首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The short exposure method proved to be very productive in ground-based observations of Mercury. Telescopic observations with short exposures, together with computer codes for the processing of data arrays of many thousands of original electronic photos, make it possible to improve the resolution of images from ground-based instruments to almost the diffraction limit. The resulting composite images are comparable with images from spacecrafts approaching from a distance of about 1 million km. This paper presents images of the hemisphere of Mercury in longitude sectors 90°–180°W, 215°–350°W, and 50°–90°W, including, among others, areas not covered by spacecraft cameras. For the first time a giant S basin was discovered in the sector of longitudes 250°–290°W, which is the largest formation of this type on terrestrial planets. Mercury has a strong phase effects. As a result, the view of the surface changes completely with the change in the planetary phase. But the choice of the phase in the study using spacecrafts is limited by orbital characteristics of the mission. Thus, ground-based observations of the planet provide a valuable support.  相似文献   

2.
Recent ground-based astronomical short-exposure observations of Mercury have yielded more than 50000 electronic pictures of the planet at different phases and different positions relative to the Earth. The work was fulfilled in several observatories. The use of available and newly developed processing methods applied to large volumes of electronic frames allowed the images of a considerable portion of Mercury’s surface to be synthesized. We present the images of the 90°–180°W, 215°–280°W, and 50°–90°W sectors containing, among others, the longitudes not covered by spacecraft imaging. Along with the listed images, we present the results of recent observations of Mercury carried out on November 20–24, 2006 during the morning elongation at the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) (Nizhnii Arkhyz, Karachai-Circassia, the Caucasus). The 265°–350°W longitude sector of Mercury was observed. The observations were made under good weather conditions. Among the main tasks of the new observations was obtaining a complete view of the S Basin. Previously, this basin had been investigated in fragments only by the actual solar illumination conditions. During the period of November 20–24, 2006, the S Basin was on the sunlit side of the planet. The complete image of the basin was obtained from the processing of a large number of electronic frames. The appearance of the S Basin is compared with the data on its relief acquired with radar methods. In this longitude sector, a number of other unusual surface features were found; among them, are a huge “Medallion” crater and other formations. The results considered in the present and earlier published studies are compared with the Mariner 10 data (1974–1975) and with the data received from the Messenger spacecraft during its first flyby of the planet (January 2008).  相似文献   

3.
A series of observations of Mercury were performed at the Special Astrophysical Observatory using the short-exposure method to image a hitherto unknown part of the Hermean surface. Several thousand electronic frames of the planet were taken during its morning elongation in the period from November 20–24, 2006. The phase angle of Mercury varied from 103° to 80°, and the interval of planetocentric longitudes observed spanned from 260 to 350°W. Observations were made with a CCD camera attached to the 1-m Zeiss-1000 Ritchey-Chretien telescope operating with a KS-19 filter (short-wavelength border at 700 nm). The Hermean surface is known to be almost impossible to resolve on ordinary images. A reduction of a large number of frames taken with millisecond-long exposures made it possible to obtain a rather sharp image of the observed part of the Hermean surface. One of the primary aims of new observations was to have a general outline of the basin earlier found by one of the authors (L. Ksanfomaliti). We are the first to image this giant feature. The size of its inner part exceeds that of the largest lunar Mare — Mare Imbrium, however, unlike the latter the studied basin is of impact origin. The synthesized images reveal a number of large impact craters of various ages, as well as smaller features. The highest resolution achieved corresponds to the diffraction limit for the instrument employed, or about 100 km on the Hermean surface.  相似文献   

4.
Plans to send orbiter missions to Mercury (e.g., NASA's Messenger and ESA's BepiColombo) have prompted renewed efforts to investigate the surface of Mercury using ground-based remote sensing. While the highest resolution instrumentation optical telescopes (e.g. HST) cannot be used at small angular distances (<45°) from the Sun (Mercury's elongation never exceeds 28° seen from Earth), advanced ground-based astronomical techniques and modern processing software can be used to construct resolved images of the poorly known part of Mercury. Our observations of the planet presented here were carried out mainly in April and May, 2002, at evening elongation of the planet, at the Skinakas astrophysical observatory of Heraklion University (Crete, Greece). A synthesis of the acquired images of the hemisphere of Mercury, which was not observed by the Mariner 10 mission (1974-1975), is presented. A double rim basin with an internal diameter of about 1000 km and an external rim about 2000 km is suggested by the data. We present the observational method, the data analysis approach, and the resulting images.  相似文献   

5.
December 1–3, 1999, observations of the planet Mercury were carried out at the Abastumani Astrophysical Observatory of the Republic of Georgia by the short exposure method with the aid of a charge-coupled device (CCD) camera. The materials of these observations are presented in this paper. It is shown that the reduction of the exposure down to 10 ms eliminates the image blurring caused by the atmospheric instability and considerably improves resolution. As regards the image distortions, they can be eliminated only by selecting acceptable images from a sufficiently large number of pictures obtained. The short exposure method allows one to obtain new results from the ground-based observations of Mercury.  相似文献   

6.
We describe and compare two methods of short-exposure, high-definition ground-based imaging of the planet Mercury. Two teams have recorded images of Mercury on different dates, from different locations, and with different observational and data reduction techniques. Both groups have achieved spatial resolutions of <250 km, and the same albedo features and contrast levels appear where the two datasets overlap (longitudes 270–360°). Dark albedo regions appear as mare and correlate well with smooth terrain radar signatures. Bright albedo features agree optically, but less well with radar data. Such confirmations of state-of-the-art optical techniques introduce a new era of ground-based exploration of Mercury's surface and its atmosphere. They offer opportunities for synergistic, cooperative observations before and during the upcoming Messenger and BepiColombo missions to Mercury.  相似文献   

7.
A basin with an interior about 1000 km across and an outer rim about 2000 km in diameter has been found on the side of Mercury that remained unknown after theMariner 10imaging in 1973–1975. In its size, which is as much as 1/2 of the Mercury's diameter, this formation is one of the largest basins on the terrestrial planets. The presence of other large features of global dimension on this side of the planet suggests their possible asymmetric allocation on Mercury, similar to that on the Moon. New methods of ground-based astronomical observations including data processing with a special software package have been used.  相似文献   

8.
Jenkins JM  Doyle LR  Cullers DK 《Icarus》1996,119(2):244-260
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.  相似文献   

9.
The direct images of giant extrasolar planets recently obtained around several main sequence stars represent a major step in the study of planetary systems. These high-dynamic range images are among the most striking results obtained by the current generation of high-angular resolution instruments which will be superseded by a new generation of instruments in the coming years. It is, therefore, an appropriate time to review the contributions of high-angular resolution visible/infrared techniques to the rapidly growing field of extrasolar planetary science. During the last 20 years, the advent of the Hubble Space Telescope, of adaptive optics on 4- to 10-m class ground-based telescopes, and of long-baseline infrared stellar interferometry, has opened a new viewpoint on the formation and evolution of planetary systems. By spatially resolving the optically thick circumstellar discs of gas and dust where planets are forming, these instruments have considerably improved our models of early circumstellar environments and have thereby provided new constraints on planet formation theories. High-angular resolution techniques are also directly tracing the mechanisms governing the early evolution of planetary embryos and the dispersal of optically thick material around young stars. Finally, mature planetary systems are being studied with an unprecedented accuracy thanks to single-pupil imaging and interferometry, precisely locating dust populations and putting into light a whole new family of long-period giant extrasolar planets.  相似文献   

10.
The results of investigations of the surface relief of Mercury with a classical photometric method are reported. A subject of the photometric method is the intensity of light reflected by the surface of the planet. The main data for the photometric study are the high-resolution images of Mercury received from the MESSENGER space station during its first flyby over Mercury. The images of the surface of Mercury were downloaded from the NASA web-site (http://messenger.jhuapl.edu) and converted to a digital form for photometric measurements. The reflectance characteristics of the surface were calculated according to the model of a three-dimensional scattering phase function (Shevchenko, 1979; 2004a; 2006). From the photometric processing of the space-borne images, the reflectance of four morphologic types of the surface structure of Mercury was determined. With the Hapke model of the bidirectional reflectance (Hapke, 2001), the structural inhomogeneity of the regions of the morphologic forms with centimeter-sized rough-ness was estimated.  相似文献   

11.
Images of the 280°–360°/0°–10° W longitude sector of Mercury’s surface produced from the results of recent ground-based astronomical observations are presented. This sector remained beyond the imaging from the Messenger spacecraft in 2008. Vast dark regions, up to 1000 km in diameter, are adjacent to the S Basin in the west. The dark objects, as well as the other large geomorphologic units found before in the 240°–360° W longitude sector from ground-based astronomical observations, are probably asymmetrically distributed on Mercury’s surface similar to those observed in the other terrestrial planets and the Moon.  相似文献   

12.
In long-term stability studies of terrestrial planets moving in the habitable zone (HZ) of a sun-like star, we distinguish four different configurations: (i) planets moving in binary star systems, (ii) the inner type (where the gas giant moves outside the HZ), (iii) the outer type (where the gas giant is closer to the star, than the HZ) and (iv) the Trojan type (where the gas giant moves in the HZ). Since earlier calculations indicated, that the stability of the motion in the HZ also depends on the inclination of the terrestrial planet orbits, we present a detailed numerical investigation to show correlations between the eccentricity, the mass and the distance of the giant planet for various inclinations of the terrestrial planets. The orbital stability of the HZ was examined for all four configurations stated above. While we could find hardly any stable orbits for the first three types for inclinations higher than 40°, the Trojan planets can be stable up to an inclination of 60°. Additionally, we could also find some stabilizing effects of the inclination for the first three types. As dynamical model we used the elliptic restricted three-body problem, which consists of two massive and one mass-less body. This allows an application to all detected and future extrasolar single planet systems.  相似文献   

13.
A.G.W. Cameron 《Icarus》1985,64(2):285-294
During recent years my research on the primitive solar nebular has followed two main themes: (1) Very early in the development of the nebula conditions probably favored the occurence of major gaseous instabilities leading to the formation of giant gaseous protoplanets, but the rapid rise of the external temperature soon evaporated the envelopes of these protoplanets, possibly leaving behind precipitated solids which formed the cores and mantles of the terrestrial planets. (2) Models of the nebula indicate a later stage when conditions in the inner Solar System became very hot; at the position of Mercury the temperature was probably in the range 2500–3500°K. This leads to the hypothesis that the original protomercury was a body substantially more massive than the present planet and of normal composition, but that when it was immersed in the high-temperature field of the dissipating solar nebula, most of the rocky mantle was vaporized and mixed into the solar nebula gases and carried away by them. This hypothesis is investigated in the present paper. For simplicity the vaporization of a mantle composed of enstatite, MgSiO3, was computed for a planet with 2.25 the mass of Mercury at a temperature of 3000°K. It is argued that the mantle could probably be largely removed in the available time of 3 × 104 years. Subsequent accretion would restore some magnesium silicates to the mantle of the planet.  相似文献   

14.
We discuss selected possibilities to detect planets in circumstellar disks. We consider the search for characteristic signatures in these disks caused by the interaction of giant planets with the disk as the most promising approach. Numerical simulations show that these signatures are usually much larger in size than the planet itself and thus much easier to detect. The particular result of the planet–disk interaction depends on the evolutionary stage of the disk. Primary signatures of planets embedded in disks are gaps in the case of young disks and characteristic asymmetric density patterns in debris disks.We present simulations which demonstrate that high spatial resolution observations performed with instruments/telescopes that will become available in the near future will be able to trace the location and other properties of young and evolved planets. These observations will allow to directly investigate the formation and evolution of planets in protoplanetary and debris disks.  相似文献   

15.
人类利用雷达波进行天文研究距今已有40多年历史了.它是一种发射雷达波到目标天体,通过分析其回波特性来进行天文探测的技术.该文从地基雷达在太阳系天体探测中的应用出发,分析了地基雷达相比其他探测手段的优点;介绍了地基雷达的基本工作原理;给出了近年来地基雷达的发展情况和探测成果;最后从现有条件出发,探讨了我国开展地基雷达探测的设想.  相似文献   

16.
The gravitational attraction of planets can cause significant perturbation of the trajectories of meteoroids. The resulting deflection can result in significant enhancement of the flux of meteoric particles in the neighbourhood of the planet. We give an analytical method for calculating the relative flux of stream meteoroids in the vicinity of a planet. We include the effect of shielding of certain regions that are not accessible to the meteoroids that have impacted the planet. We compare our results with those of Divine et al. and although we confirm the accuracy of their trajectory equations, the fluxes predicted by their calculations are not consistent with integrated fluxes over a planet predicted by the classic work of Öpik. Our method yields predictions for the integrated flux enhancement factor that are identical to Öpik's. We present the results of these calculations and find that in all cases, tail-like regions of enhanced meteoroid flux appear downstream of the planet, with very large enhancements possible in the case of the giant planets for all probable stream velocities.  相似文献   

17.
A detailed study to evaluate ground-based photographs of Mercury has been carried out. Models of the surface scattering properties have been assumed and smeared with a Gaussian function for direct comparison with center-to-limb scans along Mercury's intensity equator. Data from a range of phase angles from 31° to 92° have been compared with smeared models assuming a Lambert surface, a surface which obeys the Lommel-Seeliger law and one which is Minnaertian, having a variable coefficient. Within the limits of the observations a lunar Minnaert surface yields the most consistent interpretation. An objective evaluation of the resolution of the photographs is obtained in terms of Gaussian half-widths.  相似文献   

18.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft completed three flybys of Mercury in 2008–2009. During the first and third of those flybys, MESSENGER passed behind the planet from the perspective of Earth, occulting the radio-frequency (RF) transmissions. The occultation start and end times, recovered with 0.1 s accuracy or better by fitting edge-diffraction patterns to the RF power history, are used to estimate Mercury's radius at the tangent point of the RF path. To relate the measured radius to the planet shape, we evaluate local topography using images to identify the high-elevation feature that defines the RF path or using altimeter data to quantify surface roughness. Radius measurements are accurate to 150 m, and uncertainty in the average radius of the surrounding terrain, after adjustments are made from the local high at the tangent point of the RF path, is 350 m. The results are consistent with Mercury's equatorial shape as inferred from observations by the Mercury Laser Altimeter and ground-based radar. The three independent estimates of radius from occultation events collectively yield a mean radius for Mercury of 2439.2±0.5 km.  相似文献   

19.
Sean N. Raymond  Thomas Quinn 《Icarus》2005,177(1):256-263
‘Hot jupiters,’ giant planets with orbits very close to their parent stars, are thought to form farther away and migrate inward via interactions with a massive gas disk. If a giant planet forms and migrates quickly, the planetesimal population has time to re-generate in the lifetime of the disk and terrestrial planets may form [P.J. Armitage, A reduced efficiency of terrestrial planet formation following giant planet migration, Astrophys. J. 582 (2003) L47-L50]. We present results of simulations of terrestrial planet formation in the presence of hot/warm jupiters, broadly defined as having orbital radii ?0.5 AU. We show that terrestrial planets similar to those in the Solar System can form around stars with hot/warm jupiters, and can have water contents equal to or higher than the Earth's. For small orbital radii of hot jupiters (e.g., 0.15, 0.25 AU) potentially habitable planets can form, but for semi-major axes of 0.5 AU or greater their formation is suppressed. We show that the presence of an outer giant planet such as Jupiter does not enhance the water content of the terrestrial planets, but rather decreases their formation and water delivery timescales. We speculate that asteroid belts may exist interior to the terrestrial planets in systems with close-in giant planets.  相似文献   

20.
Keiko Atobe  Shigeru Ida 《Icarus》2004,168(2):223-236
We have investigated obliquity variations of possible terrestrial planets in habitable zones (HZs) perturbed by a giant planet(s) in extrasolar planetary systems. All the extrasolar planets so far discovered are inferred to be jovian-type gas giants. However, terrestrial planets could also exist in extrasolar planetary systems. In order for life, in particular for land-based life, to evolve and survive on a possible terrestrial planet in an HZ, small obliquity variations of the planet may be required in addition to its orbital stability, because large obliquity variations would cause significant climate change. It is known that large obliquity variations are caused by spin-orbit resonances where the precession frequency of the planet's spin nearly coincides with one of the precession frequencies of the ascending node of the planet's orbit. Using analytical expressions, we evaluated the obliquity variations of terrestrial planets with prograde spins in HZs. We found that the obliquity of terrestrial planets suffers large variations when the giant planet's orbit is separated by several Hill radii from an edge of the HZ, in which the orbits of the terrestrial planets in the HZ are marginally stable. Applying these results to the known extrasolar planetary systems, we found that about half of these systems can have terrestrial planets with small obliquity variations (smaller than 10°) over their entire HZs. However, the systems with both small obliquity variations and stable orbits in their HZs are only 1/5 of known systems. Most such systems are comprised of short-period giant planets. If additional planets are found in the known planetary systems, they generally tend to enhance the obliquity variations. On the other hand, if a large/close satellite exists, it significantly enhances the precession rate of the spin axis of a terrestrial planet and is likely to reduce the obliquity variations of the planet. Moreover, if a terrestrial planet is in a retrograde spin state, the spin-orbit resonance does not occur. Retrograde spin, or a large/close satellite might be essential for land-based life to survive on a terrestrial planet in an HZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号