首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luminosities of Population I pulsating stars (Delta Scuti variables and classical cepheids) are investigated. From data for 80 Delta Scuti stars, semi-empirical period-luminosity-colour (P-L-C) relations and period-luminosity (P-L) relations are obtained for the four lowest modes of radial pulsations. The improvement of the accuracy of the stellar luminosity is determined when a P-L-C relation is used instead of the corresponding P-L relation. From data for 155 classical cepheids, empirical P-L relations are derived for short-period stars (logP1.1), long-period stars (logP>1.1), and s-cepheids. The comparison of the P-L relations for the two types of variable stars shows good agreement, but between them there is a gap with a dim nature.  相似文献   

2.
Six ways for obtaining approximate period-luminosity (P-L) relations for classical cepheids and Delta Scuti variables are presented. Three out of these ways were earlier schematically considered by J.P. Cox (1980, 1985). It was proceeded from certain results derived from the study of stellar pulsation and evolution, by using some simple considerations and simplifying assumptions. The expressions obtained for the coefficients of these approximate P-L relations, were used to estimate the slopes and the zero-points. In addition, it was evaluated the influence of both different modes of radial pulsations and variations of Population I chemical composition on the zero-points. The results satisfactorily agree with those derived from observations or accurate theoretical calculations.  相似文献   

3.
Reciprocity and symmetry relationships, representing local invariants for the scattering phase-matrix, are derived for twelve cases of particle assemblies studied by van de Hulst (1957) including situations of scattering in an arbitrary direction, in the near forward and near backward directions. These relations are used to generate corresponding relations representing global invariants for the scattering and transmission matrices of atmospheres consisting of such assemblies. The latter relations are obtained from the matrix integro-differential equations for scattering and transmission; they apply to single scattering, any finite order of scattering, and after an arbitrary cumulation of scattering orders (finite or infinite). Our results are summarized in Tables I and II for general inhomogeneous atmospheres and for particular inhomogeneous atmospheres that are symmetrical with respect to their central level. The latter case includes homogeneous atmospheres as a special case. The largest set of local relations obtained contains three independent relations (called universal, reversal, exchange) which can further be combined to yield four additional dependent relations. This circumstance happens in three out of the above twelve cases. In the remaining cases fewer relations (both independent and dependent) remain valid. Likewise, a maximal set of three independent global relations is obtained for general inhomogeneous atmospheres; they too can be linearly combined to yield seven other dependent relations. For the symmetrically inhomogeneous atmospheres, three independent and seven dependent additional relations are obtained. On the basis of these tables, it becomes a trivial matter to provide the local and global invariants (both the independent and the dependent relations) for any assembly of particles and atmospheric inhomogeneity. A mixture of Rayleigh-Cabannes scattering by anisotropic molecules or extremely small particles and Mie scattering by large isotropic particles is considered for illustration. Lastly, the group properties of these invariants are studied.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the U.S. National Aeronautics and Space Administration.  相似文献   

4.
This paper represents the updated empirical Galactic andextragalactic Σ-D relations (relations between the surface brightness Σ and the diameter D) for supernova remnants(SNRs), with checking the connection of the main Galactic radio loops (Loop I, II, III and IV) with these relations. We present results which suggest, once again, that the radio loops may have an SNR origin. The updated relations for old SNRs have been measured to have slopes, β ≈ 2 in log-log space. The best Σ-D relations for M31 and M33 galaxies were derived and these relations are shown to be flatter (β ≲2) than those for Galactic SNRs alone. A Σ-D relation with168 reliable calibrators (both Galactic and extragalactic) is derived. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Period–colour (PC) and amplitude–colour (AC) relations at maximum, mean and minimum light are constructed from a large grid of full amplitude hydrodynamic models of Cepheids with a composition appropriate for the Small Magellanic Cloud (SMC). We compare these theoretical relations with those from observations. The theoretical relations are, in general, in good agreement with their observational counterparts, though there exist some discrepancy for short period  (log [ P ] < 1)  Cepheids. We outline a physical mechanism which can, in principle, be one factor to explain the observed PC/AC relations for the long and short period Cepheids in the Galaxy, Large Magellanic Cloud (LMC) and SMC. Our explanation relies on the hydrogen ionization front (HIF)–photosphere interaction and the way this interaction changes with pulsation period, pulsation phase and metallicity. Since the PC relation is connected with the period–luminosity (PL) relation, it is postulated that such a mechanism can also explain the observed properties of the PL relation in these three galaxies.  相似文献   

6.
We have determined new statistical relations to estimate the fundamental atmospheric parameters of effective temperature and surface gravity, using MK spectral classification, and vice versa. The relations were constructed based on the published calibration tables(for main sequence stars) and observational data from stellar spectral atlases(for giants and supergiants). These new relations were applied to field giants with known atmospheric parameters, and the results of the comparison of our estimations with available spectral classification have been quite satisfactory.  相似文献   

7.
We have used recent X-ray and optical data in order to impose some constraints on the cosmology and cluster scaling relations.
Generically, two kinds of hypotheses define our model. First, we consider that the cluster population is well described by the standard Press–Schechter (PS) formalism, and secondly, these clusters are assumed to follow scaling relations with mass: temperature–mass ( T – M ) and X-ray luminosity–mass ( L x– M ) .
In contrast with many other authors we do not assume specific scaling relations to model cluster properties such as the usual T – M virial relation or an observational relation or an observational determination of the L x– T relation. Instead we consider general unconstrained parameter scaling relations.
With the previous model (PS plus scalings) we fit our free parameters to several X-ray and optical data sets with the advantage over preceding works that we consider all the data sets at the same time. This prevents us from being inconsistent with some of the available observations. Among other interesting conclusions, we find that only low-density universes are compatible with all the data considered and that the degeneracy between Ωm and σ 8 is broken. Also we obtain interesting limits on the parameters characterizing the scaling relations.  相似文献   

8.
Period–colour (PC) and amplitude–colour (AC) relations are studied for the Large Magellanic Cloud (LMC) Cepheids under the theoretical framework of the hydrogen ionization front (HIF)–photosphere interaction. LMC models are constructed with pulsation codes that include turbulent convection, and the properties of these models are studied at maximum, mean and minimum light. As with Galactic models, at maximum light the photosphere is located next to the HIF for the LMC models. However, very different behaviour is found at minimum light. The long-period  ( P > 10 d)  LMC models imply that the photosphere is disengaged from the HIF at minimum light, similar to the Galactic models, but there are some indications that the photosphere is located near the HIF for the short-period  ( P < 10 d)  LMC models. We also use the updated LMC data to derive empirical PC and AC relations at these phases. Our numerical models are broadly consistent with our theory and the observed data, though we discuss some caveats in the paper. We apply the idea of the HIF–photosphere interaction to explain recent suggestions that the LMC period–luminosity (PL) and PC relations are non-linear with a break at a period close to 10 d. Our empirical LMC PC and PL relations are also found to be non-linear with the F -test. Our explanation relies on the properties of the Saha ionization equation, the HIF–photosphere interaction and the way this interaction changes with the phase of pulsation and metallicity to produce the observed changes in the LMC PC and PL relations.  相似文献   

9.
The generalized jump relations across the magnetohydrodynamic (MHD) shock front in non-ideal gas are derived considering the equation of state for non-ideal gas as given by Landau and Lifshitz. The jump relations for pressure, density, and particle velocity have been derived, respectively in terms of a compression ratio. Further, the simplified forms of the MHD shock jump relations have been obtained in terms of non-idealness parameter, simultaneously for the two cases viz., (i) when the shock is weak and, (ii) when it is strong. Finally, the cases of strong and weak shocks are explored under two distinct conditions viz., (i) when the applied magnetic field is strong and, (ii) when the field is weak. The aim of this paper is to contribute to the understanding of how shock waves behave in magnetized environment of non-ideal gases.  相似文献   

10.
The radiiR and surface gravitiesg of Population I pulsating stars (89 Delta Scuti-variables and 155 classical cepheids) have been investigated. Semi-empirical period-radius (P-R) and period-gravity (P-g) relations are obtained for Delta Scuti-stars (for the four lowest modes of radial pulsations) and for classical cepheids. For Delta Scuti-stars, the uncertainties of radius and gravity estimations calculated from theP-R andP-g relations for different modes, are evaluated. There is a good agreement both between theP-R relations and between theP-g relations for Delta Scuti-stars and for classical cepheids, but a gap exists between the two types of variables. From models of Delta Scuti-stars, theoreticalP-R andP-g relations for the four lowest modes of radial pulsations are obtained, in a good agreement with the corresponding semi-empirical relations. There is an excellent agreement between the theoretical and semi-empirical period ratios of radial pulsations as derived from theP-R andP-g relations for Delta Scuti-stars. It is not necessary to take into account the colours (in addition to the periods), in order to estimate the radii and gravities of the variables under study.  相似文献   

11.
12.
This is a continuation of a previous paper which appeared in this journal (Demircan, 1980b) and aims at ascertaining some other relations between the integral transforms of the light curves of eclipsing binary systems. The appropriate use of these relations should facilitate the numerical computations for an analysis of eclipsing binary light curves by different Fourier techniques.  相似文献   

13.
The Tully-Fisher (TF) or the luminosity-linewidth relations of the galaxies in the Eridanus group are constructed using the HI rotation curves and the luminosities in the optical and in the near-infrared bands. The slopes of the TF relations (absolute magnitudevs log2V flat) are −8.6 ± 1.1, −10.0 ±1.5, −10.7 ±2.1, and −9.7 ±1.3 in the R, J, H, and K bands respectively for galaxies having flat HI rotation curves. These values of the slopes are consistent with those obtained from studies of other groups and clusters. The scatter in the TF relations is in the range 0.5-1.1 mag in different bands. This scatter is considerably larger compared to those observed in other groups and clusters. It is suggested that the larger scatter in the TF relations for the Eridanus group is related to the loose structure of the group. If the TF relations are constructed using the baryonic mass (stellar +HI + Helium mass) instead of the stellar luminosity, nearly identical slopes are obtained in the R and in the near-infrared bands. The baryonic TF (baryonic massvs log2V flat) slope is in the range 3.5–4.1.  相似文献   

14.
We use high-resolution hydrodynamic resimulations to investigate the properties of the thermal Sunyaev–Zel'dovich (SZ) effect from galaxy clusters. We compare results obtained using different physical models for the intracluster medium (ICM), and show how they modify the SZ emission in terms of cluster profiles and scaling relations. We also produce realistic mock observations to verify whether the results from hydrodynamic simulations can be confirmed. We find that SZ profiles depend marginally on the modelled physical processes, while they exhibit a strong dependence on cluster mass. The central and total SZ emission strongly correlates with the cluster X-ray luminosity and temperature. The logarithmic slopes of these scaling relations differ from the self-similar predictions by less than 0.2; the normalization of the relations is lower for simulations including radiative cooling. The observational test suggests that SZ cluster profiles are unlikely to be able to probe the ICM physics. The total SZ decrement appears to be an observable much more robust than the central intensity, and we suggest using the former to investigate scaling relations.  相似文献   

15.
In this paper, we discuss known discrepancies between theoretically derived and empirically measured relations between the radio surface brightness Σ and the diameter D of supernova remnants (SNRs): these relations are commonly known as the ΣD relations. We argue that these discrepancies may be at least partially explained by taking into account thermal emission at radio frequencies from SNRs at particular evolutionary stages and located in particular environments. The major contributions of this paper may be summarized as follows: (i) we consider thermal emission at radio frequencies from SNRs in the following scenarios: a relatively young SNR evolving in a dense molecular cloud environment (n  100–1000 cm−3) and an extremely evolved SNR expanding in a dense warm medium (n  1–10 cm−3). Both of these SNRs are assumed to be in the adiabatic phase of evolution. We develop models of the radio emission from both of these types of SNRs and each of these models demonstrate that through the thermal bremsstrahlung process significant thermal emission at radio frequencies is expected from both types of SNR. Based on a literature search, we claim that thermal absorption or emission at radio frequencies has been detected for one evolved Galactic SNR and four young Galactic SNRs with similar properties to our modelled evolved and young SNRs. (ii) We construct artificial radio spectra for both of these two types of SNRs: in particular, we discuss our simulated spectrum for the evolved Galactic SNR OA 184. By including thermal emission in our simulated spectra, we obtain different slopes in ΣD relations: these new slopes are in closer agreement to empirically obtained relations than the theoretically derived relations which do not take thermal emission into account. (iii) Lastly, we present an additional modification to the theoretical ΣD relation for SNRs in the adiabatic expansion phase. This modification is based on the convolution of the synchrotron emissivity with the emissivity derived in this paper for thermal bremsstrahlung emission from an ionized gas cloud (that is, a theoretical construct of an SNR).  相似文献   

16.
Dermott and Murray (1982) have found certain relations between mean spin frequency and mean diameter for asteroids. By assuming that matter gets compacted during the evolution of an asteroid, these relations may be explained by means of a spin formula for accreted bodies given by Alfvén and Arrhenius. We present a rough model for gravitational compaction of porous matter in asteroids, combine it with the spin formula, and fit the result to Dermott's and Murray's spin-diameter curves. The values obtained for the parameters (mass densities and material strengths) appear to be of a quite realistic order of magnitude.  相似文献   

17.
We have measured the decorrelation frequency (f v ) and decorrelation time (t v ) for 15 pulsars. We show by combining our data with those of others thatfv∫ DM-1.79±0.14 andt v ∫ DM-0.80±0.15 up to a dispersion measure (DM) of about 60 cm3 pc. The combined data set does not form a complete sample, but the relations obtained from our measurements on 14 pulsars, which form almost a complete sample up to 41 cm3 pc, are consistent with the above relations, suggesting that these relations are not seriously affected by selection effects. The relations are broadly in agreement with those expected from a homogeneous interstellar medium and are in disagreement with earlier conclusions by others that these relations steepen even for low-DM pulsars. The agreement suggests that the local interstellar medium is homogeneous at least up to a distance of about 2 kpc.  相似文献   

18.
The mass-radius relations for bare and crusted strange stars are calculated with the bag model. Comparing these relations with the observed one derived from the redshift of EXO 0748-676, we come to the conclusion that it is incorrect to say that EXO 0748 676 cannot be a strange star. Various strange star models can show that EXO 0748-676 could have a mass of (1.3 - 1.7)M⊙ and a radius of(8.4 - 11.4) km. It is proposed that a proportion of nascent strange stars could be bare and have masses - 0.1 M⊙, and their masses increased over a long period of accretion.  相似文献   

19.
JHK s magnitudes corrected to mean intensity are estimated for Large Magellanic Cloud (LMC) type II Cepheids in the OGLE-III survey the third phase of the Optical Gravitational Lensing Experiment (OGLE). Period–luminosity (PL) relations are derived in JHK s as well as in a reddening-free VI parameter. Within the uncertainties, the BL Her stars  ( P < 4 d)  and the W Vir stars (   P = 4  to 20 d) are colinear in these PL relations. The slopes of the infrared relations agree with those found previously for type II Cepheids in globular clusters within the uncertainties. Using the pulsation parallaxes of V553 Cen and SW Tau, the data lead to an LMC modulus uncorrected for any metallicity effects of  18.46 ± 0.10  mag. The type II Cepheids in the second-parameter globular cluster, NGC 6441, show a PL( VI ) relation of the same slope as that in the LMC, and this leads to a cluster distance modulus of  15.46 ± 0.11  mag, confirming the hypothesis that the RR Lyrae variables in this cluster are overluminous for their metallicity. It is suggested that the Galactic variable κ Pavonis is a member of the peculiar W Vir class found by the OGLE-III group in the LMC. Low-resolution spectra of OGLE-III type II Cepheids with   P > 20  d (RV Tau stars) show that a high proportion have TiO bands; only one has been found showing C2. The LMC RV Tau stars, as a group, are not colinear with the shorter period type II Cepheids in the infrared PL relations in marked contrast to such stars in globular clusters. Other differences between LMC, globular cluster and Galactic field type II Cepheids are noted in period distribution and infrared colours.  相似文献   

20.
The paper presents the relations between different solar and ionospheric parameters. Variation of 5577 line intensity with the variation of solar and ionospheric parametersis also discussed. A study have been made and following important results are obtained:(i) Virtual height ofF layer is decreased exponentially with the increase of solar flare numbers, sunspot number and 10.7 cm solar flux.(ii) Linear relations between critical frequency ofF layer and different solar parameters are obtained.(iii) Empirical relations between ionospheric and solar parameters are established.(iv) It is concluded that airglow intensity will also be affected with the variation of different solar and ionospheric parameters.(v) It is concluded that airglow intensity is mainly affected by 10.7 cm solar flux among different solar parameters and virtual height plays important role than critical frequency ofF layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号