首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The four Galilean satellites are thought to harbor one or even two global internal liquid layers beneath their surface layer. The iron core of Io and Ganymede is most likely (partially) liquid and also the core of Europa may be liquid. Furthermore, there are strong indications for the existence of a subsurface ocean in Europa, Ganymede, and Callisto. Here, we investigate whether libration observations can be used to prove the existence of these liquid layers and to constrain the thickness of the overlying solid layers. For Io, the presence of a small liquid core increases the libration of the mantle by a few percent with respect to an entirely solid Io and mantle libration observations could be used to determine the mantle thickness with a precision of several tens of kilometers given that the libration amplitude can be measured with a precision of 1 m. For Europa, Ganymede, and Callisto, the presence of a water ocean close to the surface increases by at least an order of magnitude the ice shell libration amplitude with respect to an entirely solid satellite. The shell libration depends essentially on the shell thickness and to a minor extent on the density difference between the ocean and the ice shell. The possible presence of a liquid core inside Europa and Ganymede has no noticeable influence on their shell libration. For a precision of several meters on the libration measurements, in agreement with the expected accuracy with the NASA/ESA EJSM orbiter mission to Europa and Ganymede, an error on the shell thickness of a few tens kilometers is expected. Therefore, libration measurements can be used to detect liquid layers such as Io’s core or water subsurface oceans in Europa, Ganymede, and Callisto and to constrain the thickness of the overlying solid surface layers.  相似文献   

2.
Tenuous dust clouds of Jupiter's Galilean moons Io, Europa, Ganymede and Callisto have been detected with the in-situ dust detector on board the Galileo spacecraft. The majority of the dust particles have been sensed at altitudes below five radii of these lunar-sized satellites. We identify the particles in the duut clouds surrounding the moons by their impact direction, impact velocity, and mass distribution. Average particle sizes are between 0.5 and 1 μm, just above the detector threshold, indicating a size distribution with decreasing numbers towards bigger particles. Our results imply that the particles have been kicked up by hypervelocity impacts of micrometeoroids onto the satellites' surfaces. The measured radial dust density profiles are consistent with predictions by dynamical modeling for satellite ejecta produced by interplanetary impactors (Krivov et al., 2003, Planet. Space Sci. 51, 251-269), assuming yield, mass and velocity distributions of the ejecta from laboratory measurements. A comparison of all four Galilean moons (data for Ganymede published earlier; Krüger et al., 2000, Planet. Space Sci. 48, 1457-1471) shows that the dust clouds of the three outer Galilean moons have very similar properties and are in good agreement with the model predictions for solid ice-silicate surfaces. The dust density in the vicinity of Io, however, is more than an order of magnitude lower than expected from theory. This may be due to a softer, fluffier surface of Io (volcanic deposits) as compared to the other moons. The log-log slope of the dust number density in the clouds vs. distance from the satellite center ranges between −1.6 and −2.8. Appreciable variations of number densities obtained from individual flybys with varying geometry, especially at Callisto, are found. These might be indicative of leading-trailing asymmetries of the clouds due to the motion of the moons with respect to the field of impactors.  相似文献   

3.
The relationship between the k2/Q of the Galilean satellites and the k2J/QJ of Jupiter is derived from energy and momentum considerations. Calculations suggest that the Galilean satellites can be divided into two classes according to their Q values: Io and Ganymede have values between 10 and 50, while Europa and Callisto have values ranging from 200 to 700. The tidal contributions of the Galilean satellites to Jupiter's rotation are estimated. The main deceleration of Jupiter, which is about 99.04% of the total, comes from Io.  相似文献   

4.
The Galilean moons, especially Io, affect not just their local environment but also the Jovian ionosphere at the ends of the flux tubes connected to the moons. Moreover, the mass added to the magnetosphere by Io affects much of the rest of the magnetosphere. The magnetosphere is energized by this mass-loading, powering the aurora, accelerating radiation belt particles, and generating radio emissions. This review examines how the mass-loading affects the magnetosphere and ionosphere; the differences in the interactions of Io, Europa, Ganymede and Callisto; and some of the kinetic phenomena associated with the interaction.  相似文献   

5.
W.B. Hubbard  J.D. Anderson 《Icarus》1978,33(2):336-341
Flyby encounters of the Galilean satellites from a Jupiter orbiter spacecraft could yield information about the second-degree gravity harmonics of these satellites. We have calculated the expected values of these harmonics for a range of plausible interior models in hydrostatic equilibrium. Because the satellites respond to comparable perturbations from rotation and tides, an independent test of hydrostatic equilibrium is feasible. For Io and Ganymede, the expected measurement accuracy from a nominal encounter should make possible an excellent discrimination from the ensemble of interior models. For Europa, a qualitative distinction between near-uniform and centrally condensed models seems feasible. Only for Callisto is the proposed experiment of marginal value.  相似文献   

6.
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the jovian system is a source of X-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are both powerful sources of X-ray emission. Chandra observations revealed X-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions. These ions excite atoms in their surfaces leading to fluorescent X-ray emission lines. These lines are produced against an intense background continuum, including bremsstrahlung radiation from surface interactions of primary magnetospheric and secondary electrons. Although the X-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging X-ray spectrometer in orbit around one or more of these moons, operating from 200 eV to 8 keV with 150 eV energy resolution, would provide a detailed mapping of the elemental composition in their surfaces. Surface resolution of 40 m for small features could be achieved in a 100-km orbit around one moon while also remotely imaging surfaces of other moons and Jupiter's upper atmosphere at maximum regional resolutions of hundreds of kilometers. Due to its relatively more benign magnetospheric radiation environment, its intrinsic interest as the largest moon in the Solar System, and its mini-magnetosphere, Ganymede would be the ideal orbital location for long-term observational studies of the jovian system. Here we describe the physical processes leading to X-ray emission from the surfaces of Jupiter's moons and the properties required for the technique of imaging X-ray spectroscopy to map the elemental composition of their surfaces, as well as studies of the X-ray emission from the planet's aurora and disk and from the Io plasma torus.  相似文献   

7.
We simulate the production and orbital evolution of escaping ejecta due to cometary impacts on Io. The model includes the four Galilean satellites, Amalthea, Thebe, Jupiter's gravitational moments, Saturn and the Sun. Five scenarios are examined: an impact at the apex, the sub-jovian point, the anti-jovian point, the antapex, and at the south pole of Io. We estimate that on average a cometary impact injects thrice its mass (in the form of Io surface material) into jovicentric orbit. The majority of the escaping debris comes back to Io, but a sizeable fraction (between 5.0 and 8.7%) manages to reach Europa, and a smaller fraction Ganymede (between 1.5 and 4.6%). Smaller fractions reached Amalthea Thebe, Callisto, and Jupiter itself. For million year time scales, the mass transfer to Europa is estimated as 1.8-3.1×1014 g/Myr. The median time for transfer of ejecta from Io to Europa is ∼56 years.  相似文献   

8.
张承志 《天文学进展》2001,19(2):151-155
木星的四颗大卫星都是同步轨旋卫星,常被称为伽利略卫星,美国发射的伽利略飞船自1995年12月抵达木星系统后,的几年来对木星的四颗伽利略卫星进行了一系列的探测,利用飞船探测的最新资料作为约束条件,建立了伽利略卫星的一组内部结构模型,然后按照同步轨旋卫星的形态理论公式计算了它们的平衡形太参数及潮汐耗散因子等。  相似文献   

9.
Data from the recent gravity measurements by the Galileo mission are used to construct wide ranges of interior structure and composition models for the Galilean satellites of Jupiter. These models show that mantle densities of Io and Europa are consistent with an olivine-dominated mineralogy with the ratios of Mg to Fe components depending on mantle temperature for Io and on ice shell thickness for Europa. The mantle density and composition depend relatively little on core composition. The size of the core is largely determined by the core's composition with core radius increasing with the concentration of a light component such as sulfur. For Io, the range of possible core sizes is between 38 and 53% of the satellite's radius. For Europa, there is also a substantial effect of the thickness of the ice layer which is varied between 120 and 170 km on the core size. Core sizes are between 10 and 45% of Europa's radius. The core size of Ganymede ranges between one-quarter and one-third of the surface radius depending on its sulfur content and the thickness of the ice shell. A subset of the Ganymede models is consistent with an olivine-dominated mantle mineralogy. The thickness of the silicate mantle above the core varies between 900 and 1100 km. The outermost ice shell is about 900 km in thickness and is further subdivided by pressure-induced phase transitions into ice I, ice III, ice V, and ice VI layers. Callisto should be differentiated, albeit incompletely. It is proposed that this satellite was never molten at a large scale but differentiated through the convective gradual unmixing of the ice and the metal/rock component. Bulk iron-to-silicon ratios Fe/Si calculated for the inner pair of satellites, Io and Europa, are less than the CI carbonaceous chondrite value of 1.7±0.1, whereas ratios for the outer pair, Ganymede and Callisto, cover a broad range above the chondritic value. Although the ratios are uncertain, in particular for Ganymede and Callisto, the values are sufficiently distinct to suggest a difference in composition between these two pairs of satellites. This may indicate a difference in iron-silicon fractionation during the formation of both classes of satellites in the protojovian nebula.  相似文献   

10.
We present results of polarimetric observations of the Galilean satellites Io, Europa, Ganymede, and Callisto at phase angles ranging from 0.19° to 2.22°. The observations in the UBVR filters were performed using a one-channel photoelectric polarimeter attached to 70-cm telescope of the Chuguev Observation Station (Ukraine) on November 19-December 7, 2000. We have observed the polarization opposition effect for Io, Europa, and Ganymede to be a sharp secondary spike of negative polarization with an amplitude of about −0.4% centered at phase angles of 0.2°-0.7° and superimposed on the regular negative polarization branch. Although these minima for Io, Europa, and Ganymede show many similarities, they also exhibit a number of distinctions. The polarization opposition effect appears to be wavelength-dependent, at least for Europa and Ganymede. No polarization opposition effect was found for Callisto. The results obtained are discussed within the framework of different mechanisms of light scattering.  相似文献   

11.
Europa and Callisto are two “extreme members” in a sequence of the Galilean ice satellites formed at different distances from Jupiter. The difference in their mean density probably reflects the material density gradient that appeared even in the subplanetary disk of Jupiter. At the same time, general peculiarities in the composition of the surfaces of Europa and Callisto apparently characterize the accumulated effect of all subsequent evolutionary processes, including current volcanic activity on the satellite Io and its ionized material transfer in Jovian magnetosphere, as well as chemical reactions taking place under low-temperature (within ~90–130 K) and irradiation conditions. In 2016–2017, we observed the leading and trailing hemispheres of Europa and Callisto in the spectral range of 1.0–2.5 μm at 2-m telescope of Caucasian Mountain Observatory (CMO) of Sternberg Astronomical Institute (SAI) of Moscow State University (MSU). We found that, on a global scale, Europa and Callisto exhibit similar spectral characteristics and, particularly, the maxima in the distributions of sulfuric acid hydrate in the trailing hemispheres of the both moons, which agrees with the data of previous measurements. This can be considered as evidence for general ion implantation on these and other moons in the radiation belts of Jupiter. Moreover, our spectral data suggest that water ice and hydrates (clathrates) of other compounds are dominant or abundant in the leading hemispheres of Europa and Callisto. Specifically, we detected a weak absorption band of CH4 clathrate centered at ~1.67 μm in the reflectance spectra of the leading (the band is more intense) and trailing (the band is less intense) hemispheres of Europa. Weak signs of the same absorption band are also in the reflectance spectra of Callisto measured at its different orientations.  相似文献   

12.
Radar observations of the Galilean satellites, made in late 1976 using the 12.6-cm radar system of the Arecibo Observatory, have yielded mean geometric albedos of 0.04 ± , 0.69 ± 0.17, 0.37 ± 0.09, and 0.15 ± 0.04, for Io, Europa, Ganymede, and Callisto, respectively. The albedo for Io is about 40% smaller than that obtained approximately a year earlier, while the albedos for the outer three satellites average about 70% larger than the values previously reported for late 1975, raising the possibility of temporal variation. Very little dependence on orbital phase is noted; however, some regional scattering inhomogeneities are seen on the outer three satellites. For Europa, Ganymede, and Callisto, the ratios of the echo received in one mode of circular polarization to that received in the other were: 1.61 ± 0.20 1.48 ± 0.27, and 1.24 ± 0.19, respectively, with the dominant component having the same sence of circularity as that transmitted. This behavior has not previously been encountered in radar studies of solar system objects, whereas the corresponding observations with linear polarization are “normal.” Radii determined from the 1976 radar data for Europa and Ganymede are: 1530 ± 30 and 2670 ± 50 km, in fair agreement with the results from the 1975 radar observations and the best recent optical determinations. Doppler shifts of the radar echoes, useful for the improvement of the orbits of Jupiter and some of the Galilean satellites, are given for 12 nights in 1976 and 10 nights in 1975.  相似文献   

13.
Audouin Dollfus 《Icarus》1975,25(3):416-431
New measurements of the amount of polarization of the Galilean satellites are given and, within the context of other data, are interpreted as follows. The polarization of Europa is consistent with a water-frost surface. Io has a surface of partly absorbing crystals thought to result from evaporates released from the mantle and damaged by radiation. Ganymede has alternating water-frost areas and darker terrain, possibly of a silicaceous nature. Callisto is explained as having a mantle of ice containing embedded blocks of rocks, which occurred when recent evaporation left the blocks piled at the surface in a chaotic manner. This event occurred after the vicinity of Jupiter had been cleared of small orbiting objects able to impact Callisto. Meteorites which continue to enter within the sphere of influence of Jupiter can collide with Callisto only on its leading hemisphere, which is thereby comminuted by impacts. The surface of the trailing hemisphere is not regolithic.  相似文献   

14.
We consider a restricted six-body problem, consisting of Jupiter, the four Galilean satellites, and an orbiter. The Galilean satellites' orbits are circular and coplanar; Io, Europa, and Ganymede are in exact resonance; their mean longitudes obey the Laplace relation. We seek periodic orbits which avoid close approaches to any satellite; such orbits are of interest for mission planning. They are approximated as equilibrium points of sets of variational equations associated with time-averaged disturbing functions. Stability of the solutions is also determined. The orbits of greatest interest are:Planar: twice Callisto's period, eccentricity0.6Planar: four times Callisto's period, eccentricity0.75Slightly inclined: twice Callisto's period, eccentricity arbitraryPlanar: 4/5 or 5/4 Europa's period.  相似文献   

15.
In this article, we investigate the mathematical part of De Sitter’s theory on the Galilean satellites, and further extend this theory by showing the existence of some quasi-periodic librating orbits by application of KAM theorems. After showing the existence of De Sitter’s family of linearly stable periodic orbits in the Jupiter–Io–Europa–Ganymede model by averaging and reduction techniques in the Hamiltonian framework, we further discuss the possible extension of this theory to include a fourth satellite Callisto, and establish the existence of a set of positive measure of quasi-periodic librating orbits in both models for almost all choices of masses among which one sufficiently dominates the others.  相似文献   

16.
This paper focuses on tenuous dust clouds of Jupiter's Galilean moons Europa, Ganymede and Callisto. In a companion paper (Srem?evi? et al., Planet. Space Sci. 51 (2003) 455-471) an analytical model of impact-generated ejecta dust clouds surrounding planetary satellites has been developed. The main aim of the model is to predict the asymmetries in the dust clouds which may arise from the orbital motion of the parent body through a field of impactors. The Galileo dust detector data from flybys at Europa, Ganymede and Callisto are compatible with the model, assuming projectiles to be interplanetary micrometeoroids. The analysis of the data suggests that two interplanetary impactor populations are most likely the source of the measured dust clouds: impactors with isotropically distributed velocities and micrometeoroids in retrograde orbits. Other impactor populations, namely those originating in the Jovian system, or interplanetary projectiles with low orbital eccentricities and inclinations, or interstellar stream particles, can be ruled out by the statistical analysis of the data. The data analysis also suggests that the mean ejecta velocity angle to the normal at the satellite surface is around 30°, which is in agreement with laboratory studies of the hypervelocity impacts.  相似文献   

17.
New versions of the ephemerides for the Galilean satellites of Jupiter (Io, Europa, Ganymede, and Callisto) constructed by numerically integrating the equations of motion of the satellites are presented. The satellite motionmodel takes into account the non-sphericity of Jupiter, the mutual perturbations of the satellites, and the perturbations from the Sun and major planets. The initial satellite motion parameters have been improved based on all the available series of ground-based optical observations spanning the interval 1891-2017, spacecraft observations, and radar observations. As a result, the coefficients of the expansion of the satellite coordinates and velocities in terms of Chebyshev polynomials in the interval 1891- 2025 have been obtained. The root-mean-square errors of the observations and the graphs of comparison of the constructed ephemerides both with the observations and with Lainey's numerical ephemerides are presented. The constructed ephemerides are publicly accessible.  相似文献   

18.
G.J. Black  D.B. Campbell 《Icarus》2007,191(2):702-711
We have measured the bulk radar reflectance properties of the mid-size saturnian satellites Rhea, Dione, Tethys, and Enceladus with the Arecibo Observatory's 13 cm wavelength radar system during the 2004 through 2007 oppositions of the Saturn system. Comparing to the better studied icy Galilean satellites, we find that the total reflectivities of Rhea and Tethys are most similar to Ganymede while Dione is most similar to Callisto. Enceladus' reflectivity falls between those of Ganymede and Europa. The mean circular polarization ratios of the saturnian satellites range from ∼0.8 to 1.2, and are on average lower than those of the icy Galilean satellites at this wavelength although still larger than expected for single reflections off the surface. The ratio for the trailing hemisphere of Enceladus may be the exception with a value ?0.56. The 13 cm wavelength radar albedos and polarization ratios may be systematically lower than similar results from the Cassini orbiter's RADAR instrument at 2.2 cm wavelength [Ostro, S.J., and 19 colleagues, 2006. Icarus 183, 479-490]. Overall, these reflectivities and polarization properties, together with the shapes of the echo spectra, suggest subsurface multiple scattering to be the dominant reflection mechanism although operating less efficiently than on the large icy moons of Jupiter. All these saturnian moons and icy jovian moons are atmosphere-less, low temperature water ice surfaces, and any differences in radar properties may be indicative of differences in composition or the effects of various processes that modify the regolith structure. The degree of variation in radar properties with wavelength on each satellite may constrain the thickness and efficiency of the scattering layer.  相似文献   

19.
An analysis is presented of gravity assisted flybys in the planar, circular, restricted three-body problem (pcr3bp) that is inspired by the Keplerian map and by the Tisserand- Poincaré graph. The new Flyby map is defined and used to give insight on the flyby dynamics and on the accuracy of the linked-conics model. The first main result of this work is using the Flyby map to extend the functionality of the Tisserand graph to low energies beyond the validity of linked conics. Two families of flybys are identified: Type I (direct) flybys and Type II (retrograde) flybys. The second main result of this work shows that Type I flybys exist at all energies and are more efficient than Type II flybys, when both exist. The third main result of this work is the introduction of a new model, called ??Conics, When I Can??, which mixes numerical integration and patched conics formulas, and has applications beyond the scope of this work. The last main result is an example trajectory with multiple flybys at Ganymede, all outside the linked-conics domain of applicability. The trajectory is computed with the pcr3bp, and connects an initial orbit around Jupiter intersecting the Callisto orbit, to an approach transfer to Europa. Although the trajectory presented has similar time of flight and radiation dose of other solutions found in literature, the orbit insertion ??v is 150 m/s lower. For this reason, the transfer is included in the lander option of the Europa Habitability Mission Study.  相似文献   

20.
In this contribution, an efficient technique to design direct (i.e., without intermediate flybys) low-energy trajectories in multi-moon systems is presented. The method relies on analytical two-body approximations of trajectories originating from the stable and unstable invariant manifolds of two coupled circular restricted three-body problems. We provide a means to perform very fast and accurate computations of the minimum-cost trajectories between two moons. Eventually, we validate the methodology by comparison with numerical integrations in the three-body problem. Motivated by the growing interest in the robotic exploration of the Jovian system, which has given rise to numerous studies and mission proposals, we apply the method to the design of minimum-cost low-energy direct trajectories between Galilean moons, and the case study is that of Ganymede and Europa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号