首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Elgygytgyn crater (lat. 67–30 N, long. 172–00 E) in remote northeastern Siberia is proposed as the meteorite impact site from which the Australasian tektite strewnfield was splashed. The following points support this interpretation: 1, Elgygytgyn very likely is an impact crater and is of adequate size, 18 km across, to generate tektites; 2, the apex of the strewnfield points towards this crater; 3, the terrane is Mesozoic which fits the age of the tektite parental material from Sr/Rb data; 4, compositional and specific gravity lineations within the strewnfield are directed, in part, toward this crater; 5, the high velocity tektites, australites, are distal with respect to this crater while the low velocity tektites, splash forms and Muong Nong tektites, are proximal; 6, the loess deposits and mixed acid/basic rocks of the impact site provide a suitable subgraywacke-type source material; 7, the erosional state of Elgygytgyn suggests that its age may well be in accordance with that of the Australasian tektite event, i.e., 700,000 years.  相似文献   

2.
A possible crater representing the source of Australasian tektites is identified in northeastern Cambodia at longitude, 106° 34′E., and latitude, 13° 55′N. The crater is an incomplete oval ring of hills 10 km long and 6 km wide located near the center of the Muong Nong-type tektite strewnfield. The morphology of the structure may have been significantly changed by relatively recent erosion and deposition processes. The types of rocks in the area of the crater are consistent with the compositional requirements for the tektite source rocks. Collection of impactite material from the vicinity of the structure will be required to confirm its association with Australasian tektites.  相似文献   

3.
Abstract The source crater of the youngest and largest of the tektite strewnfields, the Australasian strewnfield, has not been located. A number of lines of evidence indicate that the Muong Nong-type tektites, primarily found in Indochina, are more primitive than the much more abundant and widespread splash-form tektites, and are proximal to the source. In this study the spatial distribution of Muong Nong-type tektite sites and chemical character have been used to indicate the approximate location of the source. The variation of Muong Nong-type tektite chemical composition appears to be caused by mixing of two silicate rock end-members and a small amount of limestone, and not by vapor fractionation. The variation in composition is not random, and does not support in-situ melting or multiple impact theories. The distribution of both Muong Nong and splash-form tektite sites suggest the source is in a limited area near the southern part of the Thailand-Laos border.  相似文献   

4.
Tasmanian Darwin glass has a fusion age sensibly identical with that of Australasian tektites and it is reasonable to assume all were produced in the same event. Recently a number of new Darwin glass localities and an associated crater have been discovered. The glass stewnfield covers at least 400 km2 and there is a strong positive correlation between glass fragment size and abundance and proximity to the crater. The glass was distributed from some point near the crater, with the smallest pieces traveling furthest. This structure is apparently an impact crater of rather unusual configuration and fortuitous location. Our gravity survey reveals a closed sedimentary basin about 1000 meters in diameter. A centrally located drill hole penetrated 60 meters of lacustrine clays and 40 meters of mixed clay, sand and rock fragments. The hole was terminated at 100 meters in loose sand containing sand-sized fragments of Darwin glass and lechetelierite. The 100 meters of cored sediments accounts for only about half of the observed 3.5 milligal negative anomaly and there must be a substantial additional thickness of low density material at depth. Further drilling is essential to confirm an impact origin and to delineate the subsurface crater configuration. This information would be of great calibration value for theoretical modeling studies of explosive cratering. The Darwin strewnfield characteristics support the theory that the distribution of Australasian tektites was aided by an impact-generated, atmospheric blast wave (or waves). The stratigraphic position of glass below 100 meters of lake sediments is strong evidence that the postulated stratigraphic age of the Australian land tektites is incorrect.  相似文献   

5.
Abstract— The source crater for Australasian tektites remains to be positively identified We suggest that Tonle Sap, a roughly oval lake in south-central Cambodia, may represent the remnant of that crater. The size of the lake (about 100 km × 35 km), location (Indochina), inferred geologic age (recent), and orientation of the lake, as well as the geographical distribution of tektites, are consistent with this suggestion. The elongated shape of the lake with its long axis pointing toward Australia may be the result of an oblique impact of a NW to SE-moving object a few km in diameter. The absence of a raised rim and a central peak may be related to a low impact angle, soft target rocks, or high post-impact erosion and sedimentation rates. The scarcity of Muong Nong-type (layered) tektites near Tonle Sap may be due to extensive post-impact alluvial deposition, which buried the tektites. The chemical composition of Upper Indosinias formation sandstones from Phnom Batheay was determined. There are significant differences between the composition of indochinite tektites and these rocks, which are thus unlikely to represent tektite source rocks.  相似文献   

6.
Abstract— Based on optical microscopy and electron microprobe analysis of mafic minerals, Ingella Station, a new meteorite find from the area of the Tenham strewnfield, Queensland, Australia, is classified as an H5a chondrite.  相似文献   

7.
Abstract— The proposed stratigraphic age of 5000–15,000 years for australites found in the vicinity of Port Campbell, Victoria, is demonstrably incorrect. These tektites are not in situ and are also found in an older horizon than previously reported. A minimum stratigraphic age of 250,000 years is calculated from the cosmic-ray-produced 3He in alluvial diamonds from a horizon that also contains australites near Lake Argyle, Western Australia. There is no reason to believe that a true, rather than a minimum, stratigraphic age for Lake Argyle tektites would not match the many radiometric ages reported in the literature.  相似文献   

8.
9.
Abstract— Splash‐form tektites are generally acknowledged to have the form of bodies of revolution. However, no detailed fluid dynamical investigation of their form and stability has yet been undertaken. Here, we review the dynamics and stability of spinning, translating fluid drops with a view to making inferences concerning the dynamic history of tektites. We conclude that, unless the differential speed between the molten tektite and ambient is substantially less than the terminal velocity, molten tektites can exist as equilibrium bodies of revolution only up to sizes of 3 mm. Larger tektites are necessarily non‐equilibrium forms and so indicate the importance of cooling and solidification during flight. An examination of the shapes of rotating, translating drops indicates that rotating silicate drops in air will assume the shapes of bodies of rotation if their rotational speed is 1% or more of their translational speed. This requirement of only a very small rotational component explains why most splash‐form tektites correspond to bodies of revolution. A laboratory model that consists of rolling or tumbling molten metallic drops reproduces all of the known forms of splashform tektites, including spheres, oblate ellipsoids, dumbbells, teardrops, and tori. The laboratory also highlights important differences between rolling drops and tumbling drops in flight. For example, toroidal drops are much more stable in the former than in the latter situation.  相似文献   

10.
Ralph B. Baldwin 《Icarus》1981,45(3):554-563
From estimates of the total masses of tektites in three strewnfields, calculations by Orphal et al. (1980) of the amount of melt that could be ejected from impact craters, and equations relating kinetic energy of impact to crater diameter, it is possible to calculate minimum diameters of lunar craters capable of ejecting the liquid masses that could have formed the various tektite strewnfields. No lunar craters of the requisite sizes have been found that are young enough to correlate with the dates of formations of the strewnfields and it seems clear that the Moon must be eliminated as a source of tektites on the Earth. It is concluded that the associations of the Ivory Coast tektites with the Bosumtwi crater and the moldavites with the Rieskessel are real and the tektites are of terrestrial origin. It follows that if the Ivory Coast tektites came from the 10.5-km-wide Bosumtwi crater, the larger masses in the Australasian and North American strewnfields came from craters 17 km in diameter and between 33 and 65 km in diameter, respectively. No crater has yet been proven to be the parent of the Australisian tektites. The large crater that formed the North American tektites may not yet have been found, although the Mistastin Lake Crater may eventually be proven to be the source.  相似文献   

11.
Abstract— Three samples of Darwin Glass, an impact glass found in Tasmania, Australia at the edge of the Australasian tektite strewn field were dated using the 40Ar/39Ar single‐grain laser fusion technique, yielding isochron ages of 796–815 ka with an overall weighted mean of 816 ± 7 ka. These data are statistically indistinguishable from those recently reported for the Australasian tektites from Southeast Asia and Australia (761–816 ka; with a mean weighted age of 803 ± 3 ka). However, considering the compositional and textural differences and the disparity from the presumed impact crater area for Australasian tektites, Darwin Glass is more likely to have resulted from a distinct impact during the same period of time.  相似文献   

12.
Abstract— The origin of tektites has been obscure because of the following dilemma. The application of physical principles to the data available on tektites points strongly to origin from one or more lunar volcanoes; but few glasses of tektite composition have hitherto been reported from the lunar samples. Instead, the lunar silicic glasses consist chiefly of a material very rich in K2O and poor in MgO. The ratio of K2O/MgO is higher in these glasses than in any tektites reported. The solution of the dilemma seems to come from the study of some recently discovered terrestrial deposits of tektite glass with high values of K2O/MgO at the Cretaceous-Tertiary boundary. These glasses are found to be very vulnerable to crystallization into sandine or to alteration to smectite. These end products are known and are more abundant than any terrestrial deposits of tektite glass. It seems possible that, in fact, the moon produces tektite glass, mostly of the high K2O-low MgO type; but on Earth these deposits are destroyed. The much less abundant deposits with lower K and higher Mg are observed because they survive. Other objections to the lunar origin hypothesis appear to be answerable.  相似文献   

13.
Abstract— Only 2 Australasian tektites have been found in the Indian Ocean, and both are associated with surficial sediments. We collected cores from both locations where the tektites have been reported. The microtektites in these cores (and both the tektites, as reported earlier) have chemical compositions within the compositional range previously reported for Australasian tektites and microtektites. In both locations, while the tektites are occurring at the sediment/water interface, the microtektites are found buried in older horizons beneath the seafloor at stratigraphic levels, conforming to the radiometric age of the strewn field. Thus, at first glance, there appear to be 2 layers of Australasian impact ejecta in the Indian Ocean. However, the manganese nodules are associated with the tektites which, although millions of years old, are invariably resting on recent sediments. Therefore, the mechanism that retains nodules at the seafloor also seems to be operative on the tektites, thus leading to this apparent “age paradox” of tektite/microtektite distribution in the Indian Ocean, although they both belong to the same impact event.  相似文献   

14.
Abstract— One hundred and thirteen Australasian tektites from Vietnam (Hanoi, Vinh, Dalat, and Saigon areas) were analyzed for their major and trace element contents. The tektites are either of splash form or Muong Nong‐type. The splash‐form tektites have SiO2 contents ranging from 69.7 to 76.8 wt%, whereas Muong Nong‐type tektites, which are considerably larger than splash‐form tektites and have a blocky and chunky appearance, have slightly higher silica contents in the range of 74–81 wt%. Major‐element relationships, such as FeO versus major oxides, Na2O versus K2O, and oxide ratio plots, were used to distinguish the different groups of the tektites. In addition, correlation coefficients have been calculated for each tektite group of this study. Many chemical similarities are noted between Hanoi and Vinh tektites from the north of Vietnam, except that the Hanoi tektites contain higher contents of CaO than Vinh; the higher content of CaO might be due to some carbonate parent material. Both Dalat and Saigon tektites have nearly similar composition, whereas the bulk chemistries of the tektites from Hanoi and Vinh appear different from those of Saigon and Dalat. There are differences, especially in the lower CaO and Na2O and higher MgO, FeO, for the tektites of Dalat and Saigon in comparison to that of Hanoi tektites. Furthermore, the Dalat and Saigon tektites show enrichments by factors of 3 and 2 for the Ni and Cr contents, respectively, compared to those of Hanoi and Vinh. The difference in chemistry between the North Vietnam tektites (Hanoi, Vinh) to that of South Vietnam tektites (Saigon, Dalat) of this study indicate that the parent material was heterogeneous and possibly mixing between different source rocks took place. Muong Nong‐type tektites are enriched in the volatile elements such as Br, Zn, As, and Sb compared to the average splash‐form tektites of this study. The chemical compositions of the average splash‐form and Muong Nong‐type tektites of this study closely resemble published data for average splash‐form and Muong Nong‐type indochinites, indicating that they have the same source. The trace element ratios Ba/Rb (2.7), Th/U (5.2), Th/Sc (1.3), Th/Sm (2.2), and the rare earth element (REE) abundances of this study show close similarities to those of average upper continental crust.  相似文献   

15.
Abstract— In the Port Campbell Embayment of Victoria, australites have been found in situ in channel deposits of the Hanson Plain Sand of Pliocene and Pleistocene age. The large majority of the australites, however, occur as a lag deposit at the basal contact of the Sturgess Sand of late Pleistocene and Holocene age and are spatially correlated with ferruginous sandstone clasts that are derived from the Hanson Plain Sand. Some of the tektites are imbedded in or bonded to the ferruginous sandstone clasts, but most are found as individual tektite fragments. A few percent of the tektites have nearly perfectly preserved, complete aerodynamically shaped forms. The sandstone clasts and associated tektites have been reworked from the much older underlying Hanson Plain and have been locally concentrated in the lag deposit. Some tektites also occur at higher levels in the Sturgess Sand, almost invariably in association with stone flakes, exotic stones transported by the aborigines and, locally, with middens of mollusc shells. Circumstantial evidence indicates that the aborigines transported the tektites found in the upper part of the Sturgess, particularly at Stanhope Bay. As Port Campbell australites unequivocally occur in strata much older than the late Pleistocene and Holocene Sturgess, there is no longer any conflict between the apparent stratigraphic age of the tektites and the middle Pleistocene ages obtained by various chronometric methods.  相似文献   

16.
Abstract— On the night of March 26, 2003, a large meteorite broke up and fell upon the south suburbs of Chicago. The name Park Forest, for the village that is at the center of the strewnfield, has been approved by the nomenclature committee of the Meteoritical Society. Satellite data indicate that the bolide traveled from the southwest toward the northeast. The strewnfield has a southeast‐northwest trend; however, this is probably due to the effects of strong westerly winds at high altitudes. Its very low 56Co and very high 60Co activities indicate that Park Forest had a preatmospheric mass that was at least ~900 kg and could have been as large as ~7 times 103 kg, of which only ~30 kg have been recovered. The average compositions of olivine and low‐Ca pyroxene, Fa24.7 ± 1.1 and Fs20.8 ± 0.7, respectively, and its bulk oxygen isotopic composition, δ18O = +4.68%o, δ17O = +3.44%o, show that Park Forest is an L chondrite. The ferromagnesian minerals are well equilibrated, chondrules are easily recognized, and maskelynite is mostly ≤50 μm across. Based on these observations, we classify Park Forest as type 5. The meteorite has been strongly shocked, and based on the presence of maskelynite, mosaicism and planar deformation features in olivine, undulatory extinction in pyroxene, and glassy veins, the shock stage is S5. The meteorite is a monomict breccia, consisting of light‐colored, angular to rounded clasts in a very dark host. The light and dark lithologies have essentially identical mineral and oxygen isotopic compositions. Their striking difference in appearance is due to the presence of a fine, pervasive network of sulfide veins in the dark lithology, resulting in very short optical path lengths. The dark lithology probably formed from the light lithology in an impact that formed a sulfide‐rich melt and injected it into cracks.  相似文献   

17.
Abstract— Three samples of Muong Nong tektites have been studied for N and noble gases. The isotopic composition of noble gases is airlike. The noble gas amounts are much higher in Muong Nong tektites than in splash-form tektites. As compared to air, He and Ne have been enriched, most likely due to inward diffuion from ambient air, subsequent to glass formation. Nitrogen contents range from 0.3 to 1.34 ppm, with a non-atmospheric δ15N ranging from 8 to 17%. The release pattern of δ15N clearly shows the presence of two N components. Higher N/36Ar values than those of air, together with positive δ15N, show that a major portion of N in Muong Nong tektites is a remnant from the sedimentary source material.  相似文献   

18.
Abstract. Complete and nearly complete australite buttons in good states of preservation from Port Campbell, Victoria, show excellent structural details and are of great scientific importance. Some of the features on their posterior surfaces are doubtfully assigned a primary origin in an extraterrestrial birthplace but have been modified by terrestrial solution-etching. Secondary features on their anterior surfaces are due to the effects of aerodynamic frictional heating during transit with stable orientation at supersonic velocity through the earth's atmosphere. Tertiary processes such as subaerial weathering have played some part in slightly modifying their shape and sculpture patterns. They contrast strongly with the many thousands of australites collected from the arid and sub-arid regions of Australia, and with a considerable number that were abraded by stream or gravity transportation in the more temperate zones of the strewnfield. The majority of such specimens have been more severely weathered with the resultant loss of much or all of their primary and secondary features.  相似文献   

19.
Abstract— We have the elemental abundances and isotopic compositions of noble gases in Muong Nong‐type tektites from the Australasian strewn field by crushing and by total fusion of the samples. We found that the abundances of the heavy noble gases are significantly enriched in Muong Nong‐type tektites compared to those in normal splash‐form tektites from the same strewn field. Neon enrichments were also observed in the Muong Nong‐type tektites, but the Ne/Ar ratios were lower than those in splash‐form tektites because of the higher Ar contents in the former. The absolute concentrations of the heavy noble gases in Muong Nong‐type tektites are similar to those in impact glasses. The isotopic ratios of the noble gases in Muong Nong‐type tektites are mostly identical to those in air, except for the presence of radiogenic 40Ar. The obtained K‐Ar ages for Muong Nong‐type tektites were about 0.7 Myr, similar to ages of other Australasian tektites. The crushing experiments suggest that the noble gases in the Muong Nong‐type tektites reside mostly in vesicles, although Xe was largely affected by adsorbed atmosphere after crushing. We used the partial pressure of the heavy noble gases in vesicles to estimate the barometric pressure in the vesicles of the Muong Nong‐type tektites. Likely, Muong Nong‐type tektites solidified at the altitude (between the surface and a maximum height of 8–30 km) lower than that for splash‐form tektites.  相似文献   

20.
Reworking and redeposition of tektites is a highly complex and multistage geological process including many factors. A tumbling experiment was therefore undertaken with the aim of estimating a distance of transport that such moldavites can withstand. Though the experiment probably did not accurately mimic natural conditions, our results proved that moldavites can withstand considerable transport only over a distance of a few kilometers. Observed abrasion of tektites was significant in the early stage of experimental transport; the rate of abrasion decreased correlatively with increasing distance of transport as usual. Overall, given the results obtained from this experimental study and their state of preservation described in the literature, it is very likely that Polish tektites were reworked and redeposited by rivers from the Sudetes Mountains. Based on the paleoreconstruction of river flows, it can be assumed that the Polish tektites originated from two independent sediment supply areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号