral method. The complex 3D magnetic sources having arbitrary shapes are constructed with cross-sections, termination points and facets in our visualization technology. We specify, interactively and in a user-friendly environment, the outline of the sources in terms of geometric elements and their magnetic parameters. The method automatically fits the observations within a prescribed precision. If dissatisfied, the user can redefine the model parameters and proceed to a new inversion. The method's ability to interpret a complicated 3D geologic environment is demonstrated on synthetic models and real data profiles in the Daye iron-ore deposit in central China. The interactive forward modeling results in all tests demonstrate a good correlation of estimated magnetic sources with corresponding known geologic features.  相似文献   

14.

A new exact analytical solution of the magnetohydrostatic problem describes the equilibrium of a solitary, dense-cool solar filament maintained against the gravity by magnetic force in hot solar corona at heights up to 20–40 Mm. The filament is assumed to be uniform along the axis (the translation symmetry). The magnetic field of the filament has the helical structure (magnetic flux rope) with a typical strength of a few Gauss in the region of minimal temperature (about 4000 K). The model can be applied to the quiescent prominence of both normal and inverse magnetic polarity.

  相似文献   

15.
The electrodynamic flare model is based on numerical 3D simulations with the real magnetic field of an active region. An energy of ∼1032 erg necessary for a solar flare is shown to accumulate in the magnetic field of a coronal current sheet. The thermal X-ray source in the corona results from plasma heating in the current sheet upon reconnection. The hard X-ray sources are located on the solar surface at the loop foot-points. They are produced by the precipitation of electron beams accelerated in field-aligned currents. Solar cosmic rays appear upon acceleration in the electric field along a singular magnetic X-type line. The generation mechanism of the delayed cosmic-ray component is also discussed.  相似文献   

16.

Field variations in the region of the eruptive event on June 7, 2011 are studied based on vector measurements of the photospheric magnetic field by the SDO/HMI instrument. Variations of the modulus (B), the radial (Br) and the transverse (Bt) components of the magnetic induction, and the inclination angle (α) of the field lines to the radial direction from the center of the Sun are analyzed. It is found that, in the part of the flare region near the polarity inversion line (PIL) after the onset of the flare, the magnitude and the transverse component of the magnetic induction as well as the angles α abruptly increase. During the slow rise of filament near its channel, the inclination angles of the field lines decrease. It is shown that diverging flare ribbons are above the regions of the photosphere with local maxima of the field modulus and with deep minima of the inclination angles of the field lines at all stages of their existence over their entire length with the exception of small areas. It is established that the azimuth decreases after the onset of the flare near the PIL of the photospheric magnetic field, which means an increase in the shear. On the contrary, at a distance from the PIL there is a slight decrease in the shear.

  相似文献   

17.
The ordinary mode of gyrosynchrotron radiation was identified to be predominant in some segments of flare loops in solar flares of July 19, 2012, and October 22, 2014. These events were studied by investigation of the quasi-transverse propagation effect on the observed polarization. The analysis involved reconstruction of the magnetic field topology at the linear force-free approximation based on the data of the SDO HMI space telescope and the subsequent simulation of radio emission of flare loops with the GX Simulator software package. The quasi-transverse propagation effect was established to be characteristic for both events, but its influence on the radio emission polarization at a frequency of 17 GHz was observed only in the October 22, 2014 flare.  相似文献   

18.
The specific features in the development of an X1 solar flare, which occurred on September 22, 2011, and was registered with the Atmospheric Imaging Assembly (AIA) device onboard the Solar Dynamics Observatory (SDO) in the UV line (λ = 304 Å, He II), are analyzed. During the flare, which lasted about 12 h, cold plasma was sucked up with an increasing velocity from a very distant region into the low-lying hot region of flare energy release along a flat helical trajectory. This phenomenon fundamentally differs from a surge ejection, when matter previously ejected from the flare region returns to the flare hot zone under the action of gravity. Suction of cold plasma “from outside” into the hot flare region is interpreted in the scope of the rope flare mechanism, according to which an extremely inhomogeneous plasma density distribution in the cross-section originates in an emerging magnetic rope. In the region with a sharply decreased density (which is the suction region), the drift velocity in the current chanel can reach the ion thermal velocity, which inevitably results in the excitation of plasma turbulence and anomalous resistance, i.e., in the development of a flare.  相似文献   

19.
文中选了5 个典型活动区, 分析了这些活动区的磁场, 与活动区相应的CMEs, 太阳爆发事件和太阳质子事件我们发现, 对于E ≥10meV 的太阳质子事件有相应的源活动区, 源耀斑和CME; 活动区矢量磁场有剪切, 磁场剪切越强质子事件越强; 多数在质子耀斑发生前出现磁流浮现; 太阳10cm 射电爆发持续时间长文中结果还佐证了Shealy 等的结果: X 射线耀斑的长持续时间与CME 的发生正相关另外,在5 个活动区中, 有三个大耀斑发生前没有明显的磁剪切作为它们的先兆, 它们是非质子源耀斑这是Moore, Hagyard 和Davis 的磁场强剪切是耀斑产生的必要条件的反例  相似文献   

20.
风云二号卫星是我国研制的第一代静止业务气象卫星.本文针对风云二号C星/D星(FY-2C/D)太阳X射线探测数据与美国GOES系列卫星太阳X射线探测数据开展交叉比对,以检验FY-2C/D卫星数据的有效性.研究结果表明在X射线通量变化的时间特性以及通量大小等方面,FY-2C/D卫星探测结果与GOES系列卫星探测结果具有较好的一致性.对2004年11月—2010年6月期间85次耀斑事件X射线峰值流量的比对结果表明,FY-2C卫星与GOES系列卫星的探测结果在1~8 Å波段的相关系数为0.795,FY-2D卫星与GOES系列卫星的探测结果在0.5~3 Å和1~8 Å波段的相关系数分别为0.921和0.989,说明FY-2C/D卫星太阳X射线探测结果可信度较高,能够用于太阳X射线耀斑的监测、预警以及研究工作.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号