首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
10 M ≥ 6.7 earthquakes ruptured 1000 km of the North Anatolian fault (Turkey) during 1939–1992, providing an unsurpassed opportunity to study how one large shock sets up the next. We use the mapped surface slip and fault geometry to infer the transfer of stress throughout the sequence. Calculations of the change in Coulomb failure stress reveal that nine out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 1–10 bar, equivalent to 3–30 years of secular stressing. We translate the calculated stress changes into earthquake probability gains using an earthquake-nucleation constitutive relation, which includes both permanent and transient effects of the sudden stress changes. The transient effects of the stress changes dominate during the mean 10 yr period between triggering and subsequent rupturing shocks in the Anatolia sequence. The stress changes result in an average three-fold gain in the net earthquake probability during the decade after each event. Stress is calculated to be high today at several isolated sites along the fault. During the next 30 years, we estimate a 15 per cent probability of a M ≥ 6.7 earthquake east of the major eastern centre of Ercinzan, and a 12 per cent probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere.  相似文献   

2.
3.
Summary We consider a long strike-slip fault in a lithosphere modelled as an elastic slab. To the base of the slab a shear stress distribution is applied which simulates the viscous drag exerted by the asthenosphere. The resulant stress on the fault plane may directly fracture the lithosphere in its brittle upper portion; alternatively it may give rise at first to a stable aseismic sliding in the lower portion. In the latter case, stress concentration due to the deep aseismic slip is the relevant feature of the pre-seismic stress acting on the upper section of the lithosphere. The two cases are examined by use of dislocation theory and their observable effects compared. Different depths of the aseismic slip zone and the presence or absence of a uniform friction on the seismic fault are allowed for. If the model is applied to the San Andreas fault region, where a steady sliding condition actually seems to be present at shallow depth, it turns out that the slip amplitudes commonly associated with large earthquakes are consistent with average basal stress values which can be substantially lower than a few bars, a value often quoted as the steady state basal stress due to a velocity gradient in the upper asthenosphere.  相似文献   

4.
Previous investigations of the causal relationship between postglacial rebound and earthquakes in eastern Canada have focused on the mode of failure and the observed timing of the pulse of earthquake/faulting activity following deglaciation. In this study, the observational database has been extended to include observed orientations of the contemporary stress field and the rotation of stress since deglacial times. It is shown that many of these observations can be explained by a realistic ice history and a viscoelastic earth with a uniform 1021 Pa s mantle.
The effects of viscosity structure on the above predictions are also examined. It is shown that, since most of the above observations are found within the ice margin, they are not very sensitive to lithospheric thickness. Also, the inclusion of a 25 or 50 km ductile layer within the lithosphere will not decouple the seismogenic upper crust. High viscosity (1022 Pa s) in the lower mantle is rejected by the stress orientation and rotation observations. A low-viscosity (6 times 1020Pa s) upper mantle with 1.6 times 1021 Pa s in the upper part of the lower mantle and 3 times 1021 Pa s in the lower part of the lower mantle below 1200 km depth has been found to give predictions that are in general agreement with the observations.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Abstract The initial stages of rift-basin evolution are periods of great landform change. Fault scarps are newly created axes of erosion which, along with footwall uplands, act as sediment sources for subsiding hanging wall basins. Scarps formed during neotectonic normal faulting of Mesozoic carbonates in mainland Greece and western Turkey display a varied pattern of degradation related to the history of fault development and variations in fault zone architecture. Alternating zone-parallel compact breccia sheets and incohesive breccia belts, of contrasting resistance to erosion, underlie scarps. Meso-scale slip-plane phenomena, such as corrugations, gutters, comb fractures, and pluck holes, together with geomorphological features, such as subsurface solution pipes, and vegetation result in initial variations in the denudability of erosionally resistant compact breccia sheets. Migration with time of slip-plane activity within a fault zone into its hanging wall (i.e. intrafault-zone hanging wall collapse) adds to the structural heterogeneity of fault scarp footwalls. Quaternary talus, whether offset across a fault, banked unconformably against a slip plane, or faulted against a reactivated slip plane, has a dampening effect on degradation. The complexities of fault zone architecture combined with a history of hanging wall collapse lead, in the Aegean region, to non-uniform degradation and scarps which are commonly stepped and occasionally cavitated.  相似文献   

13.
张欣欣 《地理科学进展》2015,34(10):1288-1296
活动断层的位置分布及其地表变形变位特征的准确识别是研究和评价活动断层的基础,国内外学者利用数字高程模型(DEM)对断层提取进行了大量研究。本文基于DEM的活动断层位置的提取方法进行综述,总结了DEM提取断层位置的地貌形态特征分析、图像处理以及综合处理提取方法,突出介绍了高分辨率DEM在详细的断层位置分布提取中的优势,DEM在断层地表变形变位及其特征参数提取研究中的最新应用进展。随着高分辨率DEM的快速发展,DEM及其空间分析技术已成为一种常见的地学研究方法,将其与野外调查、遥感、测年等技术结合进行综合分析,能够促进对活动断层的深入研究,并成为断层定量化研究强有力的技术手段。  相似文献   

14.
15.
16.
17.
18.
19.
Large historical earthquakes in Italy define a prominent gap in the Pollino region of the southern Apennines. Geomorphic and palaeoseismological investigations in this region show that the Castrovillari fault (CF) is a major seismogenic source that could potentially fill the southern part of this gap. The surface expression of the CF is a complex, 10–13 km long set of prominent scarps. Trenches across one scarp indicate that at least four surface-faulting earthquakes have occurred along the CF since Late Pleistocene time, each producing at least 1 m of vertical displacement. The length of the fault and the slip per event suggest M =6.5-7.0 for the palaeoearthquakes. Preliminary radiocarbon dating coupled with historical considerations imply that the most recent of these earthquakes occurred between 380 BC and 1200 AD, and probably soon after 760 AD; no evidence for this event has been found in the historical record. We estimate a minimum recurrence interval of 1170 years and a vertical slip rate of 0.2-0.5 mm yr-1 for the CF, which indicates that the seismic behaviour of this fault is comparable to other major seismogenic faults of the central-southern Apennines. The lack of mention or the mislocation of the most recent event in the historical seismic memory of the Pollino region clearly shows that even in Italy, which has one of the longest historical records of seismicity, a seismic hazard assessment based solely on the historical record may not be completely reliable, and shows that geological investigations are critical for filling possible information gaps.  相似文献   

20.
Stochastic model of earthquake fault geometry   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号