首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Series of white light heliograms and oft- and on-band H filtergrams have been obtained, with an average spatial resolution of 1, to study the flare active McMath region 15403 on 11 July, 1978. A great number of accurate heliographic positions were determined for the umbrae, the white light flare patches and several bright H flare knots, as well as along the principal zero filament and an arch prominence. Using the measured heliographic coordinates of these objects their motions could be analyzed in some detail. The velocities of several different objects could be deduced from the coordinates. Since the heliocentric angle of the region was about 45°, the variation in apparent heliographic coordinates also enabled some variations in heights to be determined.It is pointed out that the flare when fully developed, consisted almost entirely of loops. The zero filament which was activated prior to the flare ran between two umbrae of common penumbra and opposite polarity, one belonging to an old, the other to a new spot group. The white light flare developed on both sides of the filament where it passed between these two umbrae; it was also the place where the flare started. Observational evidence appears to indicate that the erupted filament re-formed from below.An indication has been found that there was a link between the motion of some umbrae and the major flare occurrence.  相似文献   

2.
We describe visual observations of a white light flare which displayed a pink color in a part of the flare which covered a sunspot umbra. We then show that visible pink tint, if attributable to strong H emission, requires a minimum equivalent emission line width of approximately 140 A, or three times larger than in any flare previously measured. Such extreme line broadening might be interpreted to result from flare penetration to unusually high chromospheric densities ( 1014 cm–3), or from anomalous Stark broadening due to turbulent electric fields in an unstable plasma (Spicer and Davis, 1975) at lower density.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

3.
The problem of the flare taking place on opposite sides of a star is considered. Such a screened flare, diffused through the star's atmosphere (chromosphere), may also be registered. The theoretical light curve for diffused flare event is derived, which differs strongly from the usual flare light curves. The light curve of diffused flare is characterized first of all by its very slow rise of brightness. This result opens quite a new direction to understand the nature of the so-called slow flares, observed often among the UV Cet-type stars as well as flare stars in aggregates. All slow flares can be interpreted as quite ordinary flares of quite ordinary flare stars — taking place, however, on the opposite sides of the star. The results of interpretation of some slow flare events of YY Gem and three flare stars in Orion are presented. An attempt is made for the determination of actual amplitudes of screened flares taking place on the opposite sides of a star.  相似文献   

4.
Jordan  Stuart  Garcia  Adriana  Bumba  Vaclav 《Solar physics》1997,173(2):359-376
A time series of K3 spectroheliograms taken at the Coimbra Observatory exhibits an erupting loop on the east limb on July 9, 1982 in active region NOAA 3804. The Goddard SMM Hard X-Ray Burst Spectrometer (HXRBS) observations taken during this period reveal a hard X-ray flare occurring just before the loop eruption is observed, and SMS-GOES soft X-ray observations reveal a strong long-duration event (LDE) following the impulsive phase of the flare. A Solwind coronagram exhibits a powerful coronal mass ejection (CME) associated with the erupting loop. H flare and prominence observations as well as centimeter and decimeter radio observations of the event are also reviewed. A large, north–south-oriented quiescent prominence reported within the upper part of the CME expansion region may play a role in the eruption as well. The spatial and temporal correlations among these observations are examined in the light of two different current models for prominence eruption and CME activation: (1) The CME is triggered by the observed hard X-ray impulsive flare. (2) The CME is not triggered by a flare, and the observed soft X-ray flare is an LDE due to reconnection within the CME bubble. It is concluded that this event is probably of a mixed type that combines characteristics of models (1) and (2). The July 9 event is then compared to three other energetic CME and flare eruptions associated with the same active-region complex, all occurring in the period July 9 through September 4, 1982. It is noted that these four energetic events coincide with the final evolutionary phase of a long-lasting active-region complex, which is discussed in a companion paper (Bumba, Garcia, and Jordan, 1997). The paper concludes by addressing the solar flare myth controversy in the light of this work.  相似文献   

5.
All four large EUV bursts (peak 10–1030 Å flux enhancements 2 ergs cm–2 s–1 at 1 AU as deduced from sudden frequency deviations), for which there were available concurrent white light observations of at least fair quality, were detected as white light flares. The rise times and maxima of the white light emissions coincided with rise times and maxima of the EUV bursts. The frequency of strong EUV bursts suggests that white light flares may occur at the rate of five or six per year near sunspot maximum. All of the white light flare areas coincided with intense bright areas of the H flares. These small areas appeared to be sources of high velocity ejecta in H. The white light flares occurred as several knots or patches of 2 to 15 arc-sec diameter, with bright cores perhaps less than 2 arc-sec diameter (1500 km). They preferred the outer penumbral borders of strong sunspots within 10 arc-sec of a longitudinal neutral line in the magnetic field. The peak continuum flux enhancement over the 3500–6500 Å wavelength range is about the same order of magnitude as the peak 10–1030 Å flux enhancement.  相似文献   

6.
By comparing the light curves in optical, hard x-ray, and soft x-ray wavelengths for 8 well-observed flares, we confirm previous results indicating that the white light flare (WLF) is associated with the flare impulsive phase. The WLF emission peaks within secondsafter the associated hard x-ray peak, and nearly two minutesbefore the 1–8 soft x-ray peak. It is further shown that the peak power in nonthermal electrons above 50 keV is typically an order of magnitudelarger, and the power in 1–8 soft x-rays radiated over 2 strdn at the time of the WLF peak is an order of magnitudesmaller, than the peak WLF power.Operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. Partial support for the National Solar Observation is provided by the USAF under a Memorandum of Undestanding with the NSF.  相似文献   

7.
Qiu  J.  Falchi  A.  Falciani  R.  Cauzzi  G.  Smaldone  L. A. 《Solar physics》1997,172(1-2):171-179
We analyze the pre-flare and impulsive phase of an eruptive (two-ribbon) flare at several wavelengths. The total energy (mechanical plus radiative) released by the flare is 8 x 1030 erg, about a factor 6 higher than the free magnetic energy (1.3 1030 erg) estimated from the non-potentiality of the magnetic field configuration in the flare area. During the impulsive phase, we find a very good time coincidence between the hard X-ray light curve and the light curves for 2 small areas ( 4 in size) in the red wing of the H line and in the He-D3 line center. This temporal coincidence is compatible with the interpretation that hard X-ray emission is produced by bremsstrahlung of accelerated electron beams striking these dense areas. For the other regions of the H ribbons we find more gradual light curves, suggesting a different energy transport mechanism such as conduction.  相似文献   

8.
Through coordinated observations made during the Max'91 campaign in June 1989 in Potsdam (magnetograms), Debrecen (white light and H), and Meudon (MSDP), we follow the evolution of the sunspot group in active region NOAA 5555 for 6 days. The topology of the coronal magnetic field is investigated by using a method based on the concept of separatrices - applied previously (Mandriniet al., 1991) to a magnetic region slightly distorted by field-aligned currents. The present active region differs by having significant magnetic shear. We find that the H flare kernels and the main photospheric electric current cells are located close to the intersection of the separatrices with the chromosphere, in a linear force-free field configuration adapted to the observed shear. Sunspot motions, strong currents, isolated polarities, or intersecting separatrices are not in themselves sufficient to produce a flare. A combination of them all is required. This supports the idea that flares are due to magnetic reconnection, when flux tubes with field-aligned currents move towards the separatrix locations.  相似文献   

9.
The H observations of a limb flare, which were associated with exceptional gamma-ray and hard X-ray emission, are presented and discussed. The good spatial and temporal resolution of the H data allow us to investigate the detailed structure of the elevated flare loops and the intensity variations of the loops, footpoints and surrounding chromosphere during each phase of the flare event. A delay time of 12 s was found between at least one of the hard X-ray (28–485 keV) peaks and corresponding H intensity maximum at a loop footpoint. A comparison is made between this event and another well-observed limb flare with many similar characteristics to seek evidence for the large difference in their levels of energy release.  相似文献   

10.
Using photospheric and H observations and total radio flux data we study a two-ribbon flare in AR NOAA 4263 which was a part of a flare event complex on July 31, 1983. We find some facts which illuminate the special way of flare triggering in the analysed event. Around a double spot the photospheric vector magnetic field is discussed with respect to the chromospheric activities. In one of the spots the feet of long stretched loops are pushed down under steepening loops rooted in the same spot. This causes energy build-up by twist and shear in the stretched loops. One foot of the two-ribbon flare (triggered in the stretched and underpushed loop system) roots in a part of the spot umbra and penumbra where the field runs in extremely flat like a pressed spiral spring. A strange radio event, starting before the flares, can be interpreted as a precursor activity of the flare event complex. The radio data support the view that the analyzed flare process and the given magnetic field structure, respectively, are not very effective in energetic particle generation and escape.  相似文献   

11.
A limb, two-ribbon H flare on June 4, 1991, associated with a white-light flare and followed by an emission spray and post-flare loops, is studied. A region of rapidly enhanced brightness at the bottom of the H ribbon above the white-light flare is revealed. The energy released by the white-light flare at eff = 4100 is estimated to be about 1.5 × 1028 erg s–1.  相似文献   

12.
An extensive analysis is made of the theory of flare stars based on the fast electron hypothesis, in the light of the latest observational evidence. It is shown that an adequate agreement of theory with the observations obtains regarding the internal regular features in the flare amplitude data inUBV rays, as well as the changes of the colour characteristics of stars during the flares; in the latter case the analysis is made not only in respect of the UV Cet-type stars, but flare stars as well, forming a part of the Orion association. Problems bearing on the negative flare and the screening effect are dealt with. New properties of the light curves of flares are revealed, based on the above theory.Particular emphasis is laid on the X-ray radiation from flare stars. It is shown that the observed spectrum of X-ray radiation of flare stars differs sharply from that of X-ray radiation both of the stellar corona and solar X-ray flares. At the same time, the observed X-ray spectrum of flares is in complete harmony with the previously calculated theoretical spectrum corresponding to nonthermal bremsstrahlung with the energy of monoenergetic fast electrons 1.5 MeV. The durations of X-ray flares should be essentially shorter than that of the optical flares. The very high momentary intensities of the X-ray brightness with the exceedingly small duration at the curve maximum is predicted. It is shown that the gamma-ray bursts recorded so far have no relation whatever to flare stars.  相似文献   

13.
Recently Gosling (1993) examined the interplanetary consequences of solar activity, and suggested that the coronal mass ejection (CME) was the prime driver of most disturbances (i.e., interplanetary shocks, high-energy particles, geomagnetic storms, etc.) and that the solar flare was relatively unimportant in this context. He coined the phrase Solar Flare Myth. Since that paper there has been much debate on the origin of interplanetary disturbances - most people sitting squarely in the flare or CME camp. vestka (1995) has attacked Gosling's conclusions on the grounds that it is misleading to ignore the flare, and that past flare classifications were perfectly adequate for explaining the observations described by Gosling. This paper is a comment on vestka's report and an attempt to put the Solar Flare Myth into perspective - indeed it is an attempt to view the solar flare/CME phenomena in a more constructive light.  相似文献   

14.
NOAA 8210 has been a region showing a remarkable level of activity well before solar maximum. Dominated by a large, rapidly rotating spot, it produced several intense flares during its disk passage at the end of April–beginning of May 1998. We examine the development of AR 8210 in H and white light (WL) and study the evolution of its complex magnetic topology. While the other principal flares are briefly reviewed, the great X1.1/3B flare of 2 May, which was observed at Kanzelhöhe Solar Observatory during a SOHO/UVCS ground support campaign, is studied in detail. This event has been documented in full-disk H and Na-D intensitygrams, Dopplergrams, and magnetograms, with a time cadence of one minute each. The flare was associated with a CME and produced significant geomagnetic effects. Furthermore, we point out the perspectives for our planned Flare Monitoring and Alerting System, since the two new instruments (Magneto-Optical Filter and Digital H camera), which made their first operational run with the campaign, are crucial components for this program.  相似文献   

15.
P. L. Bornmann 《Solar physics》1985,102(1-2):111-130
The light curves of soft X-ray lines, observed by the Flat Crystal Spectrometer on Solar Maximum Mission during eight solar flares are modeled to determine the plasma temperature and emission measure as functions of time using the method first presented by Bornmann (1985, Paper I), but modified to include a 2 search routine. With this modification the technique becomes more general, more accurate, and applicable throughout the gradual phase of the flare. The model reproduces the light curves of the soft X-ray lines throughout these flares. Model fits were repeated for each flare using five different sets of published line emissivity calculations. The emissivities of Mewe and Gronenschild (1981) consistenly gave the best fits to the observed light curves for each flare.  相似文献   

16.
A fast coronal transient event was observed simultaneously on 17 February 1972 by the Sacramento Peak Observatory 6-in. λ 5303 filter coronagraph and the High Altitude Observatory K-coronameter. We interpret the rapid opening of green line structure cospatial with the disappearance of a white light streamer as material motion of iron ions and electrons. Together with the subsequent two-fold increase in K-corona brightness in an adjacent region, this is taken as evidence of a transference of electrons to a new streamer in a realignment of magnetic flux tubes accompanying a flare.  相似文献   

17.
We report on observations of a large eruptive event associated with a flare that occurred on 27 September 1998 made with the Richard B. Dunn Solar Telescope at Sacramento Peak Observatory (several wave bands including off-line-center H), in soft and hard X-rays (GOES and BATSE), and in several TRACE wave bands (including Feix/x 171 Å, Fexii 195 Å, and Civ 1550 Å). The flare initiation is signaled by two H foot-point brightenings which are closely followed by a hard X-ray burst and a subsequent gradual increase in other wavelengths. The flare light curves show a complicated, three-component structure which includes two minor maxima before the main GOES class C5.2 peak after which there is a characteristic exponential decline. During the initial stages, a large spray event is observed within seconds of the hard X-ray burst which can be directly associated with a two-ribbon flare in H. The emission returns to pre-flare levels after about 35 min, by which time a set of bright post-flare loops have begun to form at temperatures of about 1.0–1.5 MK. Part of the flare plasma also intrudes into the penumbra of a large sunspot, generally a characteristic of very powerful flares, but the flare importance in GOES soft X-rays is in fact relatively modest. Much of the energy appears to be in the form of a second ejection which is observed in optical and ultraviolet bands, traveling out via several magnetic flux tubes from the main flare site (about 60° from Sun center) to beyond the limb.  相似文献   

18.
A solar flare with both H and Fe i 5324 emissions was observed in AR 7529 (S13, E65) on 24 June, 1993 at the Bejing Astronomical Observatory. Our calculations show that the Fe i 5324 emission region of the flare was located in the low photosphere at a height of about 180 km above 5000 = 1, which is lower than many previous studies of white-light flares. To study a Fe i 5324 flare, which represents a kind of extreme case in solar flares, would be useful for clarifying some arguments in the researches of white-light flares as well as for understanding the mechanism of solar flares.The synthetic analyses from vairous features of the flare lead to the following possible exciting mechanism of the Fe i 5324 flare: owing to the flow of energetic electrons from the corona and probably also the thermal conduction downward into the lower atmosphere, a condensation with a temperature higher than that below it was formed near the transition region. Then the low photosphere was heated through backwarming. The Fe i 5324 flare occurred as an indicator of the excitation in the low photosphere.  相似文献   

19.
The present paper contains an attempt to formulate a theory, based on fast electrons hypothesis, of the chromospheres of flare stars. At the same time we shall undertake a survey of observations on the emission lines of flare stars and comparisons with the theory. The general discussion in the introduction concerning the civilian right of fast electron hypothesis is followed by sections in which the following problems are tackled: the anatomy of the light curve of the flare in UV Cet-type stars or its division into two components; the sources of radiation, ionizing hydrogen and other elements, and the estimation of their power in cold dwarf stars with emission lines; conditions for the excitation of emission lines in the chromospheres of those stars; the problem of duration of luminescence of flare stars in the emission lines (observations and theory); the electron temperature and electron concentration in the chromospheres of flare stars; the problem of the luminescence of emission lines in the quiescent star; the degree of ionization and the role of inelastic collisions of the electrons in the chromosphere of flare stars; the profiles of emission lines, their broadening and intensification during the flare; the dependence of the infensity of emission lines on the flare amplitude; the nature and peculiarities of two types of the Haro flares; the impact of radiation dilution and the spectral class of the star on the equivalent width of the emission lines; the possibility of exciting the forbidden lines; the problem of generation of the emission lines of neutral and ionized helium; the possibility of the Lyman-alpha emission in flare stars, the expected parameters of such emission — the radiation power, the equivalent width and profile of the Lyman-alpha line; the possibility of the presence of the strongest (after the -line) emission line — of doublet 2800 Mgii in the spectra of flare stars, the expected value of the intensity and equivalent width of that line.  相似文献   

20.
We present two large flares which were exceptional in that each produced an extensive chain of H emission patches in remote quiet regions more than 105 km away from the main flare site. They were also unusual in that a large group of the rare type III reverse slope bursts accompanied each flare.The observations suggest that this is no coincidence, but that the two phenomena are directly connected. The onset of about half of the remote H emission patches were found to be nearly simultaneous with RS bursts. One of the flares (August 26, 1979) was also observed in hard X-rays; the RS bursts occurred during hard X-ray spikes. For the other flare (June 16, 1973), soft X-ray filtergrams show coronal loops connecting from the main flare site to the remote H brightenings. There were no other flares in progress during either flare; this, along with the X-ray observations, indicates that the RS burst electrons were generated in these flares and not elsewhere on the Sun. The remote H brightenings were apparently not produced by a blast wave from the main flare; no Moreton waves were observed, and the spatially disordered development of the remote H chains is further evidence against a blast wave. From geometry, time and energy considerations we propose: (1) That the remote H brightenings were initiated by direct heating of the chromosphere by RS burst electrons traveling in closed magnetic loops connecting the flare site to the remote patches; and (2) that after onset, the brightenings were heated by thermal conduction by slower thermal electrons (kT1 keV) which immediately follow the RS burst electrons along the same loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号