首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
浙江省位于中国东部沿海高热流地热异常区,燕山期岩浆侵入活动强烈,高放射性产热型干热岩资源潜力巨大。燕山期花岗岩类生热元素分布规律研究表明:石英正长岩类、二长花岗岩、正长花岗岩和花岗岩的K2O含量相近,花岗岩的U、Th含量最高。岩体放射性生热率计算结果表明:不同花岗岩类放射性生热率相差较大。石英正长岩类生热率相对最低,变化范围相对较窄,平均值为2.14 μW/m3; 正长花岗岩生热率变化范围相对较宽,平均值为3.31 μW/m3; 花岗岩生热率相对最高,平均值为5.41 μW/m3。参照高放射性产热型干热岩开发的地热地质学标准,初步判定浙西北泗岭、九华山、河桥、儒洪和学川(顺溪)及浙东南小将等岩体,具有较好的干热岩资源勘查前景。  相似文献   

2.
英雄岭构造带是柴达木盆地油气最为富集的地区之一,地温场对油气成藏过程有重要影响,也是油田开发工程实施的重要参考.利用试油静温数据,结合激光扫描法开展岩心热导率及放射性生热测试,对研究区地温场进行了研究.英东地区地温梯度为31.8~35.3℃/km,平均为33.6℃/km,新近系热导率为1.8~2.4W/m/K,平均为2.07W/m/K,大地热流值为65~74mW/m2,平均为69mW/m2.热流呈“西高东低”特征,昆北、南翼山及一里坪等地热流值超过65mW/m2,而阿尔金山前、冷湖构造带及涩北等地较低,咸水泉和冷湖等地普遍低于50mW/m2.新近系实测平均生热率为2.84μW/m3,对热流的贡献约20%.研究区具有“热壳温幔”特征,其影响因素包括地壳放射性生热、蚀源区高U中酸性侵入岩、印度板块汇聚引起的构造热及热岩石圈厚度较薄等.  相似文献   

3.
南斯堪的纳维亚(Scandivnavia)的地质情况为深部和中部地壳的取样提供了独特的条件,以进行热流和生热率研究。在南挪威中部地区,闪岩相的地体看来是位于更深的壳层枯部,这些更深的壳层在其西部和东部边缘出露。作者从文献中选用这个地区所有岩类的大量的地球化学数据来计算各种岩相的放射性生热率。用同一地区的热流约束得到了一个可靠的地壳生热率分布模型。麻粒岩相地体的平均生热率是0.4μW/m^3。这个地盾也包含了由后期构造事件形成的生热元素富集的花岗岩,地表岩石总的平均生热率是2.7μW/m^3。根据10个测点的热流和生热率的数据,这个地区的剩余热流为22±2mW/m^2,这相当于28km厚的深地壳岩相层顶的热流,预示了地幔热流可能只有10mW/m^2的低值。整个地壳平均的放射性热贡献为31mW/m^2。  相似文献   

4.
江西省赣县区位于江西省南部、属于我国东南高热流区,但赣县区内大地热流研究尚属空白,制约了区域地热背景的综合认知和进一步研究评价。本次研究基于钻孔测温及岩心样品热导率测试数据,通过分析校正得到赣县地区平均大地热流值为75.9mW/m2,高于我国大陆地区平均热流值,反映了区域具有较高的热背景。通过放射性测试,得到研究区花岗岩体放射性生热率平均为5.68μW/m3,属于高放射性岩体,大面积分布的高产热花岗岩,可为区域地热背景提供稳定的附加热源,此外贯穿本区的深大断裂及其次生断裂给热水提供了深循环通道加热,因此推测研究区地热资源的热源机制为“地下水深循环加热+高产热花岗岩体生热”的模式。  相似文献   

5.
田峰  祁士华  王帅  肖志才  旷健 《地质科学》1958,55(4):1277-1289
岩石的放射性生热是地热资源的重要热源之一,为研究广东惠州石坝—黄沙洞地区岩石放射性生热率特征,本文系统采集了石坝—黄沙洞地区不同岩性的样品,测定其密度及产热元素含量,对花岗岩样品进行锆石LA-ICP-MS U-Pb同位素定年。结果表明:研究区内不同岩性中花岗岩的放射性生热率最高(均值5.81 µW/m3),但是变化范围较大(2.83 µW/m3~9.07 µW/m3);U、Th对生热率的贡献基本相等,K的贡献一般低于10%,部分沉积地层样品可达20%;花岗岩的生热率与时间关系密切,在~150 Ma具有明显峰值。初步结论认为:研究区内岩性对岩石生热率具有显著影响,花岗岩的生热率最高;花岗岩的生热率受岩体形成时的区域岩浆事件影响,在~150 Ma形成的花岗岩具有最高的生热率,有利于干热岩的勘查开发。  相似文献   

6.
盆地的热体制研究对盆地构造演化与油气勘探意义重大。岩石放射性生热率是岩石重要的热物性参数,是研究盆地热体制的基础数据之一。不同于传统的分析测试方法,自然伽马(GR)—生热率(A)换算只需要GR测井就可以计算生热率。笔者利用塔里木盆地不同地区20口主要钻井的GR测井数据计算了沉积层共6094个生热率数据,建立了代表性钻井岩性测井—生热率对比图、塔里木盆地地层生热率柱,估算了盆地沉积层放射性生热对地表热流的贡献及对深部地层的增温效应。结果表明,塔里木盆地沉积层的平均生热率为1. 17±0. 336μW/m3,岩性是地层生热率的主控因素,泥岩生热率最高,为1. 96±0. 318μW/m3,砂岩次之,为0. 99±0. 264μW/m3,白云岩和灰岩生热率较低,分别为0. 44±0. 362μW/m3和0. 36±0. 408μW/m3。根据地层生热率,估算沉积层生热贡献的热流为9. 36mW/m2,约占地表总热流的21%,沉积层生热对地温梯度的贡献约为3. 3℃/km,放射性生热对属于“冷盆”的塔里木盆地的地温场具有不容忽视的影响。  相似文献   

7.
大地热流研究揭示的中国地壳成分横向变化   总被引:2,自引:0,他引:2  
汪洋  邓亚福 《地球科学》2001,26(6):597-602
依据大地热流值、地壳厚度以及大陆壳/幔热流比与地下流体氦同位素比值的相关关系,计算出中国主要构造单元地壳生热率。同时,根据Rudnick和Fountain(1995)的数据得到地壳生热率和SiO2质量分数的线性关系,进而利用生热率数据得到地壳SiO2质量分数。此方法得到的中国东部地壳生热率和SiO2质量分数与基于地震波速的成分模型相符。中国大陆地壳生热率和SiO2质量分数横向变化明显,东部地区地壳为中性成分,相对富集强不相容元素;而西北部盆地地壳成分偏于中基性。华北、扬子和塔里木地壳成分差异较大,克拉通内部表现出明显的成分非均匀性,褶皱带地壳一般较克拉通略富长英质组分。  相似文献   

8.
中国大陆科学钻探主孔揭示的大陆地壳生热模型   总被引:2,自引:0,他引:2  
本文对大陆科学钻探主孔149块岩心样品进行了系统的岩石放射性生热元素 U、Th 和 K 的含量测试,同时结合该井浅部井段前人的实测数据,揭示了上地壳5km 生热率的垂向分布。结果显示,以1650m 为界,上下两段生热率均随深度呈增加趋势,与正常地壳生热率特征不同,显示出超高压变质带独特的生热率垂向变化特征。结合地壳的岩性分布,建立了苏鲁超高压变质带地壳的生热模型。该模型中,地壳厚32km,其中上地壳0~10km,由超高压变质岩片组成,按岩性又详细分为8层,生热率变化在0.49~1.73μWm~(-3)。中地壳10~20km,由片麻岩组成,生热率为生热率1.51μWm~(-3)。下地壳20~32km为麻粒岩,生热率0.31μWm~(-3)。整个地壳热流约31mw/m~2,其中上地壳12mW/m~2。上地壳厚度和热流分别占整个地壳的31%和39%。与华北和下扬子地壳生热模型相比,上地壳热流整个地壳热流的比例最低。这表明,苏鲁超高压变质带,作为中朝与扬子板块俯冲-碰撞的产物,其地壳生率垂向分布与正常大陆地壳(华北、下扬子)相比,具有显著的不同。  相似文献   

9.
对桂北豆乍山岩体钻孔样品进行了放射性生热元素含量、岩石密度和岩石热导率测试。结果显示该岩体花岗岩U平均含量为17.49×10~(-6),Th平均含量为27.54×10~(-6),K_2O平均含量为4.64%,放射性生热率平均值6.46μW/m~3,高于地壳平均值及大部分华南其他岩体的放射性生热率值;岩石密度平均在2.57 g/cm~3左右,与世界范围内花岗岩密度的平均值大致相同;岩石热贡献率主要来自Th和U的放射性衰变热,而U的贡献率相对更高。研究区岩石热导率平均为3.389 W/mK,与目前已知的花岗岩热导率平均值相近。通过本文及周边其他岩体的研究结果,结合前人资料,推断豆乍山岩体所在的苗儿山地区,乃至桂北地区的地幔热流值低于地壳热流值贡献,属于"热壳冷幔"型岩石圈热结构。根据豆乍山岩体放射性生热元素和生热率的优势,认为其干热岩开发潜力较大,可对其进行进一步干热岩评价工作。  相似文献   

10.
南卡罗利纳(Carolina)西北部的阿巴拉契亚超深岩心钻孔(ADCOH)区域的热流值约为55mW/m^2。这个数据补充了阿巴拉契亚山麓带和大西洋海岸平原东部的其他数据,那里的热流值大于55mW/m^2,是后期和晚期同变质花岗岩类的特征值。阿巴拉契亚山麓带的热流在一个大致平行于阿巴拉契亚山脉主要构造方向的带内,和花岗岩、变质花岗岩及板岩带的生热率显示出线性关系。在8km深度上(相当于热流一生热率直线的斜率)的构造霍顶可以解释这种线性关系。根据由这个经验关系得到的剩余热流和由最近的ADCOH地区的地震数据确定的生热地壳的厚度,ADCOH地区的热流和生热率与阿巴拉契亚山麓内带的结晶外来体大约5.5km的基底深度是相对应的。ADCOH地点的地震数据证实,阿巴拉契山麓内带在5.5km深度上由于兰岭(Blue Ridge)主体滑脱产生了构造截顶。ADCOH地区10km深处的温度预测将低于200℃。  相似文献   

11.
Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58–1.12 μW/m3 with a median of 0.85 μW/m3. Accordingly, the contents of U, Th and K2O in China crust are in ranges of 0.83–1.76 μg/g, 3.16–6.69 μg/g, and 1.0%–2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China’s continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust.  相似文献   

12.
Nine new heat flow determinations and several measurements of radioactive heat generation are presented for the Superior Province. The average value of twenty-one heat flows now published for the Superior, corrected for Pleistocene glaciation, is 40 ± 8 mW/m2. Heat generation values are low generally less than 3 μWW/m3. Although individual values of the ratio of thorium to uranium vary considerably, the geometrical average of four is lower than results from other Archean rocks.A linear relation between the heat flow and radioactive heat generation may exist. The reduced heat flow, 21 mW/m2, and the characteristic depth, 14 km, from this relation are quite different from other heat flow provinces. Since large thicknesses of the crust have been eroded away and since the original heat generation was much larger than the values measured now, a linear relation equivalent to those found in younger heat flow provinces is not expected.To account for the large differences in heat flow and heat generation observed in different Archean shields an Archean crustal model is proposed which includes thin (2–4 km) radioactive surface veneers over some areas.The thermal parameters of a young crust may well determine whether or not it will survive. Since Archean times the heat flow of each newly stabilized region has been a constant, and since the time of formation or last orogeny the heat flow in each province has steadily decreased. The geothermal gradients in Archean crust have decreased the most, causing significant underplating, and increasing the strength of the crust.  相似文献   

13.
Heat flow and thermal modeling of the Yinggehai Basin, South China Sea   总被引:9,自引:0,他引:9  
Geothermal gradients are estimated to vary from 31 to 43 °C/km in the Yinggehai Basin based on 99 temperature data sets compiled from oil well data. Thirty-seven thermal conductivity measurements on core samples were made and the effects of porosity and water saturation were corrected. Thermal conductivities of mudstone and sandstone range from 1.2 to 2.7 W/m K, with a mean of 2.0±0.5 W/m K after approximate correction. Heat flow at six sites in the Yinggehai Basin range from 69 to 86 mW/m2, with a mean value of 79±7 mW/m2. Thick sediments and high sedimentation rates resulted in a considerable radiogenic contribution, but also depressed the heat flow. Measurements indicate the radiogenic heat production in the sediment is 1.28 μW/m3, which contributes 20% to the surface heat flow. After subtracting radiogenic heat contribution of the sediment, and sedimentation correction, the average basal heat flow from basement is about 86 mW/m2.Three stages of extension are recognized in the subsidence history, and a kinematic model is used to study the thermal evolution of the basin since the Cenozoic era. Model results show that the peak value of basal heat flow was getting higher and higher through the Cenozoic. The maximum basal heat flow increased from 65 mW/m2 in the first stage to 75 mW/m2 in the second stage, and then 90 mW/m2 in the third stage. The present temperature field of the lithosphere of the Yinggehai Basin, which is still transient, is the result of the multistage extension, but was primarily associated with the Pliocene extension.  相似文献   

14.
Heat flow has been determined by combining temperature measurements in 7 boreholes with thermal conductivity measurements in the Upper Vindhyan sedimentary rocks of Shivpuri area, central India. The boreholes are distributed at 5 sites within an area of 15 × 10 km2; their depths range from 174 to 268 m. Geothermal gradients estimated from borehole temperature profiles vary from 8.0–12.7 mK m−1 in the sandstone-rich formations to 25.5–27.5 mK m−1 in the shale-rich formations, consistent with the contrast in thermal conductivities of the two rock types. Heat flow in the area ranges between 45 and 61 mW m−2, with a mean of 52±6 mW m−2. The heat flow values are similar to the >50 mW m−2 heat flow observed in other parts of the northern Indian shield. The heat flow determinations represent the steady-state heat flow because, the thermal transients associated with the initial rifting, convergence and sedimentation in the basin as well as the more recent Deccan volcanism that affected the region to the south of the basin would have decayed, and therefore, the heat flow is in equilibrium with the radiogenic heat production of the crust and the heat flow from the mantle. The present study reports the heat flow measurements from the western part of the Vindhyan basin and provides heat flow information for the Bundhelkhand craton for the first time. Radioelement (Th, U and K) abundances have been measured both in the sedimentary rocks exposed in the area as well as in the underlying basement granite-gneiss of Bundelkhand massif exposed in the adjacent area. Radioactive heat production, estimated from those abundances, indicate mean values of 0.3 μW m−3 for sandstone with inter-bands of shale and siltstone, 0.25 μW m−3 for sandstone with inter-bands siltstone, 0.6 μW m−3 for quartzose sandstone, and 2.7 μW m−3 for the basement granitoids. With a total sedimentary thickness not exceeding a few hundred metres in the area, the heat production of the sedimentary cover would be insignificant. The radioactive heat contribution from the basement granitoids in the upper crust is expected to be large, and together with the heat flow component from the mantle, would control the crustal thermal structure in the region.  相似文献   

15.
The Middle Miocene Tsushima granite pluton is composed of leucocratic granites, gray granites and numerous mafic microgranular enclaves (MME). The granites have a metaluminous to slightly peraluminous composition and belong to the calc‐alkaline series, as do many other coeval granites of southwestern Japan, all of which formed in relation to the opening of the Sea of Japan. The Tsushima granites are unique in that they occur in the back‐arc area of the innermost Inner Zone of Southwest Japan, contain numerous miarolitic cavities, and show shallow crystallization (2–6 km deep), based on hornblende geobarometry. The leucocratic granite has higher initial 87Sr/86Sr ratios (0.7065–0.7085) and lower εNd(t) (?7.70 to ?4.35) than the MME of basaltic–dacitic composition (0.7044–0.7061 and ?0.53 to ?5.24), whereas most gray granites have intermediate chemical and Sr–Nd isotopic compositions (0.7061–0.7072 and ?3.75 to ?6.17). Field, petrological, and geochemical data demonstrate that the Tsushima granites formed by the mingling and mixing of mafic and felsic magmas. The Sr–Nd–Pb isotope data strongly suggest that the mafic magma was derived from two mantle components with depleted mantle material and enriched mantle I (EMI) compositions, whereas the felsic magma formed by mixing of upper mantle magma of EMI composition with metabasic rocks in the overlying lower crust. Element data points deviating from the simple mixing line of the two magmas may indicate fractional crystallization of the felsic magma or chemical modification by hydrothermal fluid. The miarolitic cavities and enrichment of alkali elements in the MME suggest rapid cooling of the mingled magma accompanied by elemental transport by hydrothermal fluid. The inferred genesis of this magma–fluid system is as follows: (i) the mafic and felsic magmas were generated in the mantle and lower crust, respectively, by a large heat supply and pressure decrease under back‐arc conditions induced by mantle upwelling and crustal thinning; (ii) they mingled and crystallized rapidly at shallow depths in the upper crust without interaction during the ascent of the magmas from the middle to the upper crust, which (iii) led to fluid generation in the shallow crust. The upper mantle in southwest Japan thus has an EMI‐like composition, which plays an important role in the genesis of igneous rocks there.  相似文献   

16.
Eleven new estimates of heat flow (q) from the southern Altai-Sayan Folded Area (ASFA) have provided update to the heat flow map of Gorny Altai. Measured heat flow in the area varies from 33 to 90 mW/m2, with abnormal values of >70 mW/mq at four sites. The anomalies may have a deep source only at the Aryskan site in the East Sayan (q = 77 mW/m2) while high heat flows of 75–90 mW/m2 obtained for the Mesozoic Belokurikha and Kalguty plutons appear rather to result from high radiogenic heat production in granite, which adds a 25–30 W/m2 radiogenic component to a deep component of 50–60 mW/m2. The latter value is consistent with heat flow estimates derived from helium isotope ratios (54 mW/m2 in both plutons). Heat flow variations at other sites are in the range from 33 to 60 mW/m2. The new data support the earlier inferences of a generally low heat flow over most of ASFA (average of 45–50 mW/m2) and of a “cold” Cenozoic orogeny in the area (except for southeastern ASFA), possibly driven by shear stresses associated with India indentation into Eurasia.  相似文献   

17.
Terrestrial heat flow is an important physical parameter in the study of heat transfer and thermal structure of the earth and it has great significance in the genesis and development and utilization potential of regional geothermal resources. Although several breakthroughs in geothermal exploration have been made in Guizhou Province. The terrestrial heat flow in this area has not been properly measured, restricting the development of geothermal resources in the province. For this reason, the terrestrial heat flow in Guizhou was measured in this study, during which the characteristics of heat flow were determined using borehole thermometry, geothermal monitoring and thermal property testing. Moreover, the influencing factors of the terrestrial heat flow were analyzed. The results show that the thermal conductivity of rocks ranges from 2.0 W/(m·K) to 5.0 W/(m·K), with an average of 3.399 W/(m·K); the heat flow varies from 30.27 mW/m2 to 157.55 mW/m2, with an average of 65.26 ± 20.93 mW/m2, which is slightly higher than that of the average heat flow in entire land area in China. The heat flow in Guizhou generally follows a dumbbell-shaped distribution, with high values present in the east and west and low values occurring in the north and south. The terrestrial heat flow is related to the burial depths of the Moho and Curie surface. The basaltic eruptions in the Emeishan led to a thinner lithosphere, thicker crust and lateral emplacement, which dominated the basic pattern of heat flow distribution in Guizhou. In addition, the dichotomous structure of regional active faults and concealed deep faults jointly control the heat transfer channels and thus influence the terrestrial heat flow.  相似文献   

18.
The Late Archaean Closepet Granite batholith in south India is exposed at different crustal levels grading from greenschist facies in the north through amphibolite and granulite facies in the south along a ∼400 km long segment in the Dharwar craton. Two areas, Pavagada and Magadi, located in the Main Mass of the batholith, best represent the granitoid of the greenschist and amphibolite facies crustal levels respectively. Heat flow estimates of 38 mW m−2 from Pavagada and 25 mW m−2 from Magadi have been obtained through measurements in deep (430 and 445 m) and carefully sited boreholes. Measurements made in four boreholes of opportunity in Pavagada area yield a mean heat flow of 39 ± 4 (s.d.) mW m−2, which is in good agreement with the estimate from deep borehole. The study, therefore, demonstrates a clear-cut heat flow variation concomitant with the crustal levels exposed in the two areas. The mean heat production estimates for the greenschist facies and amphibolite facies layers constituting the Main Mass of the batholith are 2.9 and 1.8 μW m−3, respectively. The enhanced heat flow in the Pavagada area is consistent with the occurrence of a radioelement-enriched 2-km-thick greenschist facies layer granitoid overlying the granitoid of the amphibolite facies layer which is twice as thick as represented in the Magadi area. The crustal heat production models indicate similar mantle heat flow estimates in the range 12–14 mW m−2, consistent with the other parts of the greenstone-granite-gneiss terrain of the Dharwar craton.  相似文献   

19.
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.  相似文献   

20.
Coupled thermal‐mechanical models are used to investigate interactions between metamorphism, deformation and exhumation in large convergent orogens, and the implications of coupling and feedback between these processes for observed structural and metamorphic styles. The models involve subduction of suborogenic mantle lithosphere, large amounts of convergence (≥ 450 km) at 1 cm yr?1, and a slope‐dependent erosion rate. The model crust is layered with respect to thermal and rheological properties — the upper crust (0–20 km) follows a wet quartzite flow law, with heat production of 2.0 μW m?3, and the lower crust (20–35 km) follows a modified dry diabase flow law, with heat production of 0.75 μW m?3. After 45 Myr, the model orogens develop crustal thicknesses of the order of 60 km, with lower crustal temperatures in excess of 700 °C. In some models, an additional increment of weakening is introduced so that the effective viscosity decreases to 1019 Pa.s at 700 °C in the upper crust and 900 °C in the lower crust. In these models, a narrow zone of outward channel flow develops at the base of the weak upper crustal layer where T≥600 °C. The channel flow zone is characterised by a reversal in velocity direction on the pro‐side of the system, and is driven by a depth‐dependent pressure gradient that is facilitated by the development of a temperature‐dependent low viscosity horizon in the mid‐crust. Different exhumation styles produce contrasting effects on models with channel flow zones. Post‐convergent crustal extension leads to thinning in the orogenic core and a corresponding zone of shortening and thrust‐related exhumation on the flanks. Velocities in the pro‐side channel flow zone are enhanced but the channel itself is not exhumed. In contrast, exhumation resulting from erosion that is focused on the pro‐side flank of the plateau leads to ‘ductile extrusion’ of the channel flow zone. The exhumed channel displays apparent normal‐sense offset at its upper boundary, reverse‐sense offset at its lower boundary, and an ‘inverted’ metamorphic sequence across the zone. The different styles of exhumation produce contrasting peak grade profiles across the model surfaces. However, P–T–t paths in both cases are loops where Pmax precedes Tmax, typical of regional metamorphism; individual paths are not diagnostic of either the thickening or the exhumation mechanism. Possible natural examples of the channel flow zones produced in these models include the Main Central Thrust zone of the Himalayas and the Muskoka domain of the western Grenville orogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号