首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tectonic model of Egypt based on magnetic analysis   总被引:1,自引:0,他引:1  
The main target of this work was to study the dynamics of the Earth’s crust for Egypt based on the magnetic survey. High-resolution land magnetic data were analyzed, combined with the results of GPS and seismic stress analyses. The constructed tectonic map shows that the N35°-N45°W trend of the structure (related to the Red Sea and Gulf of Suez tectonics) predominates along the Gulf of Suez, Red Sea, covering wide parts of the study area. The N45°-N65°E tectonic trend (related to the Syrian Arc tectonics), prevailing in the northern part of Egypt, is of the second rank. The Aqaba (N15°-25°E) and E-W trends prevail in the northern part and along the transition zone of stable/unstable shelves. The depth to the basement rocks ranges from the surface along the Red Sea and southern parts of Egypt to more than 4 km below sea level at the northern part of the study area.  相似文献   

2.
A Bouguer gravity anomaly map is presented of the North Sea and adjacent land areas in Norway and Denmark, covering an area situated between 56° and 62°N, 1°W and 10°E. The gravity data from the UK sector of the North Sea, the land and offshore areas of Denmark, and the land areas of Norway have been published before. However, the gravity data from the Norwegian sector of the North Sea are new. A large number (about 60) of individual gravity features can be defined in the mapped area. Most of those situated in the UK sector of the North Sea and on land in Norway have been discussed earlier; however, most of the anomalies found elsewhere which are qualitatively interpreted here have not been discussed before. An interpreted Bouguer anomaly map is presented which identifies all these features. The majority of the gravity anomalies encountered in the mapped area can be shown to be associated with one of the following geological features: (i) basement highs, (ii) large bodies of heavy basic or ultrabasic rock in the crystalline basement, (iii) large igneous intrusions within the sedimentary column and thick accumulations of volcanic rocks or their associated eruption centers, (iv) major basement faults. Large-scale geological structures such as the Central, Viking and Sogn Grabens and the East Shetland, Stord, Forth Approaches and Norwegian-Danish Basins are essentially in isostatic equilibrium and are only locally marked by relatively weak gravity minima. A residual gravity anomaly map has been produced by subtracting from the observed Bouguer anomalies the estimated gravity effect of an assumed thinned crust. This residual gravity anomaly map shows a number of features of the Bouguer anomaly field with greater clarity.  相似文献   

3.
In this study, we aim to map the Curie point depth surface for the northern Red Sea rift region and its surroundings based on the spectral analysis of aeromagnetic data. Spectral analysis technique was used to estimate the boundaries (top and bottom) of the magnetized crust. The Curie point depth (CPD) estimates of the Red Sea rift from 112 overlapping blocks vary from 5 to 20 km. The depths obtained for the bottom of the magnetized crust are assumed to correspond to Curie point depths where the magnetic layer loses its magnetization. Intermediate to deep Curie point depth anomalies (10–16 km) were observed in southern and central Sinai and the Gulf of Suez (intermediate heat flow) due to the uplifted basement rocks. The shallowest CPD of 5 km (associated with very high heat flow, ~235 mW m?2) is located at/around the axial trough of the Red Sea rift region especially at Brothers Island and Conrad Deep due to its association with both the concentration of rifting to the axial depression and the magmatic activity, whereas, beneath the Gulf of Aqaba, three Curie point depth anomalies belonging to three major basins vary from 10 km in the north to about 14 km in the south (with a mean heat flow of about 85 mW m?2). Moreover, low CPD anomalies (high heat flow) were also observed beneath some localities in the northern part of the Gulf of Suez at Hammam Fraun, at Esna city along River Nile, at west Ras Gharib in the eastern desert and at Safaga along the western shore line of the Red Sea rift. These resulted from deviatoric tensional stresses developing in the lithosphere which contribute to its further extension and may be due to the opening of the Gulf of Suez and/or the Red Sea rift. Furthermore, low CPD (with high heat flow anomaly) was observed in the eastern border of the study area, beneath northern Arabia, due to the quasi-vertical low-velocity anomaly which extends into the lower mantle and may be related to volcanism in northern Arabia. Dense microearthquakes seem to occur in areas where the lateral gradients of the CPD are steep (e.g. entrance of the Gulf of Suez and Brothers Island in the Red Sea). These areas may correspond to the boundaries between high and low thermal regions of the crust. Thus, the variations in the microseismic activity may be closely related to thermal structures of the crust. Indeed, shallow cutoff depths of seismicity can also be found in some geothermal areas (e.g. western area of Safaga city along the Red Sea coastal region and at Esna city along the River Nile). These facts indicate that the changes in the thickness of the seismogenic layer strongly depend on temperature. Generally, the shallow Curie point depth indicates that some regions in our study area are promising regions for further geothermal exploration particularly in some localities along the River Nile, Red Sea and Gulf of Suez coastal regions.  相似文献   

4.
南海深部构造对研究南海构造演化和油气勘探具有重要意义.本文对南海地区的自由空气重力异常进行布格校正、海水层校正和沉积层校正,得到布格重力异常,再对布格重力异常进行区域异常和局部异常分离,利用位场界面反演方法对区域布格异常进行反演计算得到研究区域的莫霍面深度分布;采用全变倾角化极方法对研究区域的卫星磁异常数据进行化极处理,并进一步对化极磁异常作向上延拓,得到延拓后化极磁异常结果.分析布格重力异常、莫霍面深度及化极磁异常特征,结合天然地震层析成像的证据,得到以下结论:推测南海北部陆缘的古俯冲带位置是从118.5°E,24°N沿北东向延伸至109°E,15°N;红河断裂入海后经过莺歌海盆地在海南岛南部转为南北向与越东断裂相接并延伸至万安盆地;推测中特提斯洋的部分闭合位置是从110°E,2°N到101°E,21°N.  相似文献   

5.
The propagation of an oceanic rift is an important tectonic problem, with a bearing on the reorganization of plate motion and on the early opening of oceanic basins. At the propagating rift at 95°30′W near the Galapagos Islands, we can use magnetic methods to determine the tectonic origin of a set of important sea floor features. The observed 27 km offset between the axes of the propagating rift and the dying rift presents us with an ideal situation, in which the oceanic crust created by the opposing systems has been magnetized in opposite directions. The normally magnetized crust of the propagating rift tip penetrates into older crust, which created when the earth's main field was reversed. A combined Deep Tow and Sea Beam investigation at 95°30′W on the Cocos-Nazca spreading center has revealed the crustal contact between the propagating rift and the dying rift systems. The inherent magnetic labelling of the crust has been recovered by performing inversions on the gridded representations of the observed magnetic field and bathymetry, working in the Fourier domain. The result is a gridded rock magnetization distribution. The inversion of the surface data covers a large area, 6000 km2, and demonstrates close agreement with magnetization amplitudes of rock samples at existing dredge sites. In general, the propagating rift process appears to be much more orderly than the dying rift process. The magnetic polarity transition widths are narrower, and the boundaries have fewer undulations than the dying rift, which appears to be quite episodic in behavior. The average propagation rate is 52 mm/yr, compared to the average spreading half-rate of 29 mm/yr. The locations of the boundaries suggest that the acceleration to the normal spreading rate on the propagation rift requires about 250, 00 years. The inversion of the Deep Tow data, near the sea floor, provides a high resolution definition of the tip of the propagation rift, at 2°38.1t'N, 95°30.0′W.  相似文献   

6.
In September and October of 2011, a marine magnetic survey was conducted in the southern East China Sea between 120° and 126°E, 26° and 28°N with the research vessel Kexue-3. New magnetic maps with 5 × 5 km grid spacing were generated after meticulous data processing. Based on an analysis of magnetic anomaly features and further calculation results, including the total horizontal derivatives (THD), second order vertical derivatives (SVD) and analytic signal amplitude (ASA), several new tectonic insights on magnetic sources, basement structures and fault properties were obtained. The NE-SW or NNE-SSW oriented magnetic anomaly highs have different sources: (1) The high amplitude, short wavelength magnetic anomalies of the Zhemin Uplift are caused by shallow buried igneous rocks intruded along NE-NEE oriented faults. (2) The high amplitude, moderate wavelength magnetic anomalies of the Diaoyudao Uplift are caused by the metamorphic basement intruded by magmatic rocks. (3) The magnetic sources of the Yandang Uplift and Taibei Uplift in the shelf basin are shallow buried metamorphic basements and deep buried volcanic bodies, respectively. Several NW-SE or NWW-SEE oriented dextral strike-slip fault belts were identified as important tectonic boundaries. Each is composed of several en echelon and partly overlapping secondary faults. Initially formed in the Cretaceous, these fault belts have evolved through multiple periods, propagated seaward with the migration of the basement rifting and accommodated local stress fields in the Cenozoic.  相似文献   

7.
青藏高原内部除大规模的东西向走滑断裂以外,另一个显著的地质特征就是在藏南及高原腹地广泛发育东西向的伸展构造,形成走向近南北的断裂构造,如亚东一谷露裂谷带及双湖断裂.伸展构造已经成为青藏高原地质研究的一个焦点问题.在羌塘地块89°E附近存在明显的低重力、负磁、深度达300 km的低速异常及连通壳幔的高导异常,且地表伴生大规模的新生代火山岩,这些特殊的地质及地球物理场特征的发生位置与地表双湖断裂的位置基本对应.本文通过卫星重力数据的多尺度小波分析结果发现,双湖断裂之下,存在一明显由上地壳一直向下延伸至地幔深部的低重力异常,说明双湖断裂向下延伸深度大,且上下连通性好.结合已有的地质和地球物理资料,认为由于双湖断裂的存在,使得深部幔源岩浆沿断裂构造薄弱带上涌,从而导致羌塘地块之下壳幔温度的升高及大规模部分熔融的发生.  相似文献   

8.
普里兹湾位于南极洲东部大陆边缘,其深部地壳结构特征对认识白垩纪冈瓦纳古陆裂解和新生代大陆边缘形成具有重要意义.本文利用重磁、多道反射地震、声纳浮标折射地震和ODP钻井数据对普里兹湾海域的深部地壳结构进行了研究.研究结果显示,普里兹凹陷表现为典型的盆地负重力异常特征,其沉积基底较深,而在四夫人浅滩为高幅重力正异常,其沉积基底普遍抬升.在大陆架中部存在SW-NE向条带状基底的抬升,且呈朝NE向逐渐变深的趋势.在中大陆架外侧,均衡残余重力异常呈V字形负异常条带状分布,其两翼分别与四夫人浅滩和弗拉姆浅滩外的大陆坡相连.该异常带在大陆架中部向陆的偏移可能是由于古大陆架边缘的地形影响,推测其与普里兹冲积扇同属于洋陆过渡带向陆的部分,在重力模拟剖面表现为地壳向海逐渐减薄.普里兹冲积扇的地壳厚度较薄,平均为6 km,最薄处可达4.6 km,并且根据洋陆过渡带向海端的位置,推测可能属于接近洋壳厚度的过渡壳.重力异常分区的走向与兰伯特地堑在普里兹湾的构造走向基本一致,可能主要反映了二叠纪-三叠纪超级地幔柱对普里兹湾的裂谷作用的影响.该区域的自由空间重力异常和均衡残余异常均表现为超过100×10-5m/s2的高幅正异常特征,可能由位于大陆架边缘的巨厚沉积体负载在高强度岩石圈之上的区域挠曲均衡作用所导致,可能与该区域第二期裂谷期之后的沉积间断以及快速进积加厚的演化过程有关.普里兹湾磁力异常的走向与重力异常明显不同,大致可分为东北高幅正异常区和西南低幅异常区.重磁异常在走向上的差异反映高磁异常主要来源于岩浆作用形成的铁镁质火成岩的影响,并且岩浆作用的时代不同于基底隆升的时代,而可能形成于前寒武纪或者南极洲和印度板块裂谷期间(白垩纪).  相似文献   

9.
Regional gravity and aeromagnetic data covering the area of 32°- 38° N, 118°-127° E at the scale of 1:1,000,000 are coordinated and integrated in a synthetic study of the South China Yellow Sea and adjacent areas. Depth to magnetic crystalline basement and its structure are determined by magnetic anomaly inversion. Depth to and thickness of the Paleozoic rock are also revealed by gravity anomaly inversion with constrains of the basement and known seismic information from several profiles. Structure units, main faults, basin boundaries, and sub-suppressions are outlined on the basis of gravity data interpretation.  相似文献   

10.
New free-air gravity and magnetic maps of the Eratosthenes Seamount and its vicinity were regenerated from potential field data. Stages of data processing are power spectrum, upward continuation, filtering on the free-air gravity anomaly data. RTP, pseudo-gravity transformation map, power spectrum, upward continuation, filtering, AS, and HGAS were applied on the magnetic data. A HGAS map shows the images and locations of the Eratosthenes magnetic body. Spectral analysis of the gravity and magnetic anomalies indicates that there is an elliptical elongated structure of the Eratosthenes Seamount in the width of approx. 86 km NW-SE orientation and in the length of 138 km NE-SW orientation, with a strike of N40°E and inclined to NW. It is considered that 22.49 ± 0.08 km obtained from power spectrum of the gravity data may be related to the crust thickness. Also, 15.67 ± 0.02 km obtained from power spectrum of the magnetic data is considered to be related to the magmatic basement of the Eratosthenes Seamount.  相似文献   

11.
The seismotectonic characteristics of 1983–1984, 1993 and 2005 swarms in Andaman Sea are analysed. These swarms are characterised by their typical pulsating nature, oval shaped geometry and higher b values. The migration path of the swarms from north to south along the Andaman Spreading Ridge is documented. While the first two swarms are located along existing mapped rift segments, the 2005 swarm appears to have generated a new rift basin along 8°N. The analysis and supporting evidences suggest that these swarms were generated by intruding magmatic dyke along the weak zones in the crust, followed by rifting, spreading and collapse of rift walls. CMT solutions for 2005 swarm activity indicate that intrusion of magmatic dyke in the crustal weak zone is documented by earthquakes showing strike slip solution. Subsequent events with normal fault mechanism corroborate the rift formation, collapse and its spreading.  相似文献   

12.
对黄海-东海研究区深部结构的一些新认识   总被引:23,自引:7,他引:16       下载免费PDF全文
综合地震层析成像与重磁数据的处理结果,选择26°N~36°N,120°E~130°E的范围作为研究区,讨论了黄、东海研究区的深部结构特点及其与周边各地质单元的相互关系,完成了研究区两条剖面的密度结构反演,认为东海陆架地区地壳厚度变化与大陆地区相比并不明显,显著减薄开始于冲绳海槽地区,中地壳消失;琉球岛弧处地壳厚度明显再度增加,特别是上地壳的厚度增加最大,推断其原因应与俯冲作用及俯冲带附近板块与地幔的运动速率之差有关.地球物理场“东西分带”是黄海—东海地区壳内结构从西向东变化的反映,但随着深度的增加,研究区的岩石层结构出现以近EW向为优势的构造格局.因此推断深部近EW向的异常是三叠纪时期南北板块碰撞、挤压所致,浅部的NE向条带异常是后期构造运动在岩石层较浅部位构造效应的反映.黄海—东海地区岩石层结构存在浅部与深部优势构造方向不协调的现象.层析成像结果证实了南黄海东缘断层的存在,还勾绘出绍兴—十万大山碰撞带为以40°左右的倾角向NW方向倾斜的高速带,另一条倾向基本相同的高速带则是南、北扬子块体结合带在深部的反映.  相似文献   

13.
琼东南盆地发育于前新生代基底之上,作为南海被动大陆边缘一部分,记录了南海北部裂陷盆地结构及其演化.利用最新钻井、反射地震、重力等资料,分析新生代盖层和前新生代基底地壳结构,建立盆地地层结构模型,然后计算全盆地地壳伸展变化特征.结果表明:新生代地层序列的盆地充填由西向东逐渐减薄,古近纪、新近纪以及第四纪期间(45 Ma~现今)最后沉积中心呈现逐渐向西或西南迁移趋势.下地壳局部表现为地震速度偏高(厚度2~4 km,vP>7.0 km·s-1,水平延伸范围约为40~70 km).重震联合模拟显示这里存在密度偏高特征,推测存在可能与张裂晚期和扩张早期岩浆物质底侵或混合到伸展程度较低的大陆地壳有关.计算获得的前新生代基底地壳厚度由在弱展区域陆架区约25 km,在减薄最大区域中央坳陷为3 km.伸展系数(β)最高值大于6.0出现在中央坳陷,低值小于2.0在坳陷南北两侧,说明地壳在盆地中央拉伸比较剧烈.  相似文献   

14.
Geophysical data contiguous with the Narmada-Son lineament suggests its possible extension westward into the Arabian Sea and eastward up to the Shillong Plateau. The airborne magnetic anomaly map of the north Arabian Sea delineates a linear trend of magnetic anomalies in line with the Narmada-Son lineament. This group of magnetic anomalies, spreading over 20°N to 22°N, starts near the west coast of India at 21°N, 69°30′E and extends to the Murray Ridge. The tectonic feature represented by this group of magnetic anomalies is buried by a thick layer of sediments. This westward extension of the lineament is also reflected in the average Bouguer gravity anomaly map of the Indian Ocean. Towards the east, the gravity and magnetic data delineate a subsurface linear tectonic feature which extends in line with this lineament to the eastern syntaxial bend. These various geophysical signatures further suggest the lineament to be a typical rift-like structure. The tectonic implications of the lineament, which extends from the western to the eastern margins of the Indian plate, is discussed.  相似文献   

15.
A regional terrane map of the New Jersey Coastal Plain basement was constructed using seismic, drilling, gravity and magnetic data. The Brompton-Cameron and Central Maine terranes were coalesced as one volcanic island arc terrane before obducting onto Laurentian, Grenville age, continental crust in the Taconian orogeny [Rankin, D.W., 1994. Continental margin of the eastern United States: past and present. In: Speed, R.C., (Ed.), Phanerozoic Evolution of North American Continent-Ocean Transitions. DNAG Continent-Ocean Transect Volume. Geological Society of America, Boulder, Colorado, pp. 129–218]. Volcanic island-arc rocks of the Avalon terrane are in contact with Central Maine terrane rocks in southern Connecticut where the latter are overthrust onto the Brompton-Cameron terrane, which is thrust over Laurentian basement. Similarities of these allochthonous island arc terranes (Brompton-Cameron, Central Maine, Avalon) in lithology, fauna and age suggest that they are faulted segments of the margin of one major late Precambrian to early Paleozoic, high latitude peri-Gondwana island arc designated as “Avalonia”, which collided with Laurentia in the early to middle Paleozoic. The Brompton Cameron, Central Maine, and Avalon terranes are projected as the basement under the eastern New Jersey Coastal Plain based on drill core samples of metamorphic rocks of active margin/magmatic arc origin. A seismic reflection profile across the New York Bight traces the gentle dipping (approximately 20 degrees) Cameron's Line Taconian suture southeast beneath allochthonous Avalon and other terranes to a 4 sec TWTT depth (approximately 9 km) where the Avalonian rocks are over Laurentian crust. Gentle up-plunge (approximately 5 degrees) projections to the southwest bring the Laurentian Grenville age basement and the drift-stage early Paleozoic cover rocks to windows in Burlington Co. at approximately 1 km depth and Cape May Co. at approximately 2 km depths. The antiformal Shellburne Falls and Chester domes and Chain Lakes-Pelham dome-Bronson Hill structural trends, and the synformal Connecticut Valley-Gaspe structural trend can be traced southwest into the New Jersey Coastal Plain basement. A Mesozoic rift basin, the “Sandy Hook basin”, and associated eastern boundary fault is identified, based upon gravity modeling, in the vicinity of Sandy Hook, New Jersey. The thickness of the rift-basin sedimentary rocks contained within the “Sandy Hook basin” is approximately 4.7 km, with the basin extending offshore to the east of the New Jersey coast. Gravity modeling indicates a deep rift basin and the magnetic data indicates a shallow magnetic basement caused by magnetic diabase sills and/or basalt flows contained within the rift-basin sedimentary rocks. The igneous sills and/or flows may be the eastward continuation of the Watchung and Palisades bodies.  相似文献   

16.
Magnetic and gravity anomaly data, together with features of the basement topography presented here show that the continental margin of western Australia, including the Naturaliste plateau, was shaped by NE-SW-trending rift segments offset by nearly orthogonal transform faults. A steep landward gradient of the isostatic gravity field and a lineated magnetic anomaly which occur together at the continental slope are interpreted as marking the ocean-continent boundary of the rifted margin off Perth and the sheared margin between Perth and the Wallaby plateaus. Anomalies diagnostic of the ocean-continent boundary are not observed at the margins of the Naturaliste plateau; the geometry of the rift zone here is adduced from the disposition of magnetic lineations, fracture zones, and basement features. A geophysical survey of the Naturaliste fracture zone shows it to be a continuous basement trough extending from the Diamantina fracture zone 800 km northwest to Dirck Hartog ridge. Similar basement troughs west of and orthogonal to the fracture zone imply that the region west/southwest of the Naturaliste plateau was, like the region north of it, formerly occupied by Greater India. Marine magnetic anomaly and basement trends suggest that the oceanic crust between the plateau and Diamantina fracture zone could be substantially older than Paleocene, heretofore the oldest crust identified between Australia and Antarctica.  相似文献   

17.
18.
关于黄海深部构造的地球物理认识   总被引:11,自引:7,他引:4       下载免费PDF全文
利用黄海海区重磁观测数据,以最新的地震层析成像和浅层反射地震探测结果作为约束,并利用小波分解、纹理特征图像处理等手段,对研究区进行了地球物理场特征分析、岩石物性总结、断裂信息提取和磁性基底埋深反演计算,同时对南黄海海域三条剖面进行了广义逆重磁数据拟合反演和地震P波速度成像.根据地球物理数据的各种处理结果,提出在南黄海西部存在一条串珠状地球物理线性构造带,并将这条NNW向断续延伸的构造带称之为南黄海西缘断裂带.该断裂带延伸长,断裂两侧前新生代地层差异较大,有可能是造成陆区和南黄海南部盆地区前新生代油气远景差异的原因之一.文中得到南黄海磁性基底埋藏分布具有“中间浅四周深”的分布特征,与地震层析成像结果相吻合.磁性基底的局部起伏和局部构造的边界断层共同控制了前新生代残留盆地的格架和残余厚度分布,反映出“区域控制局部,深层约束浅层”的规律.  相似文献   

19.
The main goal of our study is to investigate 3D topography of the Moho boundary for the area of the northern Red Sea including Gulf of Suez and Gulf of Aqaba. For potential field data inversion we apply a new method of local corrections. The method is efficient and does not require trial-and-error forward modeling. To separate sources of gravity and magnetic field in depth, a method is suggested, based on upward and downward continuation. Both new methods are applied to isolate the contribution of the Moho interface to the total field and to find its 3D topography. At the first stage, we separate near-surface and deeper sources. According to the obtained field of shallow sources a model of the horizontal layer above the depth of 7 km is suggested, which includes a density interface between light sediments and crystalline basement. Its depressions and uplifts correspond to known geological structures. At the next stage, we isolate the effect of very deep sources (below 100 km) and sources outside the area of investigation. After subtracting this field from the total effect of deeper sources, we obtain the contribution of the Moho interface. We make inversion separately for the area of rifts (Red Sea, Gulf of Suez and Gulf of Aqaba) and for the rest of the area. In the rift area we look for the upper boundary of low-density, heated anomalous upper mantle. In the rest of the area the field is satisfied by means of topography for the interface between lower crust and normal upper mantle. Both algorithms are applied also to the magnetic field. The magnetic model of the Moho boundary is in agreement with the gravitational one.  相似文献   

20.
The Potiguar Basin is a ∼6,000 m thick aborted NE-trending rift that was formed during the Cretaceous in the continental margin of northeastern Brazil. Its ∼E–W-trending offshore faults form part of the successful continental margin rift that evolved into the South Atlantic Ocean. The region represents one of the most significant pre-Pangea breakup piercing points between eastern South America and West Africa. We used gravity, aeromagnetic, and geological data to assess the role of reactivated Precambrian shear zones and major terrain boundaries in the development of the Potiguar Basin from the Cretaceous to the Cenozoic. We also looked for possible links between these structures in northeastern Brazil and their continuation in West Africa. Our results indicate that the major fault systems of the Potiguar Basin were superimposed on the Precambrian fabric. Both gravity and magnetic maps show lineaments related to the shear zones and major terrain boundaries in the Precambrian crystalline basement, which also characterize the architecture of the rift. For example, the Carnaubais fault, the master fault of the rift system, represents the reactivation of the Portalegre shear zone, the major tectonic boundary between Precambrian terrains in the crystalline basement. In addition, part of the Moho topography is controlled by these shear zones and developed during the period of main rift extension in the Neocomian. The shear zones bounding the Potiguar rift system continue in West Africa around and underneath the Benue Basin, where fault reactivation also took place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号