首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modern models of nonlinear dynamo saturation in celestial bodies (specifically, on the Sun) are largely based on the consideration of the balance of magnetic helicity. This physical variable has also a topological meaning: it is associated with the linking coefficient of magnetic tubes. In addition to magnetic helicity, magnetohydrodynamics has a number of topological integrals of motion (the so-called higher helicity moments). We have compared these invariants with magnetic helicity properties and concluded that they can hardly serve as nonlinear constraints on dynamo action.  相似文献   

2.
Using a magnetic dynamo model, suggested by Kazantsev (J. Exp. Theor. Phys. 1968, vol. 26, p. 1031), we study the small-scale helicity generation in a turbulent electrically conducting fluid. We obtain the asymptotic dependencies of dynamo growth rate and magnetic correlation functions on magnetic Reynolds numbers. Special attention is devoted to the comparison of a longitudinal correlation function and a function of magnetic helicity for various conditions of asymmetric turbulent flows. We compare the analytical solutions on small scales with numerical results, calculated by an iterative algorithm on non-uniform grids. We show that the exponential growth of current helicity is simultaneous with the magnetic energy for Reynolds numbers larger than some critical value and estimate this value for various types of asymmetry.  相似文献   

3.

Linear and nonlinear dynamo action is investigated for square patterns in nonrotating and weakly rotating Boussinesq Rayleigh-Bénard convection in a plane horizontal layer. The square-pattern solutions may or may not be symmetric to up-down reflections. Vertically symmetric solutions correspond to checkerboard patterns. They do not possess a net kinetic helicity and are found to be incapable of kinematic dynamo action at least up to magnetic Reynolds numbers of , 12 000. There also exist vertically asymmetric squares, characterized by rising (descending) motion in the centers and descending (rising) motion near the boundaries, among them such that possess full horizontal square symmetry and others lacking also this symmetry. The flows lacking both the vertical and horizontal symmetries possess kinetic helicity and show kinematic dynamo action even without rotation. The generated magnetic fields are concentrated in vertically oriented filamentary structures. Without rotation these dynamos are, however, always only kinematic, not nonlinear dynamos since the back-reaction of the magnetic field then forces the solution into the basin of attraction of a roll pattern incapable of dynamo action. But with rotation added parameter regions are found where stationary asymmetric squares are also nonlinear dynamos. These nonlinear dynamos are characterized by a subtle balance between the Coriolis and Lorentz forces. In some parameter regions also nonlinear dynamos with flows in the form of oscillating squares or stationary modulated rolls are found.  相似文献   

4.
Abstract

A standard approach to the kinematic dynamo problem is that pioneered by Bullard and Gellman (1954), which utilizes the toroidal-poloidal separation and spherical harmonic expansion of the magnetic and velocity fields. In these studies, the velocity field is given as a combination of small number of toroidal and poloidal harmonics, with their radial dependences prescribed by some physical considerations. Starting from the original paper of Bullard and Gellman (1954), a number of authors repeated such analyses on different combination of velocity fields, including the most recent and comprehensive effort by Dudley and James (1989). In this paper, we re-examine the previous kinematic dynamo models, using the computer algebra approach initiated by Kono (1990). This method is particularly suited to this kind of research since different velocity fields can be treated by a single program. We used the distribution of magnetic energies in various harmonics to infer the convergence of the results.

The numerical results obtained in this study for the models of Bullard and Gellman (1954), Lilley (1970), Gubbins (1973), Pekeris et al. (1973), Kumar and Roberts (1975), and Dudley and James (1989) are consistent with the previously reported results, in particular, with the extensive calculation of Dudley and James. In addition, we found that the combination of velocities used by Lilley can support the dynamo action if the radial dependence of the velocity is modified.

We also examined the helicity distributions in these dynamo models, to see if there is any correlation between the helicity and the efficiency of dynamo action. A successful dynamo can result both from the cases in which the helicity distributions are symmetric or antisymmetric with respect to the equator. In both cases, it appears that the dynamo action is efficient if the volume integral of helicity over a hemisphere is large.  相似文献   

5.
By the example of the dynamo model in the rotating plane layer heated from below, the effects are examined that lead to the stabilization of an exponentially growing magnetic field in the magnetostrophic convection in passing from the kinematic dynamo mode to the nonlinear mode. The estimates of the energy redistribution in the spectrum are given, and the mechanisms of suppression of helicity are presented. Equalization of the field of velocity and the magnetic field is analyzed. The modes examined are close to those utilized in the up-to-date models of the planetary dynamo in the cores of planets.  相似文献   

6.
It is shown that magnetostrophic waves which are generated in the equatorial plane of the Earth’s core due to the instability of the equatorial jet and which propagate almost transversely to the rotational axis off the tangent cylinder, have a negative helicity in the northern hemisphere and positive helicity in the southern hemisphere. When the wave trains propagate through the regions with a constant azimuthal magnetic field caused by the Ω-effect, this helicity distribution induces an electromotive force (emf) (due to the α-effect), which may lead to the maintenance of the initial dipole field by the scenario of the α-Ω dynamo.  相似文献   

7.
ABSTRACT

It is shown that flows in precessing cubes develop at certain parameters large axisymmetric components in the velocity field which are large enough to either generate magnetic fields by themselves, or to contribute to the dynamo effect if inertial modes are already excited and acting as a dynamo. This effect disappears at small Ekman numbers. The critical magnetic Reynolds number also increases at low Ekman numbers because of turbulence and small-scale structures.  相似文献   

8.
We consider an unforced, incompressible, turbulent magnetofluid constrained by concentric inner and outer spherical surfaces. We define a model system in which normal components of the velocity, magnetic field, vorticity, and electric current are zero on the boundaries. This choice allows us to find a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity and current. The model dynamical system represents magnetohydrodynamic (MHD) turbulence in a spherical domain and is analyzed by the methods similar to those applied to homogeneous MHD turbulence. We find a statistical theory of ideal (i.e. no dissipation) MHD turbulence analogous to that found in the homogeneous case, including the prediction of coherent structure in the form of a large-scale quasistationary magnetic field. This MHD dynamo depends on broken ergodicity, an effect that is enhanced when total magnetic helicity is increased relative to total energy. When dissipation is added and large scales are only weakly damped, quasiequilibrium may occur for long periods of time, so that the ideal theory is still pertinent on a global scale. Over longer periods of time, the selective decay of energy over magnetic helicity further enhances the effects of broken ergodicity. Thus, broken ergodicity is an essential mechanism and relative magnetic helicity is a critical parameter in this model MHD dynamo theory.  相似文献   

9.
This article addresses the interesting and important problem of large-scale magnetic field generation in turbulent flows, using a self-consistent dynamo model recently developed. The main idea of this model is to consider the induction equation for the large-scale magnetic field, integrated consistently with the turbulent dynamics at smaller scales described by a magnetohydrodynamic shell model. The questions of dynamo action threshold, magnetic field saturation, magnetic field reversals, nature of the dynamo transition and the changes of small-scale turbulence as a consequence of the dynamo onset are discussed. In particular, the stability curve obtained by the model integration is shown in a very wide range of values of the magnetic Prandtl number not yet accessible by direct numerical simulation but more realistic for natural dynamos. Moreover, from our analysis it is shown that the large-scale dynamo transition displays a hysteretic behaviour and therefore a subcritical nature. The model successfully reproduces magnetic polarity reversals, showing the capability to generate persistence times which are increasing for decreasing magnetic diffusivity. Moreover, when the system reaches a statistically stationary dynamo state, where the large-scale magnetic field can abruptly reverse its polarity (magnetic reversal state) or not, keeping the same polarity (steady state), it shows an unmistakable tendency towards the energy equipartition for the turbulence at small scale.  相似文献   

10.
The turbulent cross helicity is directly related to the coupling coefficients for the mean vorticity in the electromotive force and for the mean magnetic-field strain in the Reynolds stress tensor. This suggests that the cross-helicity effects are important in the cases where global inhomogeneous flow and magnetic-field structures are present. Since such large-scale structures are ubiquitous in geo/astrophysical phenomena, the cross-helicity effect is expected to play an important role in geo/astrophysical flows. In the presence of turbulent cross helicity, the mean vortical motion contributes to the turbulent electromotive force. Magnetic-field generation due to this effect is called the cross-helicity dynamo. Several features of the cross-helicity dynamo are introduced. Alignment of the mean electric-current density J with the mean vorticity Ω , as well as the alignment between the mean magnetic field B and velocity U , is supposed to be one of the characteristic features of the dynamo. Unlike the case in the helicity or α effect, where J is aligned with B in the turbulent electromotive force, we in general have a finite mean-field Lorentz force J ?×? B in the cross-helicity dynamo. This gives a distinguished feature of the cross-helicity effect. By considering the effects of cross helicity in the momentum equation, we see several interesting consequences of the effect. Turbulent cross helicity coupled with the mean magnetic shear reduces the effect of turbulent or eddy viscosity. Flow induction is an important consequence of this effect. One key issue in the cross-helicity dynamo is to examine how and how much cross helicity can be present in turbulence. On the basis of the cross-helicity transport equation, its production mechanisms are discussed. Some recent developments in numerical validation of the basic notion of the cross-helicity dynamo are also presented.  相似文献   

11.

The behaviour of magnetic helicity in kinematic dynamos at large magnetic Reynolds number is considered. Hughes, et al . [ Phys. Lett. A 223 , 167-172 (1996)] observe that the relative helicity tends to zero in the limit of large magnetic Reynolds number. This paper gives upper bounds on the helicity, by relating the helicity spectrum to the energy spectrum. These bounds are confirmed by numerical simulation and the distribution of helicity over scales is considered. Although it is found that the total helicity becomes small in the limit of high conductivity, there can remain significant, but cancelling, helicity at large and small scales of the field. This is illustrated by considering the evolution of helicity in the stretch-twist-fold dynamo picture.  相似文献   

12.
We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are caused by three kinds of the inhomogeneities; i.e., inhomogeneous turbulence, the nonuniform fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift velocities of the mean magnetic field cause the small-scale magnetic buoyancy and magnetic pumping effects in the turbulent convection. These phenomena are different from the large-scale magnetic buoyancy and magnetic pumping effects which are due to the effect of the mean magnetic field on the large-scale density stratified fluid flow. The small-scale magnetic buoyancy and magnetic pumping can be stronger than these large-scale effects when the mean magnetic field is smaller than the equipartition field. We discuss the small-scale magnetic buoyancy and magnetic pumping effects in the context of the solar and stellar turbulent convection. We demonstrate also that the nonlinear turbulent magnetic diffusion in the turbulent convection is anisotropic even for a weak mean magnetic field. In particular, it is enhanced in the radial direction. The magnetic fluctuations due to the small-scale dynamo increase the turbulent magnetic diffusion of the toroidal component of the mean magnetic field, while they do not affect the turbulent magnetic diffusion of the poloidal field.  相似文献   

13.
The three-dimensional dynamo model in the fast-rotating plane layer heated from below is considered. The transition from the linear generation of the magnetic field to the nonlinear generation is studied. With the use of the wavelet analysis, it is demonstrated how the spatial spectra of the kinetic and magnetic energies, as well as the hydrodynamic, magnetic, cross-, and current helicity, vary in time. The scenarios of the suppression of α-effect (α-quenching) by the magnetic field are suggested.  相似文献   

14.
Abstract

An analysis of small-scale magnetic fields shows that the Ponomarenko dynamo is a fast dynamo; the maximum growth rate remains of order unity in the limit of large magnetic Reynolds number. Magnetic fields are regenerated by a “stretch-diffuse” mechanism. General smooth axisymmetric velocity fields are also analysed; these give slow dynamo action by the same mechanism.  相似文献   

15.
Abstract

An explicit example of a steady prototype Lortz dynamo is elaborated in terms of a previously derived illustrative, exact, closed form solution to the nonlinear dynamo equations. The eigenvalue character of the dynamo problem is now introduced which simplifies the solution. The magnetic field lines, which lie on circular cylinders, and velocity streamline pattern are then displayed and discussed. Analysis of the magnetic energy balance by way of the Poynting flux reveals the existence of a finite critical cylinder across which zero net magnetic energy flows, thereby proving that the material inside is a self-excited dynamo, despite the fact that the total magnetic energy is unbounded.  相似文献   

16.
We study the effect of turbulent drift of a large-scale magnetic field that results from the interaction of helical convective motions and differential rotation in the solar convection zone. The principal direction of the drift corresponds to the direction of the large-scale vorticity vector. Thus, the effect produces a latitudinal transport of the large-scale magnetic field in the convective zone wherever the angular velocity has a strong radial gradient. The direction of the drift depends on the sign of helicity and it is defined by the Parker–Yoshimura rule. The analytic calculations are done within the framework of mean-field magnetohydrodynamics using the minimal τ-approximation. We estimate the magnitude of the drift velocity and find that it can be a few m/s near the base of the solar convection zone. The implications of this effect for the solar dynamo are illustrated on the basis of an axisymmetric mean-field dynamo model with a subsurface shear layer. The model shows that near the bottom of the convection zone the helicity–vorticity pumping results mostly from the kinetic helicity contributions. We find that the magnetic helicity contributions to the pumping effect are dominant at the subsurface shear layer. There the magnitude of the drift velocity is found to be a few cm/s. We find that the helicity–vorticity pumping effect can have an influence on the features of the sunspot time–latitude diagram, producing a fast drift of the sunspot activity maximum at the rise phase of the cycle and a slow drift at the decay phase of the cycle.  相似文献   

17.
Abstract

In this paper a method for solving the equation for the mean magnetic energy <BB> of a solar type dynamo with an axisymmetric convection zone geometry is developed and the main features of the method are described. This method is referred to as the finite magnetic energy method since it is based on the idea that the real magnetic field B of the dynamo remains finite only if <BB> remains finite. Ensemble averaging is used, which implies that fields of all spatial scales are included, small-scale as well as large-scale fields. The method yields an energy balance for the mean energy density ε ≡ B 2/8π of the dynamo, from which the relative energy production rates by the different dynamo processes can be inferred. An estimate for the r.m.s. field strength at the surface and at the base of the convection zone can be found by comparing the magnetic energy density and the outgoing flux at the surface with the observed values. We neglect resistive effects and present arguments indicating that this is a fair assumption for the solar convection zone. The model considerations and examples presented indicate that (1) the energy loss at the solar surface is almost instantaneous; (2) the convection in the convection zone takes place in the form of giant cells; (3) the r.m.s. field strength at the base of the solar convection zone is no more than a few hundred gauss; (4) the turbulent diffusion coefficient within the bulk of the convection zone is about 1014cm2s?1, which is an order of magnitude larger than usually adopted in solar mean field models.  相似文献   

18.
Fausto Cattaneo and David W Hughes delve beneath the surface of the Sun with numerical models of turbulent convection.
Although magnetic dynamo action is traditionally associated with rotation, fast dynamo theory shows that chaotic flows, even without rotation, can act as efficient small-scale dynamos. Indeed, numerical simulations suggest that granular and supergranular convection may generate locally a substantial part of the field in the quiet photosphere.  相似文献   

19.
The behavior of the main magnetic field components during a polarity transition is investigated using the α2-dynamo model for magnetic field generation in a turbulent core. It is shown that rapid reversals of the dipole field occur when the helicity, a measure of correlation between turbulent velocity and vorticity, changes sign. Two classes of polarity transitions are possible. Within the first class, termed component reversals, the dipole field reverses but the toroidal field does not. Within the second class, termed full reversals, both dipole and toroidal fields reverse. Component reversals result from long term fluctuations in core helicity; full reversals result from short term fluctuations. A set of time-evolution equations are derived which govern the dipole field behavior during an idealized transition. Solutions to these equations exhibit transitions in which the dipole remains axial while its intensity decays rapidly toward zero, and is regenerated with reversed polarity. Assuming an electrical conductivity of 3 × 105 mho m?1 for the fluid core, the time interval required to complete the reversal process can be as short as 7500 years. This time scale is consistent with paleomagnetic observations of the duration of reversals. A possible explanation of the cause of reversals is proposed, in which the core's net helicity fluctuates in response to fluctuations in the level of turbulence produced by two competing energy sources—thermal convection and segregation of the inner core. Symmetry considerations indicate that, in each hemisphere, helicity generated by heat loss at the core-mantle boundary may have the opposite sign of helicity generated by energy release at the inner core boundary. Random variations in rates of energy release can cause the net helicity and the α-effect to change sign occasionally, provoking a field reversal. In this model, energy release by inner core formation tends to destabilize stationary dynamo action, causing polarity reversals.  相似文献   

20.
Abstract

The mean-field effects of cyclonic convection become increasingly complex when the cyclonic rotation exceeds ½-π. Net helicity is not required, with negative turbulent diffusion, for instance, appearing in mirror symmetric turbulence. This paper points out a new dynamo effect arising in convective cells with strong asymmetry in the rotation of updrafts as against downdrafts. The creation of new magnetic flux arises from the ejection of reserve flux through the open boundary of the dynamo region. It is unlike the familiar α-effect in that individual components of the field may be amplified independently. Several formal examples are provided to illustrate the effect. Occurrence in nature depends upon the existence of fluid rotations of the order of π in the convective updrafts. The flux ejection dynamo may possibly contribute to the generation of field in the convective core of Earth and in the convective zone of the sun and other stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号