首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
非稳态地震稀疏约束反褶积研究(英文)   总被引:1,自引:1,他引:0  
传统Robinson褶积模型主要受缚于三种不合理的假设,即白噪反射系数、最小相位地震子波与稳态假设,而现代反射系数反演方法(如稀疏约束反褶积等)均在前两个假设上寻求突破的同时却忽视了一个重要事实:实际地震信号具有典型的非稳态特征,这直接冲击着反射系数反演中地震子波不随时间变化的这一基础性假设。本文首先通过实际反射系数测试证实,非稳态效应造成重要信息无法得到有效展现,且对深层影响尤为严重。为校正非稳态影响,本文从描述非稳态方面具有普适性的非稳态褶积模型出发,借助对数域的衰减曲线指导检测非稳态影响并以此实现对非稳态均衡与校正。与常规不同,本文利用对数域Gabor反褶积仅移除非稳态影响,而将分离震源子波和反射系数的任务交给具有更符合实际条件的稀疏约束反褶积处理,因此结合两种反褶积技术即可有效解决非稳态特征影响,又能避免反射系数和地震子波理想化假设的不利影响。海上地震资料的应用实际表明,校正非稳态影响有助于恢复更丰富的反射系数信息,使得与地质沉积和构造相关的细节特征得到更加清晰的展现。  相似文献   

2.
3.
本文基于地层反射系数非高斯的统计特性,在反褶积输出单位方差约束下,将反褶积输出的负熵表示为非多项式函数,作为盲反褶积的目标函数,然后采用粒子群算法优化目标函数寻找最佳反褶积算子,实现地震信号的盲反褶积.数值模拟和实际资料处理结果表明,与传统反褶积方法相比,本文方法同时适应于最小相位子波及混合相位子波的反褶积,能够更好地从地震数据中估计反射系数,有效拓宽地震资料的频谱,得到高分辨率的地震资料.  相似文献   

4.
地震子波估计是地震资料处理和解释中的一个关键问题,子波估计的可靠性会直接影响反褶积和反演的准确度.现有的子波估计方法分为确定型和统计型两种类型,本文通过结合这两类方法,利用确定型的谱分析法和统计型的偏度最大化方法,分别提取时变子波的振幅和相位信息,得到估计的时变子波.这种方法不需要对子波进行任何时不变或相位等的假设,具有对时变相位的估计能力.进而利用估计时变子波进行非稳态反褶积,提高地震记录的保真度,为精细储层预测和描述提供高质量的剖面.理论模型试算验证了方法的可行性,通过实际地震资料的处理应用,表明该方法能有效地提取出子波时变信息.  相似文献   

5.
在地震子波非因果、混合相位的假设下,本文应用自回归滑动平均(ARMA)模型对地震子波进行参数化建模,并提出利用线性(矩阵方程法)和非线性(ARMA拟合方法)相结合的参数估计方式对该模型进行参数估计.在利用矩阵方程法确定模型参数范围的基础上,利用累积量拟合法精确估计参数.理论分析和仿真结果表明,该方式有较好的适应性:一方面提高了子波估计精度,避免单独使用矩阵方程法在短数据地震记录情况下可能带来的估计误差;另一方面提高了子波提取运算效率,降低了ARMA模型拟合方法参数范围确定的复杂性,避免了单纯使用滑动平均(MA)模型拟合法估计过多参数所导致的运算规模过大问题.初步应用结果表明该方法是有效可行的.  相似文献   

6.
Deconvolution is an essential step for high-resolution imaging in seismic data processing. The frequency and phase of the seismic wavelet change through time during wave propagation as a consequence of seismic absorption. Therefore, wavelet estimation is the most vital step of deconvolution, which plays the main role in seismic processing and inversion. Gabor deconvolution is an effective method to eliminate attenuation effects. Since Gabor transform does not prepare the information about the phase, minimum-phase assumption is usually supposed to estimate the phase of the wavelet. This manner does not return the optimum response where the source wavelet would be dominantly a mixed phase. We used the kurtosis maximization algorithm to estimate the phase of the wavelet. First, we removed the attenuation effect in the Gabor domain and computed the amplitude spectrum of the source wavelet; then, we rotated the seismic trace with a constant phase to reach the maximum kurtosis. This procedure was repeated in moving windows to obtain the time-varying phase changes. After that, the propagating wavelet was generated to solve the inversion problem of the convolutional model. We showed that the assumption of minimum phase does not reflect a suitable response in the case of mixed-phase wavelets. Application of this algorithm on synthetic and real data shows that subtle reflectivity information could be recovered and vertical seismic resolution is significantly improved.  相似文献   

7.
Wiener deconvolution is generally used to improve resolution of the seismic sections, although it has several important assumptions. I propose a new method named Gold deconvolution to obtain Earth’s sparse-spike reflectivity series. The method uses a recursive approach and requires the source waveform to be known, which is termed as Deterministic Gold deconvolution. In the case of the unknown wavelet, it is estimated from seismic data and the process is then termed as Statistical Gold deconvolution. In addition to the minimum phase, Gold deconvolution method also works for zero and mixed phase wavelets even on the noisy seismic data. The proposed method makes no assumption on the phase of the input wavelet, however, it needs the following assumptions to produce satisfactory results: (1) source waveform is known, if not, it should be estimated from seismic data, (2) source wavelet is stationary at least within a specified time gate, (3) input seismic data is zero offset and does not contain multiples, and (4) Earth consists of sparse spike reflectivity series. When applied in small time and space windows, the Gold deconvolution algorithm overcomes nonstationarity of the input wavelet. The algorithm uses several thousands of iterations, and generally a higher number of iterations produces better results. Since the wavelet is extracted from the seismogram itself for the Statistical Gold deconvolution case, the Gold deconvolution algorithm should be applied via constant-length windows both in time and space directions to overcome the nonstationarity of the wavelet in the input seismograms. The method can be extended into a two-dimensional case to obtain time-and-space dependent reflectivity, although I use one-dimensional Gold deconvolution in a trace-by-trace basis. The method is effective in areas where small-scale bright spots exist and it can also be used to locate thin reservoirs. Since the method produces better results for the Deterministic Gold deconvolution case, it can be used for the deterministic deconvolution of the data sets with known source waveforms such as land Vibroseis records and marine CHIRP systems.  相似文献   

8.
The seismic industry is increasingly acquiring broadband data in order to reap the benefits of extra low‐ and high‐frequency contents. At the low end, as the sharp low‐cut decay gets closer to zero frequency, it becomes harder for a well tie to estimate the low‐frequency response correctly. The fundamental difficulty is that well logs are too short to allow accurate estimation of the long‐period content of the data. Three distinctive techniques, namely parametric constant phase, frequency‐domain least squares with multi‐tapering, and Bayesian time domain with broadband priors, are introduced in this paper to provide a robust solution to the wavelet estimation problem for broadband seismic data. Each of these techniques has a different mathematical foundation that would enable one to explore a wide range of solutions that could be used on a case‐by‐case basis depending on the problem at hand. A case study from the North West Shelf Australia is used to analyse the performance of the proposed techniques. Cross‐validation is proposed as a robust quality control measure for evaluating well‐tie applications. It is observed that when the seismic data are carefully processed, then the constant phase approach would likely offer a good solution. The frequency‐domain method does not assume a constant phase. This flexibility makes it prone to over‐fitting when the phase is approximately constant. Broadband priors for the time‐domain least‐squares method are found to perform well in defining low‐frequency side lobes to the wavelet.  相似文献   

9.
A new method of Vibroseis deconvolution has been recently proposed by the authors. This discussion describes the effects of noise on the application of this method. The initial deconvolution step involves estimating the spectrum of the Vibroseis wavelet by homomorphic filtering. It is shown that noise causes problems with phase estimation. Hence, the Vibroseis wavelet is assumed to be zero phase. Examples demonstrate that zero phase cepstral filtering is a robust wavelet estimation approach for noisy data. The second step of the deconvolution method forms an impulse response model by a spectral extension method. Although this step can improve the resolution of seismic arrivals, it must be applied with caution in view of the deleterious effects of noise.  相似文献   

10.
An accurate estimate of the seismic wavelet on a seismic section is extremely important for interpretation of fine details on the section and for estimation of acoustic impedance. In the absence of well-control, the recognized best approach to wavelet estimation is to use the technique of multiple coherence analysis to estimate the coherent signal and its amplitude spectrum, and thence construct the seismic wavelet under the minimum-phase assumption. The construction of the minimum-phase wavelet is critically dependent on the decay of the spectrum at the low-frequency end. Traditional methods of cross-spectral estimation, such as frequency smoothing using a Papoulis window, suffer from substantial side-lobe leakage in the areas of the spectrum where there is a large change of power over a relatively small frequency range. The low-frequency end of the seismic spectrum (less than 4 Hz) decays rapidly to zero. Side-lobe leakage causes poor estimates of the low-frequency decay, resulting in degraded wavelet estimates. Thomson's multitaper method of cross-spectral estimation which suffers little from side-lobe leakage is applied here, and compared with the result of using frequency smoothing with the Papoulis window. The multitaper method seems much less prone to estimating spuriously high coherences at very low frequencies. The wavelet estimated by the multitaper approach from the data used here is equivalent to imposing a low-frequency roll-off of some 48 dB/oct (below 3.91 Hz) on the amplitude spectrum. Using Papoulis smoothing the equivalent roll-off is only about 36 dB/oct. Thus the multitaper method gives a low-frequency decay rate of the amplitude spectrum which is some 4 times greater than for Papoulis smoothing. It also gives more consistent results across the section. Furthermore, the wavelet obtained using the multi-taper method and seismic data only (with no reference to well data) has more attractive physical characteristics when compared with a wavelet extracted using well data, than does an estimate using traditional smoothing.  相似文献   

11.
基于带状混合矩阵ICA实现地震盲反褶积   总被引:3,自引:2,他引:1       下载免费PDF全文
基于对地震反褶积本质上是一个盲过程的认识,引入高阶统计学盲源分离技术——独立分量分析(ICA)实现地震盲反褶积.在无噪声假设条件下,利用地震记录时间延迟矩阵和地震子波带状褶积矩阵,将地震褶积模型转化为一般线性混合ICA模型,采用FastICA算法,将带状性质作为先验信息,实现所谓带状ICA算法(B\|ICA),得到个数与子波算子长度相等的多个估计反射系数序列和估计子波序列,最后利用褶积模型提供的附加信息从中优选出最佳的反射系数序列及相应的地震子波.模型数据和实际二维地震道数值算例表明:对于统计性反褶积,在不对反射系数作高斯白噪假设,不对子波作最小相位假设的所谓“全盲”条件下,基于ICA方法(反射系数非高斯分布,地震子波非最小相位)可以较好解决地震盲反褶积问题,是基于二阶统计特性的地震信号统计性反褶积方法的提升,具有可行性和应用前景.  相似文献   

12.
Regularization methods are used to recover a unique and stable solution in ill-posed geophysical inverse problems. Due to the connection of homogeneous operators that arise in many geophysical inverse problems to the Fourier basis, for these operators classical regularization methods possess some limitations that one may try to circumvent by wavelet techniques.
In this paper, we introduce a two-step wavelet-based regularization method that combines classical regularization methods with wavelet transform to solve ill-posed linear inverse problems in geophysics. The power of the two-step wavelet-based regularization for linear inversion is twofold. First, regularization parameter choice is straightforward; it is obtained from a priori estimate of data variance. Second, in two-step wavelet-based regularization the basis can simultaneously diagonalize both the operator and the prior information about the model to be recovered. The latter is performed by wavelet-vaguelette decomposition using orthogonal symmetric fractional B-spline wavelets.
In the two-step wavelet-based regularization method, at the first step where fully classical tools are used, data is inverted for the Moore-Penrose solution of the problem, which is subsequently used as a preliminary input model for the second step. Also in this step, a model-independent estimate of data variance is made using nonparametric estimation and L-curve analysis. At the second step, wavelet-based regularization is used to partially recover the smoothness properties of the exact model from the oscillatory preliminary model.
We illustrated the efficiency of the method by applying on a synthetic vertical seismic profiling data. The results indicate that a simple non-linear operation of weighting and thresholding of wavelet coefficients can consistently outperform classical linear inverse methods.  相似文献   

13.
地震子波估计是地震资料处理与解释中的重要环节,它的准确与否直接关系到反褶积及反演等结果的好坏。高阶谱(双谱和三谱)地震子波估计方法是一类重要的、新兴的子波估计方法,然而基于高阶谱的地震子波估计往往因为高阶相位谱卷绕的原因,导致子波相位谱求解产生偏差,进而影响了混合相位子波估计的效果。针对这一问题,本文在双谱域提出了一种基于保角变换的相位谱求解方法。通过缩小傅里叶相位谱的取值范围,有效避免了双谱相位发生卷绕的情况,从而消除了原相位谱估计中双谱相位卷绕的影响。该方法与最小二乘法相位谱估计相结合,构成了基于保角变换的最小二乘地震子波相位谱估计方法,并与最小二乘地震子波振幅谱估计方法一起,应用到了地震资料混合相位子波估计中。理论模型和实际资料验证了该方法的有效性。同时本文将双谱域地震子波相位谱估计中保角变换的思想推广到三谱域地震子波相位谱估计中。  相似文献   

14.
Six known methods of seismic phase unwrapping (or phase restoration) are compared. All the methods tested unwrap the phase satisfactorily if the initial function is a simple theoretical wavelet. None of the methods restore the phase of a synthetic trace exactly. An initial validity test of the phase-unwrapping method is that the sum of the restored wavelet phase spectrum and the restored pulse-trace phase spectrum (assuming the convolutional model for the seismic trace) must be equal to the restored phase spectrum of the synthetic trace. Results show that none of the tested methods satisfy this test. Quantitative estimation of the phase-unwrapping accuracy by correlation analysis of the phase deconvolution results separated these methods, according to their efficiency, into three groups. The first group consists of methods using a priori wavelet information. These methods make the wavelet phase estimation more effective than the minimum-phase approach, if the wavelet is non-minimum-phase. The second group consists of methods using the phase increment Δø(Δω) between two adjacent frequencies. These methods help to decrease the time shift of the initial synthetic trace relative to the model of the medium. At the same time they degrade the trace correlation with the medium model. The third group consists of methods using an integration of the phase derivative. These methods do not lead to any improvement of the initial seismic trace. The main problem in the phase unwrapping of a seismic trace is the random character of the pulse trace. For this reason methods based on an analysis of the value of Δø(Δω) only, or using an adaptive approach (i.e. as Δω decreases) are not effective. In addition, methods based on integration of the phase derivative are unreliable, due to errors in numerical integration and differentiation.  相似文献   

15.
A model of the seismic trace is generally given as a convolution between the propagating wavelet and the reflectivity series of the earth and normally it is assumed that a white noise is added to the trace. The knowledge of the propagating wavelet is the basic point to estimate the reflectivity series from the seismic trace. In this paper a statistical method of wavelet extraction from several seismic traces, assuming the wavelet to be unique, is discussed. This method allows one to obtain the propagating wavelet without any classical limitative assumptions on the phase spectrum. Furthermore, a phase unwrapping method is suggested and some statistical properties of the phase spectrum of the reflectivity traces are examined.  相似文献   

16.
Multicomponent seismic data are acquired by orthogonal geophones that record a vectorial wavefield. Since the single components are not independent, the processing should be performed jointly for all the components. In this contribution, we use hypercomplex numbers, specifically quaternions, to implement the Wiener deconvolution for multicomponent seismic data. This new approach directly derives from the complex Wiener filter theory, but special care must be taken in the algorithm implementation due to the peculiar properties of quaternion algebra. Synthetic and real data examples show that quaternion deconvolution, either spiking or predictive, generally performs superiorly to the standard (scalar) deconvolution because it properly takes into account the vectorial nature of the wavefields. This provides a better wavelet estimation and thus an improved deconvolution performance, especially when noise affects differently the various components.  相似文献   

17.
Bussgang算法是针对褶积盲源分离问题提出的,本文将其用于地震盲反褶积处理.由于广义高斯概率密度函数具有逼近任意概率密度函数的能力,从反射系数序列的统计特征出发,引入广义高斯分布来体现反射系数序列超高斯分布特征.依据反射系数序列的统计特征和Bussgang算法原理,建立以Kullback-Leibler距离为非高斯性度量的目标函数,并导出算法中涉及到的无记忆非线性函数,最终实现了地震盲反褶积.模型试算和实际资料处理结果表明,该方法能较好地适应非最小相位系统,能够同时实现地震子波和反射系数估计,有效地提高地震资料分辨率.  相似文献   

18.
Using synthetic data, it is demonstrated that the amplitude spectra of post-critical plane-wave components are stable and equal to the amplitude spectrum of the input wavelet (critical reflection theorem). Our analysis and physical explanation of the theorem are based only on amplitude versus offset arguments. The stability of the spectra in the post-critical region is directly related to a high amplitude post-critical reflection that dominates the trace in the slant-stack domain. The validity of the theorem for both the acoustic and elastic cases, its assumptions and limitations, are also examined with emphasis on applications for processing seismic reflection data. Based on the theorem, a deterministic procedure is developed (assuming minimum-phase properties) for wavelet estimation and subsequent deconvolution. We call this method Post-critical Deconvolution, which emphasizes reliance on post-critical reflection data. The performance of the method is shown with real data and the results are compared to those obtained with conventional deconvolution techniques.  相似文献   

19.
20.
用遗传算法实现地震信号反褶积   总被引:3,自引:1,他引:3       下载免费PDF全文
遗传算法作为寻优手段具有全局优化和很好的稳定性.本文将遗传算法用于地震信号反褶积处理,与已往方法相比它具有更好的分辨率和稳定性我们采用Bernoulli-Gaussian模型和ARMA模型分别描述地震反射系数序列和地震子波,用最大似然和最小预测误差准则分别构造用于估计反射系数序列和地震子波的目标函数,用遗传算法优化目标函数,以实现地震信号反褶积.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号