首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The role of alkaline mineral aerosol in controlling HNO3 partitioning between gas and aerosol phases is explored using a comprehensive, process oriented three-dimensional model. Simulation results for March 1994, a period from the PEM West B experiment, are presented. It is found that in the dust impacted regions of the boundary layer and free troposphere, more than 50% of HNO3 ispartitioned onto dust particles; while 1050% of HNO3 in the boundarylayer and 10 30% of HNO3 in the free troposphere is partitionedonto sea-salt particles. This higher capacity of mineral dust to uptake HNO3 is due to the fact that carbonate in the dust particles is more volatile (thus easily replaced by nitrate) than chloride in the sea-salt particles. When this process of nitric acid partitioning onto alkaline particles is included in the analysis, model predicted HNO3-to-NOx ratios are much closer to observed valuesthat typically range between 1 and 9.  相似文献   

2.
The gas and particle phase products from the reaction of -pinene with the atmospheric oxidants O3 and OH radicals in the presence of NOx were investigated using both gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC) for identification and quantification of reaction products. The nighttime oxidation of -pinene in the presence of O3/air and the daytime oxidation of -pinene in the presence of NOx/air and natural sunlight were carried out in the University of North Carolina large outdoor smog chamber (190 m3) located in Chatham County, North Carolina. A Scanning Mobility Particle Sizer system (3936, TSI) and a Condensation Particle Counter (3025A, TSI) were used to study the secondary organic aerosol (SOA) formation, and a filter pack/denuder sampling system was used for simultaneously collecting gas and particle phase products for analysis. A gas chromatograph coupled to a mass spectrometer (GC-EIMS or GC-CIMS) was used for the identification and quantification of gas and aerosol products. A HPLC method was used for the measurement of small carbonyl compounds (aldehydes and ketones) as their 2,4-dinitrophenylhydrazones (DNPH) derivatives. Mass balances for gaseous and aerosol reaction products were reported over the course of the reaction. More than sixteen products were identified and/or quantified in this study. On average, measured gas and particle phase products accounted for 57 to 71% of the reacted -pinene carbon. Measurements showed that a number of reaction products were found in both O3 and NOx systems (pinic acid, pinalic-3-acid, 4-hydroxypinalic-3-acid, 4-oxonopinone, 1-hydroxynopinone, 3-hydroxynopinone, and nopinone). Pinic acid, pinalic-3-acid, and 4-hydroxypinalic-3-acid were observed in the early stage in the aerosol phase and may play an important role in the early formation of secondary aerosols. Detailed reaction schemes are presented to account for most of the observed reaction products.  相似文献   

3.
An investigation of the influence of mineral dust ontrace gas cycles in the troposphere is carried out inthis study. A 3D regional scale atmospheric chemistrymodel (STEM-III) which includes aerosol processes isused for the numerical simulations for May 1987.Heterogeneous interactions between gaseous species(SO2, N2O5, HNO3, HO2andH2O2) and the dust particles are considered.Emissions of dust behind convective cold fronts aremodeled. The transport and distribution of mineraldust predicted from the model is compared withsatellite measurements (aerosol index from TOMS). Themodel is shown to capture the synoptic variability inthe observed aerosol index. Calculations show twomajor dust events in May 1987, during which thedust levels close to the source reach more than500 g/m3. The transport of dust is mostlyrestricted towards the north, with the net continentaloutflow of 6 Tg for the entire month. Results showthat the presence of mineral aerosol can greatlyimpact sulfate and nitrate distributions. Averagedover the month of May, the presence of dust isestimated to increase particulate sulfate and nitratelevels in east Asia by 40%. Furthermore, the sulfateand nitrate on the dust particles are predicted to beassociated with the coarse mode (3–5 m particlediameter), consistent with observations over Japan.The influence of mineral dust on the photochemicaloxidant cycle is also investigated. For the entiremonth, a5–10% decrease in boundary layer ozone ispredicted by the model closer to regions of higherdust levels. The ratio of nitric acid to NOx overmarine regions is reduced by a factor between 1 and 2in the boundary layer to more than 2 in the freetroposphere as a result of aerosol processes.  相似文献   

4.
The gas and particle phase reaction products of a mixture of the atmospherically important terpenes -pinene and -pinene with the atmospheric oxidants O3 and OH/NOx were investigated using both gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC) for identification and quantification of reaction products. The nighttime oxidation of a mixture of -pinene and -pinene in the presence of O3/air, and the daytime oxidation of a mixture of -pinene + -pinene with NOx air in the presence of natural sunlight were carried out in the University of North Carolina's large outdoor smog chamber (190 m3) located in Chatham County, North Carolina. Mass balances for gaseous and aerosol reaction products are reported over the course of the reaction. More than twenty-nine products were identified and/or quantified in this study. On average, measured gas and particle phase products accounted for 74 to 80% of the reacted -pinen/-pinene mixture carbon. Measurements show that a number of reaction products were found in both O3 and NOx system [pinonaldehyde, pinic acid, pinonic acid, pinalic-3-acid, 4-hydroxypinalic-3-acid, 4-oxonopinone, 1-hydroxy-nopinone, 3-hydroxy-nopinone, and nopinone]. Pinonic acid, pinic acid, pinalic-3-acid, 4-hydroxypinalic-3-acid, and 10-hydroxypinonic acid were observed in the early stage in the aerosol phase and may play an important role in the early formation of secondary aerosols.  相似文献   

5.
This paper shows a comparative study of particle and surface ozone concentration measurements undertaken simultaneously at two distinct semi-urban locations distant by 4 km at Saint-Denis, the main city of La Réunion island (21.5° S, 55.5° E) during austral autumn (May 2000). Black carbon (BC) particles measured at La Réunion University, the first site situated in the suburbs of Saint-Denis, show straight-forward anti-correlation with ozone, especially during pollution peaks ( 650 ng/m3 and 15 ppbv, for BC and ozone respectively) and at night-time (90 ng/m3 and 18.5 ppbv, for BC and ozone respectively). NOx (NO and NO2) and PM10 particles were also measured in parallel with ozone at Lislet Geoffroy college, a second site situated closer to the city centre. NOx and PM10 particles are anti-correlated with ozone, with noticeable ozone destruction during peak hours (mean 6 and 9 ppbv at 7 a.m. and 8 p.m. respectively) when NOx and PM10 concentrations exhibit maximum values. We observe a net daytime ozone creation (19 ppbv, O3 +4.5 ppbv), following both photochemical and dynamical processes. At night-time however, ozone recovers (mean 11 ppbv) when anthropogenic activities are lower ([BC] 100 ng/m3). BC and PM10 concentration variation obtained during an experiment at the second site shows that the main origin of particles is anthropogenic emission (vehicles), which in turn influences directly ozone variability. Saint-Denis BC and ozone concentrations are also compared to measurements obtained during early autumn (March 2000) at Sainte-Rose (third site), a quite remote oceanic location. Contrarily to Saint-Denis observations, a net daytime ozone loss (14.5 ppbv at 4 p.m.) is noticed at Sainte-Rose while ozone recovers (17 ppbv) at night-time, with however a lower amplitude than at Saint-Denis. Preliminary results presented here are handful data sets for modelling and which may contribute to a better comprehension of ozone variability in relatively polluted areas.  相似文献   

6.
Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons   总被引:15,自引:0,他引:15  
Measurements of aerosol formation during thephotooxidation of -pinene, -pinene,d-3-carene, d-limonene, ocimene, linalool, terpinene-4-ol, andtrans-caryophyllene were conducted in anoutdoor smog chamber. Daylight experiments in thepresence of and dark experiments withelevated ozone concentrations were performed. Theevolution of the aerosol was simulated by theapplication of a gas/particle absorption model inconnection with a chemical reaction mechanism. Thefractional aerosol yield is shown to be a function ofthe organic aerosol mass concentration andtemperature. Ozone and, for selected hydrocarbons, theNO3 reaction of the compounds were found torepresent efficient routes to the formation ofcondensable products. For initial hydrocarbon mixingratios of about 100 ppb, the fractional aerosol yieldsfrom daylight runs have been estimated to be 5%for open-chain hydrocarbons, such as ocimene andlinalool, 5–25% for monounsaturated cyclicmonoterpenes, such as -pinene, d-3-carene, orterpinene-4-ol, and 40% for a cyclic monoterpenewith two double bonds like d-limonene. For the onlysesquiterpene investigated, trans-caryophyllene, afractional aerosol yield of close to 100% wasobserved. The majority of the compounds studied showedan even higher aerosol yield during dark experimentsin the presence of ozone.  相似文献   

7.
Local ozone production and loss rates for the arctic free troposphere (58–85° N, 1–6 km, February–May) during the TroposphericOzone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 kmlayer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratiosup to 300 pptv in February and for NOx mixing ratios up to 500 pptv in May. These NOx limits are an order of magnitude higher thanmedian NOx levels observed, illustrating the strong dependence ofgross ozone production rates on NOx mixing ratios for the majority of theobservations. The threshold NOx mixing ratio needed for netpositive ozone production was also calculated to increase from NOx 10pptv in February to 25 pptv in May, suggesting that the NOx levels needed to sustain net ozone production are lower in winter than spring. This lower NOx threshold explains how wintertime photochemical ozone production can impact the build-up of ozone over winter and early spring. There is also an altitude dependence as the threshold NOx neededto produce net ozone shifts to higher values at lower altitudes. This partly explains the calculation of net ozone destruction for the 1–3 km layerand net ozone production for the 3–6 km layer throughout the campaign.  相似文献   

8.
The photooxidation of -humulene in the presence of NOx, natural sunlight, and rural background air was investigated using a combination of gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC). Identification and quantification of gas and particulate reaction products were reported over the course of the reaction. The daytime photooxidation was carried out in a large outdoor smog chamber (190 m3). A wide range of ring retaining and ring opening products in the gas and particle phase are reported. On average, measured gas and particle phase products accounted for 44% of the reacted -humulene carbon. Measurements show that a number of reaction products with low vapor pressures (e.g. 3-seco--humulone aldehyde, 7-seco--humulone aldehyde, -humulal aldehyde, -humulene 3-oxide or -humulene 7-oxide, -humulaic/alic acid isomers, and 3-seco--14-hydroxyhumulone aldehyde) were found in the early stage of the reaction and may play an important role in the early formation of secondary organic aerosol. A detailed mechanism is proposed to account for most products observed in this investigation.  相似文献   

9.
Results from measurements of the composition and size distribution of aerosol particles advected into central Alaska are reported. It is argued that the aerosol predominant in number, but not necessarily in mass, consists of submicron droplets of sulfuric acid. The major aerosol by mass in arctic air is a removal-resistant accumulation mode (radius 0.3 m) probably to large extent originating from pollution sources 103 km upstream (mostly in central Eurasia) from the site in Alaska. The accumulation mode aerosol disappears when arctic air masses are replaced with relatively warmer air masses flowing in from the northern Pacific. The latter air mass systems have been strongly scavenged by clouds and precipitation associated with the Aleutian low pressure system and with forced orographic uplifting over the Alaska Mountain Range; nevertheless the Pacific air masses contain substantial (i.e., 500–1000 cm-3) quantities of small (several hundredths of a micron in radius) particles. Arctic-derived air masses are enriched in large (i.e, 0.3 ) particles compared to Pacific Marine air masses, whereas the opposite trend is found for smaller, Aitken, particles. The smaller particles are found in greatest abundance in warmer air mass systems, presumably because of the relatively brief time since such air masses were last exposed to sunlight with attendant production of small particles from the gas phase.  相似文献   

10.
Atmospheric oxidation of monoterpenes contributes to formation of tropospheric ozone and secondary organic aerosol, but their products are poorly characterized. In this work, we report a series of outdoor smog chamber experiments to investigate both gaseous and particulate products in the ozone oxidation of four monoterpenes: -pinene, -pinene, 3-carene, and sabinene. More than ten oxygenated products are detected and identified in each monoterpene/O3 reaction by coupling derivatization techniques and GC/MS detection. A denuder/filter pack sampling system is used to separate and simultaneously collect gas and aerosol samples. The identified products, consisting of compounds containing carbonyl, hydroxyl, and carboxyl functional groups, are estimated to account for about 34–50%, 57%, 29–67%, and 24% of the reacted carbon mass for -pinene, sabinene, -pinene, and 3-carene, respectively. The identified individual products account for >83%, 100%, >90%, and 61% of the aerosol mass produced in the ozone reaction of -pinene, sabinene, -pinene, and 3-carene. The uncertainty in the yield data is estimated to be ±50%. Many of the products partition between gas and aerosol phases, and their gas-aerosol partitioning coefficients are determined and reported here. Reaction schemes are suggested to account for the products observed.  相似文献   

11.
Gaseous nitric acid and ammonia were sampled with annular denuders at a forest savannah site from April to December 1987. The analysis of the extract was made spectrophotometrically and by a selective electrode for NO3 and NH4 +, respectively. Higher concentrations were observed during the vegetation burning period at the end of the dry season. In the studied savannah area, large soil emissions of NO occur during the rainy season, although very low concentrations of HNO3 (0.035 ppb) and also of particulate NO3 (0.43 g m-3) were observed; it is likely that NOx are lost by fast vertical transport to the upper troposphere. During the nonburning period, the average concentration of NH3 was 2.7 ppb, which is much lower than values given in the literature for the tropical America atmosphere. The concentrations of HNO3 and NH3 were always below the values needed to produce ammonium nitrate aerosols.  相似文献   

12.
Time series for total aerosol mass and the concentrations of nineteen elements, and the mass particle-size distributions of the elements, were determined for samples collected from a site in the northern deserts of China -Zhenbeitai, one of ground sites of the Asia-Pacific Regional Aerosol Characterization Experiment (ACE-Asia). Nine dust storm (DS) events were observed during the spring of 2001, lasting a combined total of twenty-six days. Peak mass loadings greatly exceeded the average (260 g m–3), and higher than average dust-element concentrations and wind speeds were also observed during the three-month study. Material balance calculations showed that 82% mass of the total aerosol particles could be ascribed to Asian dust, of which Al, Ca, Fe, K, Mn, Si and Ti accounted for 7%, 6%, 4%, 2%, 0.1%, 32% and 1% by weight, respectively. Modelcalculated dry deposition velocities for 7 dust-elements during dust storm periods averaged 17 cm s–1 and ranged from 14 to 21 cm s–1. The estimated dry depositiona of Asian dust for the spring of 2001 was 189 g m–2, of which 85% was due to dust storms. Factor analysis indicated that 89% of the dust loading during this period was due to remote or regional transport; 11% to local or background dust.  相似文献   

13.
The nitric acid formed from trans-2-butene, propene, ethene, toluene, and n-butane in single hydrocarbon/NO2/purified air systems was examined in smog chamber experiments. The effect of hydrocarbon and NO2 concentrations on the maximum HNO3 yield, defined as percentages of initial NO2 converted to HNO3, was studied in two sets of experiments. In every hydrocarbon system, we found no effect of hydrocarbon concentration variation on the nitric acid formed. Out of initially added 100 ppb NO2, in the hydrocarbon-rich systems, ethene formed most HNO3 (45%), followed by propene, toluene, and n-butane (24%), and trans-2-butene (13%). When the initial NO2 concentration was varied with a constant hydrocarbon concentration, the amount of HNO3 formed was found to linearly increase with the added NO2 down to |HC|/|NO2| ratios, which depended on the nature of the hydrocarbon studied. The initial rate of HNO3 formation in hydrocarbon excess experiments varied between 50, 35, 23, 16, and 8 ppb/hr for butene, propene, toluene, ethene, and butane systems, respectively.  相似文献   

14.
Airborne measurements of the emissions from natural fires, fueled by pyrites and organic materials, at the Smoking Hills in the Northwest Territories, show that they are a regionally significant source of SO2 (0.3 kg s–1 or 104 T yr–1) and particles (0.3 kg s–1). It appears likely that the Smoking Hills are a source for some of the dense, lower-level, haze layers that occur in the North American Arctic.  相似文献   

15.
Summary The total ozone decline during the past twenty years, especially strong during the winter-spring season poleward from 50° N, is well established with known average trends of 5–7% per decade. This study presents a number of additional characteristics such as ozone-mass deficiency (O3MD) from the pre- 1976 base average, and areal extent with negative deviations greater than2 and3. Gridded satellite data combined with ground-based total ozone maps, permit calculations of daily and regional ozone deficiencies from the anthropogenically undisturbed average ozone levels of the 1960s and early 1970s. Then the quantity of the O3MD and the changes in surface area, with deficiencies larger than-10 and-15% are integrated for the 1 January to 15 April period for each of the last 20 years, and compared. In addition, the polar vortex extent during the last 10 years is determined using the PV at 475°K. The quantity of the O3MD within the sunlit part of the vortex is shown to contribute from15 to 35% of the overall ozone deficiency within the-10% contours over the area 35–90°N. The ozone deficiency, integrated for the first 105 days of each year, has increased dramatically from 2,800Mt in the early 1980s to7,800Mt in the 1990s, exceeded 12,000Mt in the winter-springs of 1993 and 1995. The latter quantity is comparable with the average O3MD over the same Southern latitudes in the last ten austral springs. During the 1990s over the 35–90° latitudes the average ozone deficiency in the Southern hemisphere belt is less than over the Northern hemisphere belt by40%. It is known that the main ozone decline is observed in the lower stratosphere and the ozone loss over the Arctic is very sensitive to decreasing stratospheric temperatures; negative 50hPa monthly anomalies greater than 4°C have occurred during 7 of the springs in the last decade, thus possibly facilitating doubling the area with negative ozone deviations greater than-10% in the 1990s to5,000.106km2 and nearly tripling the O3MD as stated above. The changes in total eddy heat fluxes as a proxy indicator of the long wave perturbations are positively correlated with the ozone deficiency in the 45–75°N. The strong anticorrelation between the ozone deficiency in the region>55° N. versus the 35–50° N belt is discussed in relation to possible transport of air masses with low ozone from the sub-tropics, which in some years are the dominant reason for the observed ozone deficiency.With 11 Figures  相似文献   

16.
Thermal and optical techniques were used at Barrow, Alaska during AGASP II (3/20/86–4/7/86) to measure in-situ variability of major aerosol components present in Arctic Haze. The experiment provided continuous data on the concentration, size distribution and relative proportions of sulfate species and refractory aerosol for particle diameters of 0.15 to 5 m. Filter samples were also taken for determination of aerosol optical absorption due to soot (EC-elemental carbon). Although pronounced haze events were absence during this period the haze aerosol present varied in concentration between 2 and 6 g/m3 but showed little change in relative constituents. Apart from local influences, the optical data indicated a persistent fine-mode sulfate aerosol with a NH4 +/SO4 molar ratio of about 0.4 and a refractory component of somewhat less than 10% by mass. A preliminary comparison of soot estimates determined from the light absorption data with the size distributions of refractory aerosol observed independently by the optical particle counter showed good agreement during the sample period. In the absence of local pollution, values of single scatter albedo derived from light scattering and light absorption showed similar variation about the average value of 0.86 found by us during flights north of Barrow three years earlier during AGASP I.  相似文献   

17.
In situ aircraft measurements of O3, CO,HNO3, and aerosol particles are presented,performed over the North Sea region in the summerlower stratosphere during the STREAM II campaign(Stratosphere Troposphere Experiments by AircraftMeasurements) in July 1994. Occasionally, high COconcentrations of 200-300 pbbv were measured in thelowermost stratosphere, together with relatively highHNO3 concentrations up to 1.6 ppbv. The particlenumber concentration (at standard pressure andtemperature) between 0.018-1 m decreased acrossthe tropopause, from >1000 cm-3 in the uppertroposphere to <500 cm-3 in the lowermoststratosphere. Since the CO sources are found in thetroposphere, the elevated CO mixing ratios areattributed to mixing of polluted tropospheric air intothe lowermost extratropical stratosphere. Further wehave used a chemical model to illustrate that nitrogenoxide reservoir species (mainly HNO3) determinethe availability of NOx (=NO + NO2) andtherefore largely control the total net O3production in the lower kilometers of thestratosphere. Model simulations, applying additionalNOx perturbations from aircraft, show that theO3 production efficiency of NOx is smallerthan previously assumed, under conditions withrelatively high HNO3 mixing ratios, as observedduring STREAM II. The model simulations furthersuggest a relatively high O3 productionefficiency from CO oxidation, as a result of therelatively high ambient HNO3 and NOxconcentrations, implying that upward transport of COrich air enhances O3 production in the lowermoststratosphere. Analysis of the measurements and themodel calculations suggest that the lowermoststratosphere is a transition region in which thechemistry deviates from both the upper troposphere andlower stratosphere.  相似文献   

18.
Measurements of NOx (NO +NO2) and the sum of reactive nitrogenconstituents, NOy, were made near the surface atAlert (82.5°N), Canada during March and April1998. In early March when solar insolation was absentor very low, NOx mixing ratios were frequentlynear zero. After polar sunrise when the sun was abovethe horizon for much or all of the day a diurnalvariation in NOx and NOy was observed withamplitudes as large as 30–40 pptv. The source ofactive nitrogen is attributed to release from the snowsurface by a process that is apparently sensitized bysunlight. If the source from the snowpack is a largescale feature of the Arctic then the diurnal trendsalso require a competing process for removal to thesurface. From the diurnal change in the NO/NO2ratio, mid-April mixing ratios for the sum of peroxyand halogen oxide radicals of 10 pptv werederived for periods when ozone mixing ratios were inthe normal range of 30–50 ppbv. Mid-day ozoneproduction and loss rates with the active nitrogensource were estimated to be 1–2 ppbv/day and in nearbalance. NOy mixing ratios which averaged only295±66 pptv do not support a large accumulation inthe high Arctic surface layer in the winter and springof 1998. The small abundance of NOy relative tothe elevated mixing ratios of other long-livedanthropogenic constituents requires that reactivenitrogen be removed to the surface during transport toor during residence within the high Arctic.  相似文献   

19.
With the global Chemistry-Transport model MATCHsensitivity simulations were performed to determinethe degree to which especially upward transport ofgases from the earth's surface is limited byconvective and large-scale precipitation scavenging.When only dissolution of species in the liquid phaseis taken into account, mixing ratio reductions in themiddle and upper troposphere by 10% arecalculated for gases with a Henry's Law constant H of103 mol/l/atm. The removal increases to 50% forH = 104 mol/l/atm, and to 90% for H =105 mol/l/atm. We also consider scavenging by theice phase, which is generally much less efficient thanby the aqueous phase. In fact, rejection of gases fromfreezing water droplets may be a source of trace gasat higher altitudes.H2O2 and the strong acids (H2SO4,HNO3, HCl, HBr, HI) have such large solubilitiesthat they become largely removed by precipitation.When significant concentrations of these gases andsulfate aerosol exist above the liquid water domain ofthe atmosphere, they have likely been produced thereor at higher altitudes, although some could have comefrom trace gas rejection from ice particles or fromevaporating hydrometeors. Several other gases areaffected by precipitation, but not strongly enough toprevent fractional transfer to the middle and uppertroposphere: e.g., HNO4, HNO2 at pH 5,CH2O, the organic acids at pH 6,CH3SOCH3, HOCl, HOBr, and HOI. NH3 islargely removed by liquid phase scavenging at pH 7 and SO2 atpH 7. At pH less thanabout 6, upward transport of SO2 should largelydepend on the efficiency of oxidation processes in thewater droplets by O3 and H2O2.Most gases have solubilities which are too low forsignificant precipitation scavenging and aqueous phaseoxidation to occur. This holds, e.g., for O3, CO,the hydrocarbons, NO, NO2, HCN, CH3CN,CH3SCH3, CH3O2H, CH3CHOandhigher aldehydes, CH3OH and higher alcohols,peroxyacetylnitrate (PAN), CH3COCH3 andother ketones (note that some of these are not listedin Table I because their solubilities are below 10mol/l/atm). Especially for the short-lived gases,transfer from the boundary layer to the middle andupper troposphere is actually promoted by the enhancedupward transport that occurs in clouds.  相似文献   

20.
Results from numerical investigations regarding the exchange of HNO3, NH3, and NH4NO3 between the atmosphere and the biosphere are presented. The investigations were performed with a modified inferential method which is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these nitrogen compounds. This modified inferential method calculates the micrometeorological quantities (such as the friction velocity and the fluxes of sensible and latent heat), the height-invariant fluxes of the composed chemically conservative trace species with group concentrationsc 1=[HNO3]+[NH4NO3] (total nitrate),c 2=[NH3]+[NH4NO3] (total ammonia), andc 3=[HNO3]-[NH3] as well as the fluxes of the individual nitrogen compounds. The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The modified inferential method requires only the data of wind velocity, temperature, humidity and concentrations (HNO3, NH3, and NH4NO3) measured at a reference height by stations of a monitoring network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号