首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A portable multi-sensor system was developed to measure volcanic plumes in order to estimate the chemical composition and temperature of volcanic gases. The multi-sensor system consists of a humidity–temperature sensor, SO2 electrochemical sensor, CO2 IR analyzer, pump and flow control units, pressure sensor, data logger, and batteries; the whole system is light (∼5 kg) and small enough to carry in a medium-size backpack. Volcanic plume is a mixture of atmosphere and volcanic gas; therefore volcanic gas composition and temperature can be estimated by subtracting the atmospheric gas background from the plume data. In order to obtain the contrasting data of the plume and the atmosphere, measurements were repeated in and out of the plume. The multi-sensor technique was applied to measure the plume of Tarumae, Tokachi, and Meakan volcanoes, Hokkaido, Japan. Repeated measurements at each volcano gave a consistent composition with ±10–30% errors, depending on the stability of the background atmospheric conditions. Fumarolic gas samples were also collected at the Tokachi volcano by a conventional method, and we found a good agreement (the difference <10%) between the composition estimated by the multi-sensor technique and conventional method. Those results demonstrated that concentration ratios of major volcanic gas species (i.e., H2O, CO2, and SO2) and temperature can be estimated by the new technique without any complicated chemical analyses even for gases emitted from an inaccessible open vent. Estimation of a more detailed gas composition can be also achieved by the combination of alkaline filter techniques to measure Cl/F/S ratios in the plume and other sensors for H2S and H2.  相似文献   

2.
From the magmatic emanations differentiation point of view it is possible to calculate some ratios such as F/CO2, Cl/CO2, SO2/CO2, SO2/H2S, H2S/CO2 and CO2/N2 in the tumarolic gases for the forecasting of volcanic activity. In order to predict the cruptions of a volcano it is needed to select several fumaroles or hot springs having different regimes of variation of the above ratios. The study of some fumaroles composition at the Asama. Mihara, Kirishima and other volcanoes in Japan showed a close connection between volcanic gas compositions and state of the volcanoes.  相似文献   

3.
Secular variations in 13C/12C ratios and chemical compositions of gas samples from October 1986 to July 1992 are reported from a 92–95 °C steam well located about 3 km north of Mt. Mihara, an active volcano on Izu-Oshima Island, Japan. The δ13C value steeply increased from −2.97‰ (relative to PDB carbonate) in December 1986 to −1.15‰ in March 1988 and then gradually decreased to −1.75‰ in July 1992. Over the same period, the CO2 content changed similarly with time, even though the experimental error is relatively large. These variations are consistent with helium isotope changes. Initially rapid and then slow enhancements of 3He/4He ratio, δ13C value and CO2 content are invoked by violent eruptions of Izu-Oshima volcano from 15 November to 18 December 1986. After the eruptive activity, depletion of magmatic gas emission and subsequent mixing with crustal fluids in the hydrothermal system may produce the gradual decreases of 3He/4He ratio, δ13C value and CO2 content. Taking into account the rates of these decreases, we suggest that helium and carbon isotope ratios will return to the situation of before the magmatic eruption within 15 years.  相似文献   

4.
Iwojima volcano, located on the southernmost part of the Izu-Ogasawara arc, is characterized by the extrusion of trachyte or trachy andesite lavas and pyroclastic rocks of Holocene and surface thermal manifestations. Small phreatic explosions have been recorded frequently during the last 100 years with the most recent in 1999 and 2001. In order to elucidate the behavior of volcanic volatiles and to assess the potential activity of this volcano, diffuse CO2 efflux, CO2 content and δ13C–CO2 in soil gas, and soil temperature at 30 cm depth were measured at 272 sites in March 2000, 112 sites in December 2000 and 40 sites in December 2001. We found that high CO2 efflux values, of more than 100 g m−2 day−1, occurred at several locations on Motoyama volcano corresponding with high soil temperatures (more than 60 °C at 30 cm depth) region and with areas where CO2 with magmatic δ13C was observed. Here, the magmatic δ13C determined for fumarolic CO2 data ranged from −2‰ to +3‰, which is clearly higher than magmatic gas values (−8‰ to −2‰) typically found in island arc settings around the world. However, this can be explained in terms of carbon-isotope fractionation between calcite and CO2 under subsurface temperature and pressure conditions at Iwojima. A total efflux of CO2 for Iwojima volcano is estimated to be 760 t day−1, with a magmatic contribution of about 450 t day−1. This value is rather high compared with other volcanoes in island arc settings. Since Iwojima has no visible plume, almost all volcanic CO2 is released as diffuse efflux through the volcanic edifice.  相似文献   

5.
The chemical and isotopic compositions of volcanic gases at a borehole and a natural fumarole in the Owakudani geothermal area, Hakone volcano, Japan, have been repeatedly measured since 2001, when a seismic swarm occurred in the area. The CO2/H2O and CO2/H2S ratios were high in 2001. It increased in 2006 and again in 2008 when seismic swarms occurred beneath the geothermal area. The observed increases suggest the injection of CO2- and SO2-rich magmatic gas into the underlying hydrothermal reservoir, implying that the magmatic gas was episodically supplied to the hydrothermal system in 2006 and 2008. The earthquake swarms probably resulted from the injection of gas through the shallow crust accompanying the break of the sealing zone.  相似文献   

6.
We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722?g?m?2?day?1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW?CNNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526?±?160?t?day?1 of which 453?t?day?1 (29.7?%) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4?C240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154?t?day?1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07?×?1014?J?day?1 or to a total heat flow of 1,237?MWt.  相似文献   

7.
Expeditions during the summers of 2002 and 2003 implemented continuous monitoring of near-surface (2 m height) atmospheric CO2 and H2O concentrations at the 4500 m elevation on Muztagata. The resultant data sets reveal a slight decrease of CO2 concentrations (of about 5 μmol·mol-1) and changes in the diurnal variations from the end of June to the middle August. The daily maximum CO2 concentrations occur between 02:30-05:30 AM (local time) and the minimum levels occur between 12:00-15:30 PM. The atmospheric CO2 concentrations in the summer of 2002 were around 5 μmol·mol-1 lower than those during the same period of 2003, whereas the diurnal amplitude was higher. In contrast, we found that the daily mean atmospheric H2O content in 2003 was much lower than that in 2002 and there exists a striking negative correlation between CO2 and H2O concentrations. We therefore suggest that the near-surface atmospheric CO2 concentration is affected not only by photosynthesis and respiration, but also by the air H2O content in the glaciated region around Muztagata.  相似文献   

8.
Methods used previously to remove compositional modifications from volcanic gas analyses for Mount Etna and Erta'Ale lava lake have bean employed to estimate the gas phase composition at Nyiragongo lava lake, based on samples obtained in 1959. H2O data were not reported in 11 of the 13 original analyses. The restoration methods have been used to estimate the H2O contents of the samples and to correct the analyses for atmospheric contamination, loss of sulfur and for pre- and pest-collection oxidation of H2S, S2, and H2. The estimated gas compositions are relatively CO2-rich, low in total sulfur and reduced. They contain approximately 35–50% CO2 45–55% H2O, 1–2% SO2, 1–2% H2., 2–3% CO, 1.5–2.5% H2S, 0.5% S2 and 0.1% COS over,he collection temperature range 102° to 960° C. The oxygen fugacities of the gases are consistently about half an order of magnitude below quartz-magnetite-fayalite. The low total sulfur content and resulting low atomic S/C of the Nyiragongo gases appear to be related to the relatively low fO2 of the crystallizing lava. At temperatures above 800°C and pressures of 1–1.5 k bar, the Nyiragongo gas compositions resemble those observed in primary fluid inclusions believed to have formed at similar temperatures and pressures in nephelines of intrusive alkaline rocks. Cooling to 300°C, with fO2 buffered by the rock, results in gas compositions very rich in CH4 (50–70%) and resembling secondary fluid inclusions formed at 200–500°C in alkaline rocks. Below 600°C the gases become supersaturated in carbon as graphite. These inferences are corroborated by several reports of hydrocarbons in plutonic alkaline rocks, and by the presence of CH4-rich waters in Lake Kivu — a lake on the flanks of Nyiragongo volcano.  相似文献   

9.
Anomalous changes in the diffuse emission of carbon dioxide within the Masaya caldera have been observed before two seismic events that occurred at 10 and 30 km from the observation site. Their epicenters are located, respectively, south of Managua in Las Colinas (4.3 magnitude) and the Xiloa caldera (3.6 magnitude), in 2002 and 2003, recorded by the geochemical station located at El Comalito, Masaya volcano (Nicaragua). Anomalous increases were observed, which occurred around 50 and 8 days before the main seismic event that took place in Las Colinas, and 4 days before the seismic swarm at the Xiloa caldera, with a maximum CO2 efflux of 9.3 and 10.7 kg m?2 day?1, respectively. The anomalous CO2 efflux increases remained after filtering with multiple regression analysis was applied to the CO2 efflux time series, which indicated that atmospheric variables, during the first 4 months, explained 23 % CO2 variability, whereas, during the rest of the time series, CO2 efflux values are poorly controlled with only 6 %. The observed anomalies of the diffuse CO2 emission rate might be related to pressure changes within the volcanic–hydrothermal system and/or to geostructural changes in the crust due to stress/strain changes caused before and during the earthquakes’ formation, and seem not to be related to the activity of the main crater of Masaya volcano.  相似文献   

10.
On January 16, 2002, short-term unrest occurred at San Miguel volcano. A gas-and-steamash plume rose a few hundred meters above the summit crater. An anomalous microseismicity pattern, about 75 events between 7:30 and 10:30 hours, was also observed. Continuous monitoring of CO2 efflux on the volcano started on November 24, 2001, in the attempt to provide a multidisciplinary approach for its volcanic surveillance. The background mean of the diffuse CO2 emission is about 16 g m-2 d-1, but a 17- fold increase, up to 270 g m-2 d-1, was detected on January 7, nine days before the January 2002 short-term unrest at San Miguel volcano. These observed anomalous changes on diffuse CO2 degassing could be related to either a sharp increase of CO2 pressure within the volcanic-hydrothermal system or degassing from an uprising fresh gas-rich magma within the shallow plumbing system of the volcano since meteorological fluctuations cannot explain this observed increase of diffuse CO2 emission.  相似文献   

11.
Magmatic gas scrubbing: implications for volcano monitoring   总被引:1,自引:0,他引:1  
Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915°C magmatic gas from Merapi volcano into 25°C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic–gas compositions, and a reaction of a magmatic gas–ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH<0.5 hydrothermal waters. Furthermore, it appears that scrubbing will prevent much, if any, SO2(g) degassing from long-resident boiling hydrothermal systems. Several processes can also decrease or increase H2(g) emissions during scrubbing making H2(g) a poor choice to detect changes in magma degassing.We applied the model results to interpret field observations and emission rate data from four eruptions: (1) Crater Peak on Mount Spurr (1992) where, except for a short post-eruptive period, scrubbing appears to have drastically diminished pre-, inter-, and post-eruptive SO2(g) emissions, but had much less impact on CO2(g) emissions. (2) Mount St. Helens where scrubbing of SO2(g) was important prior to and three weeks after the 18 May 1980 eruption. Scrubbing was also active during a period of unrest in the summer of 1998. (3) Mount Pinatubo where early drying out prevented SO2(g) scrubbing before the climactic 15 June 1991 eruption. (4) The ongoing eruption at Popocatépetl in an arid region of Mexico where there is little evidence of scrubbing.In most eruptive cycles, the impact of scrubbing will be greater during pre- and post-eruptive periods than during the main eruptive and intense passive degassing stages. Therefore, we recommend monitoring the following gases: CO2(g) and H2S(g) in precursory stages; CO2(g), H2S(g), SO2(g), HCl(g), and HF(g) in eruptive and intense passive degassing stages; and CO2(g) and H2S(g) again in the declining stages. CO2(g) is clearly the main candidate for early emission rate monitoring, although significant early increases in the intensity and geographic distribution of H2S(g) emissions should be taken as an important sign of volcanic unrest and a potential precursor. Owing to the difficulty of extracting SO2(g) from hydrothermal waters, the emergence of >100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways.  相似文献   

12.
We report the results of four soil H2 surveys carried out in 2000–2003 at Poás volcano, Costa Rica, to investigate the soil H2 distribution and evaluate the diffuse H2 emission as a potential surveillance tool for Poás volcano. Soil gas H2 contents showed a wide range of concentration from 0.2 to 7,059 ppmV during the four surveys. Maps of soil gas H2 based on Sequential Gaussian Simulation showed low H2 concentration values in the soil atmosphere (<0.7 ppmV) for most of the study area, whereas high soil gas H2 values were observed inside the active crater of Poás. A significant increase in soil gas H2 concentration was observed inside the active crater during 2001 and 2002 with respect to year 2000, followed by a decrease in 2003. The observed spatial and temporal variations of soil H2 concentration have been well correlated with seismicity, microgravimetry and fumarolic chemistry changes which occurred during this study. These observations evidence changes in the shallow magmatic-hydrothermal system of Poás, and it might be related to a potential magmatic intrusion during the period 1998–2004. Therefore, monitoring diffuse H2 emission of Poás has become an important geochemical tool for the monitoring of its volcanic activity.  相似文献   

13.
Vulcanian eruptions are common at many volcanoes around the world. Vulcanian activity occurs as either isolated sequences of eruptions or as precursors to sustained explosive events and is interpreted as clearing of shallow plugs from volcanic conduits. Breadcrust bombs characteristic of Vulcanian eruptions represent samples of different parts of these plugs and preserve information that can be used to infer parameters of pre-eruption magma ascent. The morphology and preserved volatile contents of breadcrust bombs erupted in 1999 from Guagua Pichincha volcano, Ecuador, thus allow us to constrain the physical processes responsible for Vulcanian eruption sequences of this volcano. Morphologically, breadcrust bombs differ in the thickness of glassy surface rinds and in the orientation and density of crack networks. Thick rinds fracture to create deep, widely spaced cracks that form large rectangular domains of surface crust. In contrast, thin rinds form polygonal networks of closely spaced shallow cracks. Rind thickness, in turn, is inversely correlated with matrix glass water content in the rind. Assuming that all rinds cooled at the same rate, this correlation suggests increasing bubble nucleation delay times with decreasing pre-fragmentation water content of the melt. A critical bubble nucleation threshold of 0.4–0.9 wt% water exists, below which bubble nucleation does not occur and resultant bombs are dense. At pre-fragmentation melt H2O contents of >∼0.9 wt%, only glassy rinds are dense and bomb interiors vesiculate after fragmentation. For matrix glass H2O contents of ≥1.4 wt%, rinds are thin and vesicular instead of thick and non-vesicular. A maximum measured H2O content of 3.1 wt% establishes the maximum pressure (63 MPa) and depth (2.5 km) of magma that may have been tapped during a single eruptive event. More common H2O contents of ≤1.5 wt% suggest that most eruptions involved evacuation of ≤1.5 km of the conduit. As we expect that substantial overpressures existed in the conduit prior to eruption, these depth estimates based on magmastatic pressure are maxima. Moreover, the presence of measurable CO2 (≤17 ppm) in quenched glass of highly degassed magma is inconsistent with simple models of either open- or closed-system degassing, and leads us instead to suggest re-equilibration of the melt with gas derived from a deeper magmatic source. Together, these observations suggest a model for the repeated Vulcanian eruptions that includes (1) evacuation of the shallow conduit during an individual eruption, (2) depressurization of magma remaining in the conduit accompanied by open-system degassing through permeable bubble networks, (3) rapid conduit re-filling, and (4) dome formation prior to the subsequent explosion. An important part of this process is densification of upper conduit magma to allow repressurization between explosions. At a critical overpressure, trapped pressurized gas fragments the nascent impermeable cap to repeat the process.  相似文献   

14.
Among the series of eruptions at Miyakejima volcano in 2000, the largest summit explosion occurred on 18 August 2000. During this explosion, vesiculated bombs and lapilli having cauliflower-like shapes were ejected as essential products. Petrological observation and chemical analyses of the essential ejecta and melt inclusions were carried out in order to investigate magma ascent and eruption processes. SEM images indicate that the essential bombs and lapilli have similar textures, which have many tiny bubbles, crystal-rich and glass-poor groundmass and microphenocrysts of plagioclase, augite and olivine. Black ash particles, which compose 40% of the air-fall ash from the explosion, also have similar textures to the essential bombs. Whole-rock analyses show that the chemical composition of all essential ejecta is basaltic (SiO2=51–52 wt%). Chemical analyses of melt inclusions in plagioclase and olivine phenocrysts indicate that melt in the magma had 0.9–1.9 wt% H2O, <0.011 wt% CO2, 0.04–0.17 wt% S and 0.06–0.1 wt% Cl. The variation in volatile content suggests degassing of the magma during ascent up to a depth of about 1 km. The ratio of H2O and S content of melt inclusions is similar to that of volcanic gas, which has been intensely and continuously emitted from the summit since the end of August 2000, indicating that the 18 August magma is the source of the gas emission. Based on the volatile content of the melt inclusions and the volcanic gas composition, the initial bulk volatile content of the magma was estimated to be 1.6–1.9 wt% H2O, 0.08–0.1 wt% CO2, 0.11–0.17 wt% S and 0.06–0.07 wt% Cl. The basaltic magma ascended from a deeper chamber (10 km) due to decrease in magma density caused by volatile exsolution with pressure decrease. The highly vesiculated magma, which had at least 30 vol% bubbles, may have come into contact with ground water at sea level causing the large explosion of 18 August 2000.Editorial responsibility: S. Nakada, T. DuittAn erratum to this article can be found at  相似文献   

15.
The eruptions of the Soufrière Hills volcano on Montserrat (Lesser Antilles) from 1995 to present have draped parts of the island in fresh volcaniclastic deposits. Volcanic islands such as Montserrat are an important component of global weathering fluxes, due to high relief and runoff and high chemical and physical weathering rates of fresh volcaniclastic material. We examine the impact of the recent volcanism on the geochemistry of pre-existing hydrological systems and demonstrate that the initial chemical weathering yield of fresh volcanic material is higher than that from older deposits within the Lesser Antilles arc. The silicate weathering may have consumed 1.3% of the early CO2 emissions from the Soufrière Hills volcano. In contrast, extinct volcanic edifices such as the Centre Hills in central Montserrat are a net sink for atmospheric CO2 due to continued elevated weathering rates relative to continental silicate rock weathering. The role of an arc volcano as a source or sink for atmospheric CO2 is therefore critically dependent on the stage it occupies in its life cycle, changing from a net source to a net sink as the eruptive activity wanes. While the onset of the eruption has had a profound effect on the groundwater around the Soufrière Hills center, the geochemistry of springs in the Centre Hills 5 km to the north appear unaffected by the recent volcanism. This has implications for the potential risk, or lack thereof, of contamination of potable water supplies for the island’s inhabitants.  相似文献   

16.
Systematic analysis of major and minor elements in groundwaters from springs and wells on the slopes of Mt. Etna in 1995–1998 provides a detailed geochemical mapping of the aquifer of the volcano and of the interactions between magmatic gas, water bodies and their host rocks. Strong spatial correlations between the largest anomalies in pCO2 (pH and alkalinity) K, Rb, Mg, Ca and Sr suggest a dominating control by magmatic gas (CO2) and consequent basalt leaching by acidified waters of the shallow (meteoric) Etnean aquifer. Most groundwaters displaying this magmatic-type interaction discharge within active faulted zones on the S–SW and E lower flanks of the volcanic pile, but also in a newly recognised area on the northern flank, possibly tracking a main N–S volcano-tectonic structure. In the same time, the spatial distribution of T°C, TDS, Na, Li, Cl and B allows us to identify the existence of a deeper thermal brine with high salinity, high content of B, Cl and gases (CO2, H2S, CH4) and low K/Na ratio, which is likely hosted in the sedimentary basement. This hot brine reaches the surface only at the periphery of the volcano near the Village of Paternò, where it gives rise to mud volcanoes called “Salinelle di Paternò”. However, the contribution of similar brines to shallower groundwaters is also detected in other sectors to the W (Bronte, Maletto), SW (Adrano) and SE (Acireale), suggesting its possible widespread occurrence beneath Etna. This thermal brine is also closely associated with hydrocarbon fields all around the volcano and its rise, generally masked by the high outflow of the shallow aquifer, may be driven by the ascent of mixed sedimentary–magmatic gases through the main faults cutting the sedimentary basement.  相似文献   

17.
A field system for analyzing gases was installed on line in a borehole into the geothermal field associated with Gorelyi volcano, which is close to Mutnovski volcano (Kamtchatka). The system consisted of a gas chromatograph and an electrode for sensing gases. Measurements were made for the duration of one week in July 1980. Variations in H2 concentrations were less than 50%. No correlations were observed with regional seismic activity or with volcanic activity at Gorelyi volcano (10 km away). Measurements of H2 during a longer period of time would allow a statistical treatment of the data.  相似文献   

18.
The present work reports the results of 15 studies of diffuse CO2 degassing performed at Teide Volcano crater (Canary Island, Spain) and the chemical and isotopic compositions of fluids discharged from a fumarolic field located at the top of the volcano as measured between 1991 and 2010. A higher contribution of magmatic gases accompanied by enhanced total diffuse CO2 emissions were observed in relation with a seismic crisis that occurred in Tenerife Island between 2001 and 2005, with the main peak of seismic activity between April and June 2004. A significant pulse in total diffuse CO2 emission was observed at the crater of Teide (up to 26.3?t day?1) in 2001. In December 2003, the chemical composition of the Teide fumarole changed significantly, including the appearance of SO2, an increase in the HCl and CO concentrations and in the C2H6/C2H4 and C3H8/C3H6 ratios, and a decrease in the H2S, CH4, and C6H6 concentrations and in the gas/steam ratio. A few months after a drastic decrease in seismic activity, the SO2, HCl, and CO concentrations and the C2H6/C2H4 and C3H8/C3H6 ratios strongly decreased, whereas the CH4 and C6H6 concentrations and the gas/steam ratios increased. According to the trends shown by both the geochemical parameters and the seismic signals late in the observation period, the risk of a rejuvenation of volcanic activity at Teide is considered to be low. The associated temporal changes in seismic activity and magmatic degassing indicate that geophysical and fluid geochemistry signals in this system are related. Future monitoring programs aimed at mitigating volcanic hazard on Tenerife Island should involve coupled geophysical and geochemical studies.  相似文献   

19.
Gas samples from some fumaroles at ‘La Fossa' crater and Baia di Levante on Vulcano Island and from a diffuse soil gas emission were analysed during 1995–1996, along with water samples from thermal wells in the area of Vulcano Porto. During 1996, we observed a significant increase both in the gas/steam ratio and in the CO2 concentration, as well as strong variations in δ13CCO2, δDH2O and δ18OH2O of fumarolic gases. These variations are probably related to an increased inflow of deep fluids of magmatic origin. The temperatures of fumaroles did not show remarkable variations except for fumarole F11. In this case, temperature increased by about 80°C from February to August 1996. During the same period, remarkable variations in temperature, phreatic level and chemical and isotopic composition of water were also recorded in one of the geothermal wells in the Vulcano Porto area (Camping Sicilia; T60°C). The observed variations in this well are probably related to a pressure build-up, occurring at least in the surficial part of the system, because of increased gas flux and/or decreased permeability of the fumarolic degassing system. Chemical and isotopic composition of the water showed that during this evolutionary phase, the content of fumarolic condensate in this well was about 80 to 90%. Based on the observation of physical and chemical variables of the Camping Sicilia fluids, during this phase of activity, it is concluded that this area is affected by a phreatic eruption hazard if a volcanic episode with high energy discharge in a limited time span occurs. It follows that this well may be considered as a preferential point for volcanic activity monitoring, both in the case of normal routine surveillance and in the case of inaccessibility to the crater area.  相似文献   

20.
Here we report measurements of the chemical composition and flux of gas emitted from the central lava lake at Erta 'Ale volcano (Ethiopia) made on 15 October 2005. We determined an average SO2 flux of ∼ 0.69 ± 0.17 kg s− 1 using zenith sky ultraviolet spectroscopy of the plume, and molar proportions of magmatic H2O, CO2, SO2, CO, HCl and HF gases to be 93.58, 3.66, 2.47, 0.06, 0.19 and 0.04%, respectively, by open-path Fourier transform infrared (FTIR) spectrometry. Together, these data imply fluxes of 7.3, 0.7, 0.008, 0.03 and 0.004 kg s− 1 for H2O, CO2, CO, HCl and HF, respectively. These are the first FTIR spectroscopic observations at Erta 'Ale, and are also some of the very few gas measurements made at the volcano since the early 1970s (Gerlach, T.M., 1980b. Investigation of volcanic gas analyses and magma outgassing from Erta 'Ale lava lake, Afar, Ethiopia. Journal of Volcanology and Geothermal Research, 7(3–4): 415–441). We identify significant increases in the proportion of H2O in the plume with respect to both CO2 and SO2 across this 30-year interval, which we attribute to the depletion of volatiles in magma that sourced effusive eruptions during the early 1970s and/or to fractional magma degassing between the two active pit craters located in the summit caldera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号