首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abundances of Ni and Co in the Earth’s mantle are depleted relative to chondrites due to terrestrial core formation. Recently, the observed mantle depletions of these elements have been explained by liquid metal-liquid silicate equilibrium during core formation in a high pressure, high temperature magma ocean on the early Earth. However, different magma ocean models, which would be expected to give consistent results, have proposed vastly different pressures (24 to 59 GPa), temperatures (2200 to >4000 K) and oxygen fugacities (−0.15 to −2.4 ΔIW) for the Earth’s magma ocean. In an attempt to resolve the contradictory results from different magma ocean models and determine the thermodynamic conditions appropriate for core formation in the Earth, experiments were conducted to better constrain the influences of temperature and C on the partitioning behaviors of Ni and Co. Results of experiments at 7 GPa with temperatures of 1923-2673 K show that the metal-silicate partition coefficients for both Ni and Co decrease with increasing temperature, with the effect being more significant for Ni. Little change in the partitioning behaviors of either Ni or Co with varying C-content of the metallic liquid was found. By combining the new temperature data with previous results from pressure and oxygen fugacity studies, we parameterized the partitioning behavior of Ni and Co and applied the parameterizations to core formation in a terrestrial magma ocean. Multiple combinations of pressure, temperature, and oxygen fugacity can explain the observed mantle depletions of Ni and Co, and all of the very different previously proposed magma ocean conditions are generally consistent with valid solutions. By using the FeO content of the Earth’s mantle as an additional constraint on the oxygen fugacity, magma ocean conditions of 30-60 GPa, > 2000 K, and −2.2 ΔIW are suggested. Similar systematic approaches and studies of other moderately siderophile elements could further constrain the magma ocean conditions on the early Earth.  相似文献   

2.
Superliquidus metal-silicate partitioning was investigated for a number of moderately siderophile (Mo, As, Ge, W, P, Ni, Co), slightly siderophile (Zn, Ga, Mn, V, Cr) and refractory lithophile (Nb, Ta) elements. To provide independent constrains on the effects of temperature, oxygen fugacity and silicate melt composition, isobaric (3 GPa) experiments were conducted in piston cylinder apparatus at temperature between 1600 and 2600 °C, relative oxygen fugacities of IW−1.5 to IW−3.5, and for silicate melt compositions ranging from basalt to peridotite. The effect of pressure was investigated through a combination of piston cylinder and multi-anvil isothermal experiments between 0.5 and 18 GPa at 1900 °C. Oxidation states of siderophile elements in the silicate melt as well as effect of carbon saturation on partitioning are also derived from these results. For some elements (e.g. Ga, Ge, W, V, Zn) the observed temperature dependence does not define trends parallel to those modeled using metal-metal oxide free energy data. We correct partitioning data for solute interactions in the metallic liquid and provide a parameterization utilized in extrapolating these results to the P-T-X conditions proposed by various core formation models. A single-stage core formation model reproduces the mantle abundances of several siderophile elements (Ni, Co, Cr, Mn, Mo, W, Zn) for core-mantle equilibration at pressures from 32 to 42 GPa along the solidus of a deep peridotitic magma ocean (∼3000 K for this pressure range) and oxygen fugacities relevant to the FeO content of the present-day mantle. However, these P-T-fO2 conditions cannot produce the observed concentrations of Ga, Ge, V, Nb, As and P. For more reducing conditions, the P-T solution domain for single stage core formation occurs at subsolidus conditions and still cannot account for the abundances of Ge, Nb and P. Continuous core formation at the base of a magma ocean at P-T conditions constrained by the peridotite liquidus and fixed fO2 yields concentrations matching observed values for Ni, Co, Cr, Zn, Mn and W but underestimates the core/mantle partitioning observed for other elements, notably V, which can be reconciled if accretion began under reducing conditions with progressive oxidation to fO2 conditions consistent with the current concentration of FeO in the mantle as proposed by Wade and Wood (2005). However, neither oxygen fugacity path is capable of accounting for the depletions of Ga and Ge in the Earth’s mantle. To better understand core formation, we need further tests integrating the currently poorly-known effects of light elements and more complex conditions of accretion and differentiation such as giant impacts and incomplete equilibration.  相似文献   

3.
Liquid Fe metal-liquid silicate partition coefficients for the lithophile and weakly-siderophile elements Ta, Nb, V, Cr, Si, Mn, Ga, In and Zn have been measured in multianvil experiments performed from 2 to 24 GPa, 2023-2873 K and at oxygen fugacities of −1.3 to −4.2 log units relative to the iron-wüstite buffer. Compositional effects of light elements dissolved in the metal liquid (S, C) have been examined and experiments were performed in both graphite and MgO capsules, specifically to address the effect of C solubility in Fe-metal on siderophile element partitioning. The results were used to examine whether there is categorical evidence that a significant portion of metal-silicate equilibration occurred under very high pressures during core-mantle fractionation on Earth. Although the depletion of V from the mantle due to core formation is significantly greater than that of Nb, our results indicate that both elements have similar siderophile tendencies under reducing conditions at low pressures. With increasing pressure, however, Nb becomes less siderophile than V, implying that average metal-silicate equilibration pressures of at least 10-40 GPa are required to explain the Nb/V ratio of the mantle. Similarly the moderately-siderophile, volatile element ratios Ga/Mn and In/Zn are chondritic in the mantle but both volatility and core-mantle equilibration at low pressure would render these ratios strongly sub-chondritic. Our results indicate that pressures of metal-silicate partitioning exceeding 30-60 GPa would be required to render these element ratios chondritic in the mantle. These observations strongly indicate that metal-silicate equilibration must have occurred at high pressures, and therefore support core-formation models that involve deep magma oceans. Moreover, our results allow us to exclude models that envisage primarily low-pressure (<1 GPa) equilibration in relatively small planetary bodies. We also argue that the core cannot contain significant U as this would require metal-silicate equilibration at oxygen fugacities low enough for significant amounts of Ta to have also been extracted from the mantle. Likewise, as In is more siderophile than Pb but similarly volatile and also quite chalcophile it would have been difficult for Pb to enter the core without reversing the relative depletions of these elements in the mantle unless metal-silicate equilibration occurred at high pressures >20 GPa.  相似文献   

4.
We have determined the liquid metal-liquid silicate partitioning of Ni, Co, Mo, W, V, Cr and Nb at 1.5 GPa/1923 K and 6 GPa/2123 K under conditions of constant silicate melt composition with variable amounts of Si in the Fe-rich metallic liquid. Partitioning of Ni, Co, Mo, W and V is sensitive to the Si content of the metal with, in all five cases, increasing Si tending to make the element more lithophile than for conditions where the metal is Si-free. In contrast, metal-silicate partitioning of Cr and Nb is, at constant silicate melt composition, insensitive to the Si content of the metal.The implications of our data are that if, as indicated by the Si isotopic composition of the silicate Earth ( [Georg et al., 2007] and [Fitoussi et al., 2009]), the core contains significant amounts of Si, the important siderophile elements Ni, Co, W and Mo were more lithophile during accretion and core formation than previously believed.We use our new data in conjunction with published metal-silicate partitioning results to develop a model of continuous accretion and core segregation taking explicit account of the partitioning of Si (this study) and O (from Ozawa et al., 2008) between metal and silicate and their effects on metal-silicate partitioning of siderophile elements. We find that the effect of Si on the siderophile characteristics of Ni, Co and W means that the pressures of core segregation estimated from these elements are ∼5 GPa lower than those derived from experiments in which the metal contained negligible Si (e.g., Wade and Wood, 2005). The core-mantle partitioning of Cr and Nb requires that most of Earth accretion took place under conditions which were much more reducing than those implied by the current FeO content of the mantle and that the oxidation took place late in the accretionary process. Paths of terrestrial accretion, oxidation state and partitioning which are consistent with the current mantle contents of Ni, Co, W, V, Cr and Nb lead to Si and O contents of the core of ∼4.3 wt.% and 0.15%, respectively.  相似文献   

5.
The Earth’s tungsten budget during mantle melting and crust formation   总被引:1,自引:0,他引:1  
During silicate melting on Earth, W is one of the most incompatible trace elements, similar to Th, Ba or U. As W is also moderately siderophile during metal segregation, ratios of W and the lithophile Th and U in silicate rocks have therefore been used to constrain the W abundance of the Earth’s mantle and the Hf-W age of core formation. This study presents high-precision W concentration data obtained by isotope dilution for samples covering important silicate reservoirs on Earth. The data reveal significant fractionations of W from other highly incompatible lithophile elements such as Th, U, and Ta. Many arc lavas exhibit a selective enrichment of W relative to Th, U, and Nb-Ta, reflecting W enrichment in the sub-arc mantle via fluid-like components derived from subducting plates. In contrast, during enrichment by melt-like subduction components, W is generally slightly depleted relative to Th and U, but is still enriched relative to Ta. Hence, all arc rocks and the continental crust exhibit uniformly low Ta/W (ca. 1), whereas W/Th and W/U may show opposite fractionation trends, depending on the role of fluid- and melt-like subduction components. Further high-precision W data for OIBs and MORBs reveal a systematic depletion of W in both rock types relative to other HFSE, resulting in high Ta/W that are complementary to the low Ta/W observed in arc rocks and the continental crust. Similar to previous interpretations based on Nb/U and Ce/Pb systematics, our Ta/W data confirm a depletion of the depleted upper mantle (DM) in fluid mobile elements relative to the primitive mantle (PRIMA). The abundance of W in the depleted upper mantle relative to other immobile and highly incompatible elements such as Nb and Ta is therefore not representative of the bulk silicate Earth. Based on mass balance calculations using Ta-W systematics in the major silicate reservoirs, the W abundance of the Earth’s primitive mantle can be constrained to 12 ppb, resulting in revised ratios of W-U and W-Th of 0.53 and 0.14, respectively. The newly constrained Hf-W ratio of the silicate Earth is 25.8, significantly higher than previously estimated (18.7) and overlaps within error the Hf-W ratio proposed for the Moon (ca. 24.9). The 182Hf-182W model age for the formation of the Earth’s core that is inferred from the 182W abundance and the Hf/W of the silicate Earth is therefore younger than previously calculated, by up to 5 Myrs after solar system formation depending on the accretion models used. The similar Hf/W ratios and 182W compositions of the Earth and the silicate Moon suggest a strong link between the Moon forming giant impact and final metal-silicate equilibration on the Earth.  相似文献   

6.
In order to derive constraints on planetary differentiation processes, and ultimately the formation of the Earth, it is required to study a variety of meteoritic materials and to investigate their melting relations and elemental partitioning at variable pressures, temperatures, and oxygen fugacities (fO2). This study reports the first high pressure (HP) and high temperature (HT) investigation of an enstatite chondrite (Indarch). Four series of experiments exploring various fO2 conditions have been carried out at 1 GPa in a piston-cylinder apparatus using the EH4 chondrite Indarch. We show that temperature and redox conditions have important effects on the phase equilibria of the meteorite: the solidus and liquidus temperatures of the silicate portion increase with decreasing fO2, and the stability fields of various phases are modified. Olivine and pyroxene are stable around 1.5 log fO2 unit below the iron-wüstite buffer (IW−1.5), whereas quartz and pyroxene is the stable assemblage under the most reducing conditions, between IW−5.0 and IW−4.0, due to reduction of the silicate. While these changes are occurring in the silicate, the metal gains Si from the silicate, (Fe, Mg, Mn, Ca, Cr)-bearing sulfides are observed at fO2 less than IW−4, and the partitioning of Ni and Mo are both affected by the presence of Si in Fe-S-C liquids. The fO2 has also a significant effect on the liquid metal-liquid silicate partitioning behavior of Si and S, two possible light elements in planetary cores, and of the slightly siderophile elements Cr and Mn. With decreasing fO2, S becomes increasingly lithophile, Si becomes increasingly siderophile, and Cr and Mn both become strongly siderophile and chalcophile. The partitioning behavior of these elements places new constraints on models of core segregation for the Earth and other differentiated bodies.  相似文献   

7.
According to their genesis, meteorites are classified into heliocentric (which originate from the asteroid belt) and planetocentric (which are fragments of the satellites of giant planets, including the Proto-Earth). Heliocentric meteorites (chondrites and primitive meteorites genetically related to them) used in this study as a characteristic of initial phases of the origin of the terrestrial planets. Synthesis of information on planetocentric meteorites (achondrites and iron meteorites) provides the basis for a model for the genesis of the satellites of giant planets and the Moon. The origin and primary layering of the Earth was initially analogously to that of planets of the HH chondritic type, as follows from similarities between the Earth’s primary crust and mantle and the chondrules of Fe-richest chondrites. The development of the Earth’s mantle and crust precluded its explosive breakup during the transition from its protoplanetary to planetary evolutionary stage, whereas chondritic planets underwent explosive breakup into asteroids. Lunar silicate rocks are poorer in Fe than achondrites, and this is explained in the model for the genesis of the Moon by the separation of a small metallic core, which sometime (at 3–4 Ga) induced the planet’s magnetic field. Iron from this core was involved into the generation of lunar depressions (lunar maria) filled with Fe- and Ti-rich rocks. In contrast to the parent planets of achondrites, the Moon has a olivine mantle, and this fact predetermined the isotopically heavier oxygen isotopic composition of lunar rocks. This effect also predetermined the specifics of the Earth’s rocks, whose oxygen became systematically isotopically heavier from the Precambrian to Paleozoic and Mesozoic in the course of olivinization of the peridotite mantle, a processes that formed the so-called roots of continents.  相似文献   

8.
We present the results of new partitioning experiments between metal and silicate melts for a series of elements normally regarded as refractory lithophile and moderately siderophile and volatile. These include Si, Ti, Ni, Cr, Mn, Ga, Nb, Ta, Cu and Zn. Our new data obtained at 3.6 and 7.7 GPa and between 2123 and 2473 K are combined with literature data to parameterize the individual effects of oxygen fugacity, temperature, pressure and composition on partitioning. We find that Ni, Cu and Zn become less siderophile with increasing temperature. In contrast, Mn, Cr, Si, Ta, Nb, Ga and Ti become more siderophile with increasing temperature, with the highly charged cations (Nb, Ta, Si and Ti) being the most sensitive to variations of temperature. We also find that Ni, Cr, Nb, Ta and Ga become less siderophile with increasing pressure, while Mn becomes more siderophile with increasing pressure. Pressure effects on the partitioning of Si, Ti, Cu and Zn appear to be negligible, as are the effects of silicate melt composition on the partitioning of divalent cations. From the derived parameterization, we predict that the silicate Earth abundances of the elements mentioned above are best explained if core formation in a magma ocean took place under increasing conditions of oxygen fugacity, starting from moderately reduced conditions and finishing at the current mantle-core equilibrium value.  相似文献   

9.
Tectonomagmatic evolution of the Earth and Moon   总被引:1,自引:0,他引:1  
The Earth and Moon evolved following a similar scenario. The formation of their protocrusts started with upward crystallization of global magmatic oceans. As a result of this process, easily fusible components accumulated in the course of fractional crystallization of melt migrating toward the surface. The protocrusts (granitic in the Earth and anorthositic in the Moon) are retained in ancient continents. The tectonomagmatic activity at the early stage of planet evolution was related to the ascent of mantle plume of the first generation composed of mantle material depleted due to the formation of protocrusts. The regions of extension, rise, and denudation were formed in the Earth above the diffluent heads of such superplumes (Archean granite-greenstone domains and Paleoproterozoic cratons), whereas granulite belts as regions of compression, subsidence, and sedimentation arose above descending mantle flows. The situation may be described in terms of plume tectonics. Gentle uplifts and basins (thalassoids) in lunar continents are probable analogues of these structural elements in the Moon. The period of 2.3–2.0 Ga ago was a turning point in the tectonomagmatic evolution of the Earth, when geochemically enriched Fe-Ti picrites and basalts typical of Phanerozoic within-plate magmatism became widespread. The environmental setting on the Earth’s surface changed at that time, as well. Plate tectonics, currently operating on a global scale, started to develop about ∼2 Ga ago. This turn was related to the origination of thermochemical mantle plumes of the second generation at the interface of the liquid Fe-Ni core and silicate mantle. A similar turning point in the lunar evolution probably occurred 4.2–3.9 Ga ago and completed with the formation of large depressions (seas) with thinned crust and vigorous basaltic magmatism. Such a sequence of events suggests that qualitatively new material previously retained in the planets’ cores was involved in tectonomagmatic processes at the middle stage of planetary evolution. This implies that the considered bodies initially were heterogeneous and were then heated from above to the bottom by propagation of a thermal wave accompanied by cooling of outer shells. Going through the depleted mantle, this wave generated thermal superplumes of the first generation. Cores close to the Fe + FeS eutectics in composition were affected by this wave in the last turn. The melting of the cores resulted in the appearance of thermochemical superplumes and corresponding irreversible rearrangement of geotectonic processes.  相似文献   

10.
《Comptes Rendus Geoscience》2019,351(2-3):197-208
We investigate the influence of the deep mantle water cycle incorporating dehydration reactions with subduction fluxes and degassing events on the thermal evolution of the Earth as a consequence of core–mantle thermal coupling. Since, in our numerical modeling, the mantle can have ocean masses ∼12 times larger than the present-day surface ocean, it seems that more than 13 ocean masses of water are at the maximum required within the planetary system overall to partition one ocean mass at the surface of the present-day Earth. This is caused by effects of water-dependent viscosity, which works at cooling down the mantle temperature significantly so that the water can be absorbed into the mantle transition zone and the uppermost lower mantle. This is a result similar to that without the effects of the thermal evolution of the Earth's core (Nakagawa et al., 2018). For the core's evolution, it seems to be expected for a partially molten state in the deep mantle over 2 billion years. Hence, the metal–silicate partitioning of hydrogen might have occurred at least 2 billion years ago. This suggests that the hydrogen generated from the phase transformation of hydrous-silicate-hosted water may have contributed to the partitioning of hydrogen into the metallic core, but it is still quite uncertain because the partitioning mechanism of hydrogen in metal–silicate partitioning is still controversial. In spite of many uncertainties for water circulation in the deep mantle, through this modeling investigation, it is possible to integrate the co-evolution of the deep planetary interior within that of the surface environment.  相似文献   

11.
It is assumed in the theories of Earth formation that the composition of gases extracted by primary planetary magmas is formed by the large-scale melting of the early mantle, which occurred in the presence of a metallic Fe phase. The molten Fe metal and silicate materials underwent gravitational migration, which affected the fractionation of siderophile elements. Volatile compounds had to form simultaneously in the zones of large-scale melting of the early Earth; their compositions were controlled by interaction with silicate and metallic melts. This process remains poorly understood.  相似文献   

12.
The solid metal/silicate melt partition coefficient for P, D(P), has been determined experimentally at 1190°C and 1300°C. The dependence of the partition coefficient on oxygen fugacity has been investigated, and is consistent with a valence state of 5 for P in the silicate melt. The experimental partition coefficients are given by: log D(P) = ?1.21 log ?O2 ? 15.95 at 1190°Clog D(P) = ?1.53 log ?O2 ? 17.73 at 1300°CThe experimentally determined partition coefficients may be used to interpret the low PLa ratios of the Earth, Moon and eucrites relative to C1 chondrites. The low PLa ratios in the eucrites may be explained by partitioning of P into 5% to 25% of a sulfur-bearing metallic liquid assuming equilibration and separation of the liquid metal from the silicates at low degrees of partial melting of the silicates. The low WLa ratios in the eucrites compared to C1 chondrites require the separation of an additional 2% to 10% solid metal.The lowering of both PLa and WLa ratios in the Moon may be explained by partitioning of P and W into metal during formation of a small core by separation of liquid metal from silicate at low degrees of partial melting of the silicates. The WLa ratios in the Earth and Moon are virtually indistinguishable, while PLa ratios differ by a factor of two. The concentrations of FeO also appear to be different. These observations are difficult to reconcile with the hypothesis of a terrestrial origin of the Moon following formation of the Earth's core, but are consistent with independent formation of the Earth and Moon.  相似文献   

13.
The solubility of volatile compounds in magmas and the redox state of their mantle source are the main factors that control the transfer of volatile components from the planet’s interior to its surface. In theories of the formation of the Earth, the composition of gases extracted by primary planetary magmas is accounted for by the large-scale melting of the early mantle in the presence of the metallic Fe phase [1, 2]. The fused metallic Fe phase and the melted silicate material experienced gravitational migration that exerted influence upon the formation of the metallic core of the planet. The large-scale melting of the early Earth should have been accompanied by the formation of volatile compounds, whose composition was controlled by the interaction of H and C with silicate and metallic melts, a process that remains largely unknown as of yet.  相似文献   

14.
Carbon has been proposed as a potential light element in planetary cores, included in models of planetary core formation, and found in meteoritic samples and minerals. To better understand the effect of C on the partitioning behavior of elements, solid/liquid partition coefficients (D = (solid metal)/(liquid metal)) were determined for 17 elements (As, Au, Co, Cr, Cu, Ga, Ge, Ir, Ni, Os, Pd, Pt, Re, Ru, Sb, Sn, and W) over a range of C contents in the Fe-Ni-C system at 1 atm. The partition coefficients for the majority of the elements increased as the C content of the liquid increased, an effect analogous to that of S for many of the elements. In contrast, three of the elements, Cr, Re, and W, were found to have anthracophile (C-loving) preferences, partitioning more strongly into the metallic liquid as the C content increased, resulting in decreases to their partition coefficients. For half of the elements examined, the prediction that partitioning in the Fe-Ni-S and Fe-Ni-C systems could be parameterized using a single set of variables was not supported. The effects of S and C on elemental partitioning behavior can be quite different; consequently, the presence of different non-metals can result in different fractionation patterns, and that uniqueness offers the opportunity to gain insight into the evolution of planetary bodies.  相似文献   

15.
The tectono-magmatic evolution of the Earth and Moon started after the solidification of their magmatic “oceans”, whose in-situ crystallization produced the primordial crusts of the planets, with the composition of these crusts depending on the depths of the “oceans”. A principally important feature of the irreversible evolution of the planetary bodies, regardless of their sizes and proportions of their metallic cores and silicate shells, was a fundamental change in the course of their tectono-magmatic processes during intermediate evolutionary stages. Early in the geological evolution of the Earth and Moon, their magmatic melts were highly magnesian and were derived from mantle sources depleted during the solidification of the magmatic “oceans”; this situation can be described in terms of plume tectonics. Later, geochemically enriched basalts with high concentrations of Fe, Ti, and incompatible elements became widespread. These rocks were typical of Phanerozoic within-plate magmatism. The style of tectonic activity has also changed: plate tectonics became widespread at the Earth, and large depressions (maria) started to develop at the Moon. The latter were characterized by a significantly thinned crust and basaltic magmatism. These events are thought to have been related to mantle superplumes of the second generation (thermochemical), which are produced (Dobretsov et al., 2001) at the boundary between the liquid core and silicate mantle owing to the accumulation of fluid at this interface. Because of their lower density, these superplumes ascended higher than their precursors did, and the spreading of their head parts resulted in active interaction with the superjacent thinned lithosphere and a change in the tectonic regime, with the replacement of the primordial crust by the secondary basaltic one. This change took place at 2.3–2.0 Ga on the Earth and at 4.2–3.9 Ga on the Moon. Analogous scenarios (with small differences) were also likely typical of Mars and Venus, whose vast basaltic plains developed during their second evolutionary stages. The change in the style of tectonic-magmatic activity was associated with important environmental changes on the surfaces of the planets, which gave rise to their secondary atmospheres. The occurrence of a fundamental change in the tectono-magmatic evolution of the planetary bodies with the transition from depleted to geochemically enriched melts implies that these planets were originally heterogeneous and had metal cores and silicate shells enriched in the material of carbonaceous chondrites. The involvement of principally different material (that had never before participated in these processes) in tectono-magmatic processes was possible only if these bodies were heated from their outer to inner levels via the passage of a heating wave (zone) with the associated cooling of the outermost shells. The early evolutionary stages of the planets, when the waves passed through their silicate mantles, were characterized by the of development of super-plumes of the first generation. The metallic cores were the last to melt, and this processes brought about the development of thermochemical super-plumes.  相似文献   

16.
We present new high-pressure temperature experiments on melting phase relations of Fe-C-S systems with applications to metallic core formation in planetary interiors. Experiments were performed on Fe-5 wt% C-5 wt% S and Fe-5 wt% C-15 wt% S at 2-6 GPa and 1050-2000 °C in MgO capsules and on Fe-13 wt% S, Fe-5 wt% S, and Fe-1.4 wt% S at 2 GPa and 1600 °C in graphite capsules. Our experiments show that: (a) At a given P-T, the solubility of carbon in iron-rich metallic melt decreases modestly with increasing sulfur content and at sufficiently high concentration, the interaction between carbon and sulfur can cause formation of two immiscible melts, one rich in Fe-carbide and the other rich in Fe-sulfide. (b) The mutual solubility of carbon and sulfur increases with increasing pressure and no super-liquidus immiscibility in Fe-rich compositions is likely expected at pressures greater than 5-6 GPa even for bulk compositions that are volatile-rich. (c) The liquidus temperature in the Fe-C-S ternary is significantly different compared to the binary liquidus in the Fe-C and Fe-S systems. At 6 GPa, the liquidus of Fe-5 wt% C-5 wt% S is 150-200 °C lower than the Fe-5 wt% S. (d) For Fe-C-S bulk compositions with modest concentration of carbon, the sole liquidus phase is iron carbide, Fe3C at 2 GPa and Fe7C3 at 6 GPa and metallic iron crystallizes only with further cooling as sulfur is concentrated in the late crystallizing liquid. Our results suggest that for carbon and sulfur-rich core compositions, immiscibility induced core stratification can be expected for planets with core pressure less than ∼6 GPa. Thus planetary bodies in the outer solar system such as Ganymede, Europa, and Io with present day core-mantle boundary (CMB) pressures of ∼8, ∼5, and 7 GPa, respectively, if sufficiently volatile-rich, may either have a stratified core or may have experienced core stratification owing to liquid immiscibility at some stage of their accretion. A similar argument can be made for terrestrial planetary bodies such as Mercury and Earth’s Moon, but no such stratification is predicted for cores of terrestrial planets such as Earth, Venus, and Mars with the present day core pressure in the order ?136 GPa, ?100 GPa, and ?23 GPa. (e) Owing to different expected densities of Fe-rich (and carbon-bearing) and sulfur-rich metallic melts, their settling velocities are likely different; thus core formation in terrestrial planets may involve rain of more than one metallic melt through silicate magma ocean. (f) For small planetary bodies that have core pressures <6 GPa and have a molten core or outer core, settling of denser carbide-rich liquid or flotation of lighter, sulfide-rich melt may contribute to an early, short-lived geodynamo.  相似文献   

17.
《Geochimica et cosmochimica acta》1999,63(11-12):1853-1863
The oxidation states of Ni, Co, Mn, Cr, V and Si in magnesiowüstite have been determined in metal-oxide distribution experiments using a multi anvil apparatus at 9 and 18 GPa and 2200°C as a function of oxygen fugacity. Despite limitations to control oxygen fugacity by applying conventional buffering methods in high pressure experiments, a wide range of redox-conditions (3 log bar units) has been imposed to the metal-oxide partitioning experiments by varying the Si/O ratio of the starting material. The oxygen fugacity was calculated according to the Fe-FeO equilibrium between the run products. The ability to impose different oxygen fugacities by varying the starting material is confirmed by the large variation of element partitioning coefficients obtained at constant pressure and temperature. The calculated valences at both pressures investigated are divalent for Co, Mn, V and 4+ for Si. The results for Cr (∼2.5+) and Ni (∼1.5+) indicate non-ideal mixing of Ni and Cr in at least one of the product phases. Because the application of 1 bar activity coefficients for Ni and Cr in metal alloys does not change these valences, non-ideal mixing in magnesiowüstite or significantly larger non-ideal mixing properties of Ni and Cr in metal alloys at high pressure are likely to be responsible for the apparent valences. Omitting such non-ideal mixing properties when extrapolating high-pressure element partitioning data may be significant. The elements Cr, V and Mn become siderophile (DMmet/ox > 1) at 9–18 GPa and 2200°C at oxygen fugacities below IW-2.7 to IW-3.7. Considering, in addition, the influence of temperature, the depletion of Cr, Mn and V in the Earth’s mantle may be due, at least partly, to siderophile behavior at high pressure and temperature.  相似文献   

18.
The extreme depletion of the Earth’s mantle in sulfur is commonly seen as a signature of metal segregation from Earth’s mantle to Earth’s core. However, in addition to S, the mantle contains other elements as volatile as S that are hardly depleted relative to the lithophile volatility trend although they are potentially as siderophile as sulfur. We report experiments in metal-sulfide–silicate systems to show that the CI normalized abundances of S, Pb, and Sn in Earth’s mantle cannot be reproduced by element partitioning in Fe ± S–silicate systems, neither at low nor at high pressure. Much of the volatile inventory of the Earth’s mantle must have been added late in the accretion history, when metal melt segregation to the core had become largely inactive. The great depletion in S is attributed to the selective segregation of a late sulfide matte from an oxidized and largely crystalline mantle. Apparently, the volatile abundances of Earth’s mantle are not in redox equilibrium with Earth’s core.  相似文献   

19.
We have measured liquid Fe metal-liquid silicate partitioning (Di) of tellurium, selenium, and sulfur over a range of pressure, temperature, and oxygen fugacity (1-19 GPa, 2023-2693 K, fO2 −0.4 to −5.5 log units relative to the iron-wüstite buffer) to better assess the role of metallic melts in fractionating these elements during mantle melting and early Earth evolution. We find that metal-silicate partitioning of all three elements decreases with falling FeO activity in the silicate melt, and that the addition of 5-10 wt% S in the metal phase results in a 3-fold enhancement of both DTe and DSe. In general, Te, Se, and S all become more siderophile with increasing pressure, and less siderophile with increasing temperature, in agreement with previous work. In all sulfur-bearing experiments, DTe is greater than DSe or DS, with the latter two being similar over a range of P and T. Parameterized results are used to estimate metal-silicate partitioning at the base of a magma ocean which deepens as accretion progresses, with the equilibration temperature fixed at the peridotite liquidus. We show that during accretion, Te behaves like a highly siderophile element, with expected core/mantle partitioning of >105, in contrast to the observed core/mantle ratio of ∼100. Less extreme differences are observed for Se and S, which yielded core/mantle partitioning 100- to 10 times higher, respectively, than the observed value. Addition of ∼0.5 wt% of a meteorite component (H, EH or EL ordinary chondrite) is sufficient to raise mantle abundances to their current level and erase the original interelement fractionation of metal-silicate equilibrium.  相似文献   

20.
The highly siderophile elements (HSE) pose a challenge for planetary geochemistry. They are normally strongly partitioned into metal relative to silicate. Consequently, planetary core segregation might be expected to essentially quantitatively remove these elements from planetary mantles. Yet the abundances of these elements estimated for Earth's primitive upper mantle (PUM) and the martian mantle are broadly similar, and only about 200 times lower than those of chondritic meteorites. In contrast, although problematic to estimate, abundances in the lunar mantle may be more than twenty times lower than in the terrestrial PUM. The generally chondritic Os isotopic compositions estimated for the terrestrial, lunar and martian mantles require that their long-term Re/Os ratios were within the range of chondritic meteorites. Further, most HSE in the terrestrial PUM also appear to be present in chondritic relative abundances, although Ru/Ir and Pd/Ir ratios are slightly suprachondritic. Similarly suprachondritic Ru/Ir and Pd/Ir ratios have also been reported for some lunar impact melt breccias that were created via large basin forming events.Numerous hypotheses have been proposed to account for the HSE present in Earth's mantle. These hypotheses include inefficient core formation, lowered metal-silicate D values resulting from metal segregation at elevated temperatures and pressures (as may occur at the base of a deep magma ocean), and late accretion of materials with chondritic bulk compositions after the cessation of core segregation. Synthesis of the large database now available for HSE in the terrestrial mantle, lunar samples, and martian meteorites reveals that each of the main hypotheses has flaws. Most difficult to explain is the similarity between HSE in the Earth's PUM and estimates for the martian mantle, coupled with the striking differences between the PUM and estimates for the lunar mantle. More complex, hybrid models that may include aspects of inefficient core formation, HSE partitioning at elevated temperatures and pressures, and late accretion may ultimately be necessary to account for all of the observed HSE characteristics. Participation of aspects of each process may not be surprising as it is difficult to envision the growth of a planet, like Earth, without the involvement of each.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号