首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
International borders, ground water flow, and hydroschizophrenia   总被引:1,自引:0,他引:1  
A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users?  相似文献   

2.
Yanmei He 《Ground water》2017,55(4):489-494
China shares more than 20 transboundary aquifers with its coaquifer states, but they have not exploited their transboundary groundwater resources, and these resources have not been governed by any international agreements. Given the close interaction between surface water and groundwater, and the growing demands for transboundary groundwater in China and its coaquifer states, there is increasing necessity for these countries to undertake international cooperation on this issue. This article overviews China's transboundary aquifers, reviews the duty to cooperate on China's transboundary groundwater as well as the emerging transboundary aquifer law. It concludes by providing some proposals on international cooperation in this context, based on the two theories of international water law—limited territorial sovereignty and common interests, taking into account the practicability of China's cooperation with its coaquifer states. The author suggests that China cooperates with its coaquifer states through such means as the exchange of data and information, joint monitoring, the conclusion of bilateral or multilateral aquifer agreements, the establishment of joint management mechanisms, and international technical cooperation.  相似文献   

3.
Arnold GE  Buzás Z 《Ground water》2005,43(5):669-678
In Europe, a long history of cooperation over transboundary rivers--most notably the Rhine and Danube rivers--exists. To help foster cooperation and communication vis-à-vis transboundary ground water, the United Nations Economic Commission for Europe (UNECE), as part of its ground water program, conducted a survey on transboundary aquifers in Europe. The survey produced 25 responses from 37 countries and identified 89 transboundary aquifers. Respondents reported on the degree of ground water use within their own boundaries, transboundary aspects (agreements, joint commissions, etc.) of ground water, and transboundary aquifers themselves. The inventory proved useful, but a number of problems were identified: different map scales and symbols, difficulty in identifying transboundary aquifers, inconsistent labeling of aquifers, and data discrepancies. The UNECE ground water program also drafted guidelines for monitoring and assessment of transboundary ground water. These guidelines are not legally binding but have been adopted by 25 countries, deal mainly with monitoring and assessment, and are being implemented through a number of pilot projects. Other organizations-the United Nations Scientific, Educational and Cultural Organization, the Food and Agriculture Organization, the International Association of Hydrogeologists, and the European Union--are all supporting the investigation of transboundary aquifers in an effort to facilitate data sharing and coordinated management of these valuable resources.  相似文献   

4.
Puri S  Aureli A 《Ground water》2005,43(5):661-668
Transboundary aquifers are as important a component of global water resource systems as are transboundary rivers; yet, their recognition in international water policy and legislation is very limited. Existing international conventions and agreements barely address aquifers and their resources. To rectify this deficiency, the International Association of Hydrogeologists and UNESCO's International Hydrological Programme have established the Internationally Shared (transboundary) Aquifer Resource Management (ISARM) Programme. This multiagency cooperative program has launched a number of global and regional initiatives. These are designed to delineate and analyze transboundary aquifer systems and to encourage riparian states to work cooperatively toward mutually beneficial and sustainable aquifer development. The agencies participating in ISARM include international and regional organizations (e.g., Organization of American States, United Nations Environment Programme, United Nations Economic Commission for Europe, Food and Agriculture Organization, and South African Development Community). Using outputs of case studies, the ISARM Programme is building scientific, legal, environmental, socioeconomic, and institutional guidelines and recommendations to aid sharing nations in the management of their transboundary aquifers. Since its start in 2000, the program has completed inventories of transboundary aquifers in the Americas and Africa, and several ISARM case studies have commenced.  相似文献   

5.
The increased attention given to international transboundary aquifers may be nowhere more pressing than on the western bank of the Jordan River. Hydropolitical analysis of six decades of Israeli and Palestinian pumping records reveals how ground water abstraction rates are as asymmetrical as are water allocations. The particular hydrogeology of the region, notably the variability in depth to ground water, variations in ground water quality, and the vulnerability of the aquifer, also affect the outcome. The records confirm previously drawn conclusions of the influence of the agricultural lobby in maintaining a supply-side water management paradigm. Comparison of water consumption rates divulges that water consumed by all sectors of the farming-based Palestinian economy is less than half of Israeli domestic consumption. The overwhelming majority of "reserve" flows from wet years are sold at subsidized rates to the Israeli agricultural sector, while very minor amounts are sold at normal rates to the Palestinian side for drinking water. An apparent coevolution of water resource variability and politics serves to explain increased Israeli pumping prior to negotiations in the early 1990s. The abstraction record from the Western Aquifer Basin discloses that the effective limit set by the terms of the 1995 Oslo II Agreement is regularly violated by the Israeli side, thereby putting the aquifer at risk. The picture that emerges is one of a transboundary water regime that is much more exploitative than cooperative and that risks spoiling the resource as it poisons international relations.  相似文献   

6.
Heterogeneity and thermal modeling of ground water   总被引:3,自引:0,他引:3  
Ferguson G 《Ground water》2007,45(4):485-490
Heat transport in aquifers is becoming an increasingly important topic due to recent growth in the use of ground water in thermal applications. However, the effect of heterogeneity on heat transport in aquifers has yet to be examined in the same detail as it has been for solute transport, and it is unclear what effect this may have on our ability to create accurate models. This study examines this issue through stochastic modeling using the geostatistics for two aquifers with low and high degrees of heterogeneity. The results indicate that there is considerable uncertainty in the distribution of heat associated with injection of warm water into an aquifer. Heterogeneity in the permeability field was also found to slightly reduce the ability to recover this introduced heat at a later time. These simulations also reveal that hydrodynamic macrodispersion is an important consideration in some heat flow problems.  相似文献   

7.
Wolf J  Barthel R  Braun J 《Ground water》2008,46(5):695-705
In large mountainous catchments, shallow unconfined alluvial aquifers play an important role in conveying subsurface runoff to the foreland. Their relatively small extent poses a serious problem for ground water flow models on the river basin scale. River basin scale models describing the entire water cycle are necessary in integrated water resources management and to study the impact of global climate change on ground water resources. Integrated regional-scale models must use a coarse, fixed discretization to keep computational demands low and to facilitate model coupling. This can lead to discrepancies between model discretization and the geometrical properties of natural systems. Here, an approach to overcome this discrepancy is discussed using the example of the German-Austrian Upper Danube catchment, where a coarse ground water flow model was developed using MODFLOW. The method developed uses a modified concept from a hydrological catchment drainage analysis in order to adapt the aquifer geometry such that it respects the numerical requirements of the chosen discretization, that is, the width and the thickness of cells as well as gradients and connectivity of the catchment. In order to show the efficiency of the developed method, it was tested and compared to a finely discretized ground water model of the Ammer subcatchment. The results of the analysis prove the applicability of the new approach and contribute to the idea of using physically based ground water models in large catchments.  相似文献   

8.
《Water Policy》1998,1(2):251-265
There are 261 international rivers, covering almost one half of the total land surface of the globe and untold numbers of shared aquifers. Water has been a cause of political tensions between Arabs and Israelis, Indians and Bangladeshis, Americans and Mexicans, and all ten riparian states of the Nile river. Water is the only scarce resource for which there is no substitute, over which there is poorly developed international law and the need for which is overwhelming, constant and immediate. As a consequence, `water' and `war' are two topics being assessed together with increasing frequency. This paper investigates the reality of historic water conflict and draws lessons for the plausibility of future `water wars'. The datasets of conflict are explored for those related to water — only seven minor skirmishes are found in this century; no war has ever been fought over water. In contrast, 145 water-related treaties were signed in the same period. These treaties, collected and catalogued in a computerized database along with relevant notes from negotiators, are assessed for patterns of conflict resolution. War over water seems neither strategically rational, hydrographically effective, nor economically viable. Shared interests along a waterway seem to consistently outweigh water's conflict-inducing characteristics. Furthermore, once cooperative water regimes are established through treaty, they turn out to be impressively resilient over time, even between otherwise hostile riparians and even as conflict is waged over other issues. These patterns suggest that the more valuable lesson of international water is as a resources whose characteristics tend to induce cooperation and incite violence only in the exception.  相似文献   

9.
Rowland M 《Ground water》2005,43(5):700-705
This paper describes a methodology for resolving transboundary water disputes that arise when people/states/nations sharing a resource that crosses legal/political jurisdictions disagree about the use of the resource. Laws and treaties written in an attempt to settle disputes are frequently neither enforced nor effective, and disagreements continue. Crises, arising through resource overuse or shortages, worsen the conflict and typically result in further discord, lawsuits, depletion of the resource, and even open-armed hostility. Many water management experts call for either private/market-based or state/command-and-control resource management systems, but these eventually break down during crisis. The crises therefore necessitate the adoption of a more effective institutional arrangement to address and resolve present and future problems. A better alternative to management by private or state entities and the resolution of conflicts by the mere application of law is a cooperative approach. The Rowland-Ostrom Framework, introduced in this paper, incorporates Ostrom's eight design principles for sustainable common pool resource management within the context of crisis that involves an urgent threat to the quantity or quality of a resource such as water, as described by the author. This paper demonstrates that although established 15 years ago, Ostrom's design principles remain applicable today for effective, sustainable transboundary water management, and the Rowland-Ostrom Framework is a model for the equitable use of shared water resources throughout the world.  相似文献   

10.
The world-wide crisis of water will make that the transboundary water resources will be the object of tensions and litigations increasingly marked. Also, the transboundary conflicts on fresh water intended to the categories of traditional uses are subjected to a growing attention on behalf of national and international organizations. Each case of conflict, related as well to surface water as groundwater, has its accurate characteristics and to appreciate its relative importance, it is necessary to consult a broad documentation based on reports of commissions, organizations or groups of research. According to criteria and data taken into account, the situation is some times appreciated differently.  相似文献   

11.
Water resources in the arid southwestern United States are frequently the subject of conflict from competing private and public interests. Legal remedies may remove impasses, but the technical analysis of the problem often determines the future success of legal solutions. In Owens Valley, California, the source of water for the Los Angeles Aqueduct (LAA) is flow diverted from the Owens River and its tributaries and ground water from valley aquifers. Future management of ground water delivered to the LAA needs technical support regarding quantity available, interconnection of shallow and confined aquifers, impact on local springs, and rate of recharge. Ground water flow models and ground water composition are tools already in use, but these have large uncertainty for local interpretations. This study conducted targeted sampling of springs and wells to evaluate the hydrologic system to corroborate conceptual and numerical models. The effort included measurement of intrinsic isotopic composition at key locations in the aquifers. The stable isotopic data of boron (delta(11)B), sulfur (delta(34)S), oxygen (delta(18)O), hydrogen (delta D), and tritium ((3)H) supported by basic chemical data provided rules for characterizing the upper and the lower aquifer system, confirmed the interpretation of ground water flow near faults and flow barriers, and detected hydraulic connections between the LAA and the perennial springs at key locations along the unlined reach of the LAA. This study exemplifies the use of forensic isotopic approaches as independent checks on the consistency of interpretations of conceptual models of a ground water system and the numerical hydrologic simulations.  相似文献   

12.
Central Asia is one of the regions with the highest probability of conflicts over water. Kazakhstan is the main Central Asian economic power and therefore it is important to understand how the country’s water management policy is influencing water availability in the other Central Asian states. Already, the Central Asian economies are developing under increasing water deficiency, resulting in developmental problems. The main reasons for this are increasing political tensions and worsening ecological and socio-economic conditions. Kazakhstan was the first country in Central Asia to develop the pre-requisites for a transition towards integrated water resources management (IWRM). Therefore, Kazakhstan has potential to lead the development of transboundary water integration between all Central Asian states. A scenario for successful regional cooperation on water management in Central Asia involves establishing legal mechanisms for water management following international water law, assistance by international agencies and donors, and integrated social, economic and environmental methodology.  相似文献   

13.
Regional ground water flow is most usually estimated using Darcy's law, with hydraulic conductivities estimated from pumping tests, but can also be estimated using ground water residence times derived from radioactive tracers. The two methods agree reasonably well in relatively homogeneous aquifers but it is not clear which is likely to produce more reliable estimates of ground water flow rates in heterogeneous systems. The aim of this paper is to compare bias and uncertainty of tracer and hydraulic approaches to assess ground water flow in heterogeneous aquifers. Synthetic two-dimensional aquifers with different levels of heterogeneity (correlation lengths, variances) are used to simulate ground water flow, pumping tests, and transport of radioactive tracers. Results show that bias and uncertainty of flow rates increase with the variance of the hydraulic conductivity for both methods. The bias resulting from the nonlinearity of the concentration–time relationship can be reduced by choosing a tracer with a decay rate similar to the mean ground water residence time. The bias on flow rates estimated from pumping tests is reduced when performing long duration tests. The uncertainty on ground water flow is minimized when the sampling volume is large compared to the correlation length. For tracers, the uncertainty is related to the ratio of correlation length to the distance between sampling wells. For pumping tests, it is related to the ratio of correlation length to the pumping test's radius of influence. In regional systems, it may be easier to minimize this ratio for tracers than for pumping tests.  相似文献   

14.
Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country's treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands.  相似文献   

15.
M. Zarei 《Ground water》2016,54(3):354-362
Salt diapirs in southern Iran are typically in contact with karstic and alluvial aquifers and consequently they are the most likely sources of groundwater salinization in this arid region. However, there are some salt diapirs that have no significant degradation effect on adjacent aquifers. Assessments of 62 of 122 Iranian‐emerged salt diapirs based on geological, geomorphological, hydrogeological, and hydrochemical investigations indicated that 45% of the studied salt diapirs did not have a negative impact on surrounding water resources, whereas 55% of the salt diapirs have degraded water quality of adjacent aquifers. The impacts ranged from low‐ to high‐grade salinization. We characterize here four major factors that control the impact of salt diapirs on surrounding water resources: (1) the evolutionary stage of the diapir, (2) the geological and (3) hydrogeological setting of the diapir, and (4) human activities. Identification of the major factors governing the influence of salt diapirs on the adjacent aquifers is necessary to understand the mechanism of salt diapir impact on adjacent aquifers, and subsequently to decide how to mitigate the deteriorating effect of the diapirs on the surrounding water resources.  相似文献   

16.
Access to fresh water is one of the major issues of northern and sub-Saharan Africa. The majority of the fresh water used for drinking and irrigation is obtained from large ground water basins where there is minor contemporary recharge and the aquifers cross national borders. These aquifers include the Nubian Aquifer System shared by Chad, Egypt, Libya, and Sudan; the Iullemeden Aquifer System, extending over Niger, Nigeria, Mali, Benin, and Algeria; and the Northwest Sahara Aquifer System shared by Algeria, Libya, and Tunisia. These resources are subject to increased exploitation and may be severely stressed if not managed properly as witnessed already by declining water levels. In order to make appropriate decisions for the sustainable management of these shared water resources, planners and managers in different countries need an improved knowledge base of hydrological information. Three technical cooperation projects related to aquifer systems will be implemented by the International Atomic Energy Agency, in collaboration with the United Nations Educational, Scientific and Cultural Organization and United Nations Development Programme/Global Environmental Facility. These projects focus on isotope hydrology studies to better quantify ground water recharge and dynamics. The multiple isotope approach combining commonly used isotopes 18O and 2H together with more recently developed techniques (chlorofluorocarbons, 36Cl, noble gases) will be applied to improve the conceptual model to study stratification and ground water flows. Moreover, the isotopes will be an important indicator of changes in the aquifer due to water abstraction, and therefore they will assist in the effort to establish a sustainable ground water management.  相似文献   

17.
Totally 36 aquifers have been identified along the Mexico‐U.S. border. Of these, only 16 have adequate data to provide a reasonable level of confidence to categorize them as transboundary. Limited and/or contrasting data over the other aquifers in the region reflects the void in transboundary groundwater management and assessment mechanisms throughout much of the Mexico‐U.S. border. This paper identifies management mechanisms, structures, and institutional prioritization related to transboundary aquifers shared between Mexico and the United States. It also evaluates the differences in the transboundary nature of these aquifers, and how their combined hydrological and geographical considerations interrelate with local and regional social, economic, political, and even scale dimensions to create complex management challenges.  相似文献   

18.
Water scarcity is a media darling often times described as a trigger of conflict in arid regions, a by‐product of human influences ranging from desertification to climate change, or a combination of natural‐ and human‐induced changes in the water cycle. A multitude of indexes have been developed over the past 20 years to define water scarcity to map the “problem” and guide international donor investment. Few indexes include groundwater within the metrics of “scarcity.” Institutional communication contributes to the recognition of local or regional water scarcity. However, evaluations that neglect groundwater resources may incorrectly define conditions as scarce. In cases where there is a perception of scarcity, the incorporation of groundwater and related storage in aquifers, political willpower, new policy tools, and niche diplomacy often results in a revised status, either reducing or even eliminating the moniker locally. Imaginative conceptualization and innovative uses of aquifers are increasingly used to overcome water scarcity.  相似文献   

19.
Abstract

This paper presents the results of a survey carried out in 2010 aimed at evaluating the type and quality of the groundwater resources of the Bangui region of the Central African Republic. This work is the first step towards the development of groundwater resources in the Central African Republic in order to find alternatives to direct pumping from the Ubangi River and provide the population of the suburbs with a safer drinking water supply from deep boreholes. By combining both geological and hydrogeochemical approaches, it appears that the geology of Bangui is favourable to the development of a secure and sustainable water supply from groundwater provided that the conditions of exploitation would be constrained by the local authorities. The deep Precambrian carbonate aquifers, known as the Bimbo and Fatima formations, are identified as target resources in view of the relatively good quality of their water from the chemical point of view, and the semi-confined structure of the aquifers that prevents the mixing with shallow aquifers that are already strongly affected by domestic and industrial pollution. The main difficulty in terms of exploitation is to appreciate the depth of the resource and the more or less fractured/palaeo-karstified type of the porosity.

Editor Z.W. Kundzewicz

Citation Djebebe-Ndjiguim, C.L., Huneau, F., Denis, A., Foto, E., Moloto-a-Kenguemba, G., Celle-Jeanton, H., Garel, E., Jaunat, J., Mabingui, J., and Le Coustumer, P., 2013. Characterization of the aquifers of the Bangui urban area, Central African Republic, as an alternative drinking water supply resource. Hydrological Sciences Journal, 58 (8), 1760–1778.  相似文献   

20.
Freshwater resources in the arid Arabian Peninsula, especially transboundary aquifers shared by Saudi Arabia, Jordan, and Iraq, are of critical environmental and geopolitical significance. Monthly Gravity Recovery and Climate Experiment (GRACE) satellite‐derived gravity field solutions acquired over the expansive Saq transboundary aquifer system were analysed and spatiotemporally correlated with relevant land surface model outputs, remote sensing observations, and field data to quantify temporal variations in regional water resources and to identify the controlling factors affecting these resources. Our results show substantial GRACE‐derived terrestrial water storage (TWS) and groundwater storage (GWS) depletion rates of ?9.05 ± 0.25 mm/year (?4.84 ± 0.13 km3/year) and ?6.52 ± 0.29 mm/year (?3.49 ± 0.15 km3/year), respectively. The rapid decline is attributed to both climatic and anthropogenic factors; observed TWS depletion is partially related to a decline in regional rainfall, while GWS depletions are highly correlated with increasing groundwater extraction for irrigation and observed water level declines in regional supply wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号