首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tilted Bianchi Type I cosmological model for perfect fluid distribution in presence of magnetic field, is investigated. To get a determinate solution, it has been assumed that the universe is filled with stiff perfect fluid distribution together with A=(BC) n where A,B,C are metric potentials and n is a constant. The behaviour of the model in presence and absence of magnetic field is discussed. The various physical and geometrical aspects of the model, is also discussed. It has been shown that tilted nature of the Bianchi Type I model is preserved due to magnetic field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A spatially-homogeneous and anisotropic magnetized cosmological model in Lyra's manifold is obtained when the source of the gravitational field is a perfect fluid distribution. The magnetic field is due to an electric current produced along thex-axis. The physical behaviour of the model is discussed.  相似文献   

3.
Cylindrically symmetric inhomogeneous cosmological model for perfect fluid distribution with electromagnetic field is obtained. The source of the magnetic field is due to an electric current produced along the z-axis. F 12 is the non-vanishing component of electromagnetic field tensor. To get the deterministic solution, it has been assumed that the expansion θ in the model is proportional to the shear σ. Physical and geometric aspects of the models are also discussed in presence and absence of magnetic field.   相似文献   

4.
Bianchi Type III massive string cosmological model for perfect fluid distribution in the presence of magnetic field, is investigated. It is assumed that the universe is filled with barotropic perfect fluid. We have attempted to investigate Bianchi Type III string cosmological model incorporating perfect fluid with magnetic field. To get the deterministic model in terms of cosmic time, we have assumed that the expansion (θ) in the model is proportional to the shear. We have also assumed that F 12 is the only non-vanishing component of electromagnetic field tensor F ij . The behaviour of the model in presence and absence of magnetic field together with singularities in these models are also discussed.  相似文献   

5.
We study the static stiff-fluid model for perfect fluid distributions in the presence of incident magnetic field. The magnetic field is surrounded by static stiff fluid of infinite electric conductivity and it is due to the electric current flowing along theZ-axis. The various physical and geometrical properties together with the state of model in absence of magnetic field are also discussed.  相似文献   

6.
A plane-symmetric inhomogeneous cosmological model of perfect fluid distribution with electromagnetic field, is obtained.F 12 is the non-vanishing component of the electromagnetic field tensor. To get a determinate solution, we assume the free gravitational field is Petrov type-II non-degenerate. In general, the model represents an expanding, shearing, non-rotating universe in which the flow vector is geodetic. The behaviour of the electromagnetic field tensor together with some geometrical and physical aspect of the model are also discussed.  相似文献   

7.
A new class of plane-symmetric inhomogeneous cosmological models of perfect fluid distribution with electro-magnetic field based on Lyra’s geometry is obtained by considering a time dependent displacement field. The source of the magnetic field is due to an electric current produced along the z-axis. Only F 12 is a non-vanishing component of electromagnetic field tensor. To get the deterministic solutions, the free gravitational field is assumed to be of Petrov type-II non-degenerate. It has been found that the displacement vector β(t) behaves like cosmological term Λ which is consistent with the recent observations of type Ia supernovae. It is also observed that β(t) affects entropy. Some geometric and physical behaviour of the models are also discussed in presence of magnetic field.   相似文献   

8.
An inhomogeneous cylindrically symmetric cosmological model for stiff perfect fluid distribution with electromagnetic field is obtained.F 12 is the non-vanishing component of electromagnetic field tensor. The metric potentials are functions ofx andt both. The behaviour of the electromagnetic field tensor together with geometrical and physical aspects of the model are also examined.  相似文献   

9.
We have investigated magnetized stiff fluid Bianchi Type I anisotropic tilted cosmological model for perfect fluid distribution in General Relativity. It has been assumed that the expansion in the model is only in two directions i.e. one of the Hubble parameter (H1 = A4/A); is zero. It has been shown that tilted nature of the model is preserved due to magnetic field. The various physical and geometrical aspects of the model is also discussed.  相似文献   

10.
The behaviour of magnetic field in anisotropic Bianchi type I cosmological model for perfect fluid distribution in General Relativity, is investigated. The distribution consists of an electrically neutral perfect fluid with an infinite electrical conductivity. It is assumed that the component 1 1 of shear tensor j i is proportional to the expansion () which leads to A = (BC)n. The other physical and geometrical aspects of the model are also discussed, Bali (1986) obtained the cosmological model for n = 1 in presence of magnetic field. We have investigated the model for general values of n and discussed the particular case and general behaviour of the model.  相似文献   

11.
Relativistic cosmological field equations are obtained for a non-static stationary Bertotti-Robinson-type space-time for interacting perfect fluid and electromagnetic field. The cosmological solution to the field equations are obtained and the nature of the electromagnetic field as well the perfect fluid are studied. The electromagnetic field generated here corresponds to a special generic case and the perfect fluid distribution degenerates into a barotropic perfect fluid with equation of statep+=0, >0. It is shown here that the interacting barotropic fluid can generate gravitation only when the cosmological constant being a function ofx in a dynamic field.  相似文献   

12.
We discuss spatially homogeneous and anisotropic Bianchi type VI 0 cosmological model with anisotropic fluid and magnetic field. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS and a uniform magnetic field of energy density ρ B . Exact solution of the field equations is obtained by using the condition that expansion is proportional to the shear scalar. We focus on the future evolution of the model both in the presence and absence of magnetic field. In particular, we address the question whether these models approach to isotropy.  相似文献   

13.
Kantowski-Sachs cosmological model in the presence of magnetized anisotropic dark energy is investigated. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS p=ωρ and a uniform magnetic field of energy density ρ B . We obtain exact solutions to the field equations using the condition that expansion is proportional to the shear scalar. The physical behavior of the model is discussed with and without magnetic field. We conclude that universe model as well as anisotropic fluid does not approach isotropy through the evolution of the universe.  相似文献   

14.
The Brans-Dicke field equations for a perfect fluid distribution representing slowly rotating fluid spheres are investigated. Exact solutions are obtained for differential rotation and perfect dragging by imposing some physical restrictions on the matter rotation (r,t). The physical properties are discussed fork=±1.  相似文献   

15.
Presenting some interesting new solutions, rotating models of anisotropic two-fluid universes coupled with a magnetic field are investigated and studied, where the anisotropic pressure is generated by the presence of two non-interacting perfect fluids which are in relative motion with respect to each other. Here special discussion is made of the physically interesting class of models in which one fluid is a comoving radiative perfect fluid which is taken to model the cosmic microwave background and the second a non-comoving perfect fluid which will model the observed material content of the universe. Besides studying their physical and dynamical properties the effects of rotation on these models are studied and the reactions of the magnetic and gravitational fields with respect to the rotational motion are discussed. Analysis on the rotational perturbations are also made, in the course of which the amount of anisotropy induced in pressure distribution by a small deviation from the Friedmann metric is also investigated. The models obtained here are found to be theoretically satisfactory and thereby substantiates the possibilities of existence of such astrophysical objects in this Universe and may be taken as good examples of real astrophysical situations.  相似文献   

16.
A viscous fluid cosmological model in presence of magnetic field and zero-mass scalar fields is developed. The non-negativity condition of viscous fluid pressure prescribes a certain minimum value oft vis-a-vis of the scale factorQ(t) and at this epoch the model is found to be singularity free.  相似文献   

17.
Field equations in the presence of a perfect fluid distribution are obtained in a scalar-tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. 113, 1985, 467) with the aid of Einstein–Rosen cylindrically symmetric metric. A static vacuum model and a non-static stiff fluid model are presented. The physical and geometrical properties of the stiff fluid model are studied.  相似文献   

18.
In FRW space time Brans-Dicke theory is developed for two cases: (i) the vacuum and (ii) the perfect fluid model. The field equations are transformed into a much simpler form under a change of time co-ordinates and then the solutions are determined for the above cases. An equation of statep =/3 (radiation) is assumed in the case of perfect fluid.  相似文献   

19.
Assuming a perfect fluid distribution of matter Bianchi type Vspace-time is considered and using a new generation techniqueit is shown that the field equations are solvable for anyarbitrary cosmic scale function. Solutions for particularforms of cosmic scale functions are obtained, and thegeometrical and physical properties of these solutions discussed.  相似文献   

20.
A slow rotation perturbation of Robertson-Walker universes filled with perfect fluid has been investigated. It is found that the unit-four vector of perfect fluid hasno angular velocity in the perturbed cosmological models. The slow rotation which is related to the dragging of the local inertial frames, is compatible only with the cases of positive and negative curvatures of the cosmological universe. The intrinsic velocity vector field of the Universe isexpanding as well asshearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号