首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solar X-ray observations from balloons and from the SMM and HINOTORI spacecraft have revealed evidence for a super-hot thermal component with a temperature of 3 × 107 K in many solar flares, in addition to the usual 10–20 × 106 K soft X-ray flare plasma. We have systematically studied the decay phase of 35 solar flare X-ray events observed by ISEE-3 during 1980. Based on fits to the continuum X-ray spectrum in the 4.8–14 keV range and to the intensity of the 1.9 Å feature of iron lines, we find that 15 (about 43%) of the analyzed events have a super-hot thermal component in the decay phase of the flare. In this paper the important properties of the super-hot thermal component in the decay phase are summarized. It is found that an additional input of energy is required to maintain the super-hot thermal components. Finally, it is suggested that the super-hot thermal component in the decay phase is created through the reconnection of the magnetic field during the decay phase of solar flares.  相似文献   

2.
Extensive data from the Solar Maximum Mission (SMM) and ground-based observatories are presented for two flares; the first occurred at 12:48 UT on 31 August, 1980 and the second just 3 min later. They were both compact events located in the same part of the active region. The first flare appeared as a typical X-ray flare: the Caxix X-ray lines were broadened ( 190±40 km s-1) and blue shifted ( 60±20 km s-1) during the impulsive phase, and there was a delay of about 30 s between the hard and soft X-ray maxima. The relative brightness of the two flares was different depending on the spectral region being used to observe them, the first being the brighter at microwave and hard X-ray wavelengths but fainter in soft X-rays. The second flare showed no significant mass motions, and the impulsive and gradual phases were almost simultaneous. The physical characteristics of the two flares are derived and compared. The main difference between them was in the pre-flare state of the coronal plasma at the flare site: before the first flare it was relatively cool (3 × 106 K) and tenuous (4 × 109 cm-3), but owing to the residual effects of the first flare the coronal plasma was hotter (5 × 106 K) and more dense (3 × 1011 cm-3) at the onset of the second flare. We are led to believe from these data that the plasma filling the flaring loops absorbed most of the energy released during the impulsive phase of the second flare, so that only a fraction of the energy could reach the chromosphere to produce mass motions and turbulence.A simple study of the brightest flares observed by the SMM shows that at least 43% of them are multiple. Thus, the situation studied here may be quite common, and the difference in initial plasma conditions could explain at least some of the large variations in observed flare parameters. We draw a number of conclusions from this study. First, the evolution of the second flare is substantially affected by the presence of the first flare. Secondly, the primary energy release in the second event is in the corona. Thirdly, the flares occur in a decaying magnetic region, probably as a result of the interaction of existing sheared loops; there is no evidence of emerging magnetic flux. Also, magnetic structures of greatly varying size participate in the flare processes. Lastly, there is some indication that the loops are not symmetrical or stable throughout the flares, i.e. the magnetic field does not act as a uniform passive bottle for the plasma, as is often assumed in flare models.NOAA/Space Environment Laboratory, currently at NASA/MSFC, Ala., U.S.A.Now at Sacramento Peak Observatory, Tucson, Ariz., U.S.A.  相似文献   

3.
An extensive analysis is made of the theory of flare stars based on the fast electron hypothesis, in the light of the latest observational evidence. It is shown that an adequate agreement of theory with the observations obtains regarding the internal regular features in the flare amplitude data inUBV rays, as well as the changes of the colour characteristics of stars during the flares; in the latter case the analysis is made not only in respect of the UV Cet-type stars, but flare stars as well, forming a part of the Orion association. Problems bearing on the negative flare and the screening effect are dealt with. New properties of the light curves of flares are revealed, based on the above theory.Particular emphasis is laid on the X-ray radiation from flare stars. It is shown that the observed spectrum of X-ray radiation of flare stars differs sharply from that of X-ray radiation both of the stellar corona and solar X-ray flares. At the same time, the observed X-ray spectrum of flares is in complete harmony with the previously calculated theoretical spectrum corresponding to nonthermal bremsstrahlung with the energy of monoenergetic fast electrons 1.5 MeV. The durations of X-ray flares should be essentially shorter than that of the optical flares. The very high momentary intensities of the X-ray brightness with the exceedingly small duration at the curve maximum is predicted. It is shown that the gamma-ray bursts recorded so far have no relation whatever to flare stars.  相似文献   

4.
T. Hirayama 《Solar physics》1974,34(2):323-338
A theoretical model of flare which explains observed quantities in H, EUV, soft X-ray and flare-associated solar wind is presented. It is assumed that large mass observed in the soft X-ray flare and the solar wind comes from the chromosphere by the process like evaporation while flare is in progress. From mass and pressure balance in the chromosphere and the corona, the high temperature in the soft X-ray flare is shown to be attained by the larger mass loss to the solar wind compared with the mass remained in the corona, in accord with observations. The total energy of 1032 erg, the electron density of 1013.5 cm–3 in H flare, the temperature of the X-ray flare of 107.3K and the time to attain maximum H brightness (600 s) are derived consistent with observations. It is shown that the top height of the H flare is located about 1000 km lower than that of the active chromosphere because of evaporation. So-called limb flares are assigned to either post-flare loops, surges or rising prominences.The observed small thickness of the H flare is interpreted by free streaming and/or heat conduction. Applications are suggested to explain the maximum temperature of a coronal condensation and the formation of quiescent prominences.  相似文献   

5.
We present two large flares which were exceptional in that each produced an extensive chain of H emission patches in remote quiet regions more than 105 km away from the main flare site. They were also unusual in that a large group of the rare type III reverse slope bursts accompanied each flare.The observations suggest that this is no coincidence, but that the two phenomena are directly connected. The onset of about half of the remote H emission patches were found to be nearly simultaneous with RS bursts. One of the flares (August 26, 1979) was also observed in hard X-rays; the RS bursts occurred during hard X-ray spikes. For the other flare (June 16, 1973), soft X-ray filtergrams show coronal loops connecting from the main flare site to the remote H brightenings. There were no other flares in progress during either flare; this, along with the X-ray observations, indicates that the RS burst electrons were generated in these flares and not elsewhere on the Sun. The remote H brightenings were apparently not produced by a blast wave from the main flare; no Moreton waves were observed, and the spatially disordered development of the remote H chains is further evidence against a blast wave. From geometry, time and energy considerations we propose: (1) That the remote H brightenings were initiated by direct heating of the chromosphere by RS burst electrons traveling in closed magnetic loops connecting the flare site to the remote patches; and (2) that after onset, the brightenings were heated by thermal conduction by slower thermal electrons (kT1 keV) which immediately follow the RS burst electrons along the same loops.  相似文献   

6.
The problem of the flare taking place on opposite sides of a star is considered. Such a screened flare, diffused through the star's atmosphere (chromosphere), may also be registered. The theoretical light curve for diffused flare event is derived, which differs strongly from the usual flare light curves. The light curve of diffused flare is characterized first of all by its very slow rise of brightness. This result opens quite a new direction to understand the nature of the so-called slow flares, observed often among the UV Cet-type stars as well as flare stars in aggregates. All slow flares can be interpreted as quite ordinary flares of quite ordinary flare stars — taking place, however, on the opposite sides of the star. The results of interpretation of some slow flare events of YY Gem and three flare stars in Orion are presented. An attempt is made for the determination of actual amplitudes of screened flares taking place on the opposite sides of a star.  相似文献   

7.
A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS-Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single (“elementary”) flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16?–?1.51 keV, 1.51?–?15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue – the SphinX Flare Catalogue – which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.  相似文献   

8.
We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred 20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an H flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV.Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i 108 cm–3 and magnetic field strength 10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.  相似文献   

9.
Fárník  F.  Savy  S.K. 《Solar physics》1998,183(2):339-357
The goal of this study is to improve our knowledge of the spatial relation between pre-flare and flare X-ray sources, to find other connections between the two phenomena (if they exist) and to study the role of pre-flare heating in flare build-up. We selected all flares with available preflare data observed by Yohkoh during the period October 1993–October 1994 and thus created a data base of 32 flares. When studying the spatial relation we discovered that our events can be classified into 3 categories: Co-spatial, Adjacent/Overlapping and Distant according to the spatial separation between the pre-flare and flare source(s) in the same field of view. The 'Co-spatial class of events, of which we found 8 cases, refers to flares that had a visible pre-flare soft X-ray structure with the same size, shape, and orientation as the main flare loops at the flare site at least 5 min before the start of the impulsive phase. We suggest that this is strong evidence that for a significant number of flares the flare structure is active in soft X-rays several minutes or more before the flare begins. However, an analysis of the physical properties of the flare sites, including temperature and intensity variation found no consistent feature distinguishable from other non-flaring active region emission and hence no definite evidence of a special 'pre-flare or 'precursor phase in solar flares.  相似文献   

10.
Wheatland  M.S. 《Solar physics》2001,203(1):87-106
Rates of flaring in individual active regions on the Sun during the period 1981–1999 are examined using United States Air Force/Mount Wilson (USAF/MWL) active-region observations together with the Geostationary Operational Environmental Satellite (GOES) soft X-ray flare catalog. Of the flares in the catalog above C1 class, 61.5% are identified with an active region. Evidence is presented for obscuration, i.e. that the increase in soft X-ray flux during a large flare decreases the likelihood of detection of soft X-ray events immediately following the large flare. This effect means that many events are missing from the GOES catalog. It is estimated that in the absence of obscuration the number of flares above C1 class would be higher by (75±23)%. A second observational selection effect – an increased tendency for larger flares to be identified with an active region – is also identified. The distributions of numbers of flares produced by individual active regions and of mean flaring rate among active regions are shown to be approximately exponential, although there are excess numbers of active regions with low flare numbers and low flaring rates. A Bayesian procedure is used to analyze the time history of the flaring rate in the individual active regions. A substantial number of active regions appear to exhibit variation in flaring rate during their transit of the solar disk. Examples are shown of regions with and without rate variation, illustrating the different distributions of times between events (waiting-time distributions) that are observed. A piecewise constant Poisson process is found to provide a good model for the observed waiting-time distributions. Finally, applications of analysis of the rate of flaring to understanding the flare mechanism and to flare prediction are discussed.  相似文献   

11.
The common assumption that a single volume of plasma produces X-ray emission during solar flares is difficult to reconcile with the very complex structure observed in H spectroheliograms. Nevertheless such a model has been considered reasonably adequate because the rapid rise and slow decay of emission has approximately the form expected when a plasma volume, isolated thermally from its surroundings, is heated quickly in the early stages of the event.Data presented in this paper show that a number of secondary peaks in intensity are usually observed throughout the soft X-ray emission. These can be explained by a model in which the X-ray emission comes from many relatively short-lived volumes of hot plasma. It appears that the lifetime of each such region is about five minutes, while the H spectroheliograms suggest that they are spaced throughout the extended region of activity. The relatively long period of flare activity arises because new volumes of plasma appear as others decay. Since each of these regions has to be energized during its development it is concluded that energy is released throughout the period of the X-ray flare.On leave of absence from the Mullard Space Science Laboratory, University College London WC1E-6BT.  相似文献   

12.
A comprehensive survey of Skylab S-054 soft X-ray images was performed to investigate the characteristics of coronal enhancements preceding solar flares. A search interval of 30 min before flare onset was used. A control sample was developed and tests of the statistical results performed. X-ray images with preflare enhancements were compared with high resolution H images and photospheric magnetograms.The results are as follows: preflare X-ray enhancements were found in a statistically significant number of the preflare intervals, and consisted of one to three loops, kernels or sinuous features per interval. Typically, the preflare feature was not at the flare site and did not reach flare brightness. There was no systematically observed time within the preflare interval for the preflare events to appear and no correlation of preflare event characteristics with the subsequent flare energy. Gas pressures of several preflare features were calculated to be on the order of several dyne cm–2, typical of active region loops, not flares. These results suggest that observations with both high spatial resolution and low coronal temperature sensitivity are required to detect these small, low pressure enhancements that preceded the smaller flares typical of the Skylab epoch. H brightenings were associated with nearly all of the preflare X-ray enhancements. Changing H absorption features in the form of surges or filament activations were observed in about half of the cases. These results do not provide observational support for models which involve preheating of the flare loop, but they are consistent with some current sheet models which invoke the brightening of structures displaced from the flare site tens of min before onset.  相似文献   

13.
Observations of emission in the Mgi b2 line at 5172 Å are presented for 13 flares. Also discussed are 3 flares which occurred in regions under observation but which showed no Mg emission. The Mg flare kernels resemble white-light flare kernels in their general morphology and location. Comparison of Mg filtergrams with magnetograms indicates that the Mg kernels occur at the feet of magnetic arches across neutral lines. Time-lapse Mg filtergram films indicate photospheric shearing motions near flare sites for several hours before flare onset. We have compared flare Mg emission with microwave and both hard and soft X-ray flare emissions. Examination at the time development of the 1981, July 27 flare shows that the microwave and X-ray bursts may be clearly related to the appearance of successive Mg flare kernels. We have also compared subjective, relative Mg flare importances with other flare emission measurements. For the full sample of flares, Mg importance is significantly correlated with hard and soft X-ray emission peaks, with X-ray ‘hardness’ (ratio of hard to soft peaks) and with the rise slope of soft X-ray bursts. The Mg importance does not correlate with the microwave peaks when the full sample of flares is used, but for the subset showing Mg emission there is significant correlation. No correlation with Hα importance was found. Our results suggest that Mg emission is associated with an impulsive component which may be absent from some flares. The San Fernando Observatory magnesium etalon filter system is described.  相似文献   

14.
Flare-associated soft X-ray bursts (8–12 Å) are examined for 283 events observed by OSO-III. These bursts are shown to be predominantly thermal in nature. Their time-profiles are roughly similar to those of the associated H flares, although the X-ray burst begins about two minutes earlier, on the average. The strength of the soft X-ray burst is directly related to the area and brilliance of the flare, the age and flare-richness of the associated plage, and the general level of solar activity at the time of the burst. The peak enhancements in the soft X-ray and H emission rates during flares are of the same order of magnitude, as are the total flare energies radiated at these wavelengths. We estimate that soft X-radiation accounts for up to 10% of a flare's total electromagnetic emission.NRC/NAS Resident Research Associate.  相似文献   

15.
White-light flares are defined as those flares that produce significant enhancement of emission in the visible light continuum. The source of energy for this emission has not yet been identified with several possibilities being suggested: heating of the lower chromosphere by some mechanical or magnetic means, or by soft X-ray or extreme ultraviolet radiation from coronal loops being absorbed in the lower chromosphere and re-emitted in the visible.Using non-LTE radiative transfer calculations for hydrogen and helium in a simple model atmosphere we show that EUV ( < 912 Å) radiation cannot be the main energy source for white-light flares. Estimates of the observed energy emitted in the visible and the EUV indicate that there may be enough energy in the EUV to account for the white light flare with this mechanism. Using enhancements in the wavelength region below 912 Å of up to 7 × 109 ergs cm–2 s–1 ster–1 (5 × 105 times the estimated q radiation field) to represent flare EUV emission from above we investigated the non-LTE level populations for hydrogen and helium and the lower atmospheric heating resulting from this radiation. The basic result is that the opacities in the Lyman continuum and the helium I and II continua are so much larger than even the enhanced opacity in the visible hydrogen continuum that the EUV radiation is absorbed before it can have a significant effect in the visible light continuum. However, the EUV radiation can cause a significant enhancement of H emission.Operated by the Association of Universities for Research in Astronomy Inc. for the National Aeronautics and Space Administration.  相似文献   

16.
17.
Longcope  D. W.  Silva  A. V. R. 《Solar physics》1998,179(2):349-377
Observations of the flare on 7 January 1992 are interpreted using a topological model of the magnetic field. The model, developed here, applies a theory of three-dimensional reconnection to the inferred magnetic field configuration for 7 January. In the model field a new bipole ( 1021 Mx) emerges amidst pre-existing active region flux. This emergence gives rise to two current ribbons along the boundaries (separators) separating the distinct, new and old, flux systems. Sudden reconnection across these boundary curves transfers 3 ×1020 Mx of flux from the bipole into the surrounding flux. The model also predicts the simultaneous (sympathetic) flaring of the two current ribbons. This explains the complex two-loop structure noted in previous observations of this flare. We subject the model predictions to comparisons with observations of the flare. The locations of current ribbons in the model correspond closely with those of observed soft X-ray loops. In addition the footpoints and apexes of the ribbons correspond with observed sources of microwave and hard X-ray emission. The magnitude of energy stored by the current ribbons compares favorably to the inferred energy content of accelerated electrons in the flare.  相似文献   

18.
We present temporal and spectral characteristics of X-ray flares observed from six late-type G–K active dwarfs (V368 Cep, XI Boo, IM Vir, V471 Tau, CC Eri and EP Eri) using data from observations with the XMM–Newton observatory. All the stars were found to be flaring frequently and altogether a total of 17 flares were detected above the 'quiescent' state X-ray emission which varied from 0.5 to  8.3 × 1029 erg s−1  . The largest flare was observed in a low-activity dwarf XI Boo with a decay time of 10 ks and ratio of peak flare luminosity to 'quiescent' state luminosity of 2. We have studied the spectral changes during the flares by using colour–colour diagram and by detailed spectral analysis during the temporal evolution of the flares. The exponential decay of the X-ray light curves, and time evolution of the plasma temperature and emission measure are similar to those observed in compact solar flares. We have derived the semiloop lengths of flares based on the hydrodynamic flare model. The size of the flaring loops is found to be less than the stellar radius. The hydrodynamic flare decay analysis indicates the presence of sustained heating during the decay of most flares.  相似文献   

19.
The mean density of the UV Cet-type flare stars in the solar neighbourhood is estimated. If differences of activity levels on different flare stars are taken into account, their summary flare activity is equivalent to 0.03 YZ CMi's flare activity per cubic parsec or to 4×1026 erg s–1 pc–3 in U-passband. From the X-ray flare observation on YZ CMi of 19.10.74 we estimate the luminosity of stellar flares in soft and intermediate X-ray. The ratio of X-ray to optical radiation for stellar flares is close to the respective ratio for strong solar chromospheric flares. It is shown the set of red-dwarf flare stars has all essential features of an ensemble of discrete X-ray sources to represent the galactic diffuse X-ray background.  相似文献   

20.
The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 R . We identify motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.NCAR is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号