首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Station recording air temperature (Ta) has limited spatial coverage, especially in unpopulated areas. Since temperature can change greatly both spatially and temporally, stations data are often inadequate for meteorology and subsequently climatology studies. Time series of moderate-resolution imaging spectroradiometer (MODIS) land surface temperature (Ts) and normalized difference vegetation index (NDVI) products, combined with digital elevation model (DEM), albedo from Era-Interim and meteorological data from 2006 to 2015, were used to estimate daily mean air temperature over Iran. Geographically weighted regression was applied to compare univariate and multivariate model accuracy. In the first model, which only interfered with land surface temperature (LST), the results indicate a weak performance with coefficient of determination up to 91% and RMSE of 1.08 to 2.9 °C. The mean accuracy of a four-variable model (which used LST, elevation, slope, NDVI) slightly increased (6.6% of the univariate model accuracy) when compared to univariate model. RMSE dropped by 19% of the first model. By addition albedo in the third model, the coefficient of determination increased significantly. This increase was 32% of the univariate model and 23.75% of the 4-variable model accuracy. The statistical comparison between the three models revealed that there is significant improvement in air estimation by applying the geographically weighted regression (GWR) method with interfering LST, NDVI, elevation, slope, and albedo with mean absolute RMSE of 0.62 °C and mean absolute R2 of 0.99. In order to better illustrate the third model, t values were spatially mapped at 0.05 level.  相似文献   

2.
In semi-arid climates, phreatophytes draw on shallow aquifers, and groundwater evapotranspiration (ETG) is a principal component of groundwater budgets. Diurnal water table fluctuations, which often are a product of ETG, were monitored in the riparian zone of Red Canyon Creek, Wyoming, USA. These fluctuations were higher in a riparian wetland (2–36 mm) than a grass-covered meadow (1–6 mm). The onset and cessation of water-table fluctuations correspond to daily temperatures relative to freezing. Spatial differences were due to vegetation type and specific yield, while temporal changes were due to vegetation dormancy. Ratios of ETG to potential evapotranspiration (PET), K c,GW, were similar to ratios of actual evapotranspiration (ET) to PET, K c, in semi-arid rangelands. Before vegetation senescence, K c,GW increased between precipitation events, suggesting phreatophytes pull more water from the saturated zone as soil moisture decreases. In contrast, K c decreases with soil moisture following precipitation events as ET becomes increasingly water-limited. Error in ETG is primarily from estimates of specific yield (S y), which is difficult to quantify in heterogeneous sediments. ETG values may be more reliable because the range of acceptable S y is smaller than K c and S y does not change with vegetation type or soil moisture.  相似文献   

3.
Temporal changes of meteorological variables can affect reference evapotranspiration (ET0). The goal of the present research is to analyze the changes of ET0 and identify the impact of effective meteorological parameters to the changes of ET0. For this purpose, daily meteorological data recorded in 30 synoptic stations of Iran during 1960–2014 were used. The annual and seasonal values of ET0 were calculated by the recorded data. To calculate ET0, FAO56 Penman–Monteith method (standard method) was used. The annual and seasonal trends of ET0 and its eight effective parameters were analyzed. Then the contributions of effective parameters changes on ET0 were determined. To analyze ET0 trend at annual and seasonal scales, two common methods, Spearman’s Rho and Mann–Kendall tests, were used. The R 2 = 0.99 showed that the results of the mentioned methods were similar and on the basis of T-statistic <0.057, their difference was not significant (95% confidence level). Therefore, only one method’s results (Spearman’s Rho) were reported. On the basis of Spearman’s Rho results, the annual and seasonal values of ET0 had negative trend in most of arid and semi-arid stations while the trend of this parameter was positive in humid and very humid stations. At annual and seasonal scales, decreasing in wind speed (W), temperature (T), sunshine hours (n), minimum temperature (TN), dew point temperature (TD), maximum temperature (TX), saturation vapor pressure deficit (SVPD) and solar radiation (RS) was observed in 58, 54, 39, 43, 56, 65, 65 and 37% studied stations, respectively. In many scales, the results showed that TX and W were the most effective meteorological variables on ET0 changes and then SVPD was located in second step in arid and semi-arid stations. In humid and very humid stations, W was the first effective parameter at all scales, except autumn.  相似文献   

4.
In this study, raw and treated wastewaters were reused for potato cultivation in order to verify the effect of wastewater on crop yield, crop’s heavy metals’ concentration as well as some major traits of potato. To this regard, a completely randomized test was designed with five water treatments and three replications. The watering were as follows: raw wastewater (T1), treated wastewater (T2), a combination of 50 % raw wastewater and 50 % fresh water (T3), a combination of 50 % treated wastewater and 50 % fresh water (T4), and fresh water (T5). The experiments were run during October 2009–June 2010 in the greenhouse of Bu-Ali Sina University. The results show that the effects of treatments were significant on the length and number of stems per plant (p < 0.05). The number of nodes and weight of tubers, crop yield and heavy metal (cadmium, nickel and lead) concentration in shoots and tubers were also significant (p < 0.01). The results indicated that the highest length of stem (55.44 cm) was obtained in T2 which had no significant differences from that of T1. The maximum and minimum tuber weights and crop yield were obtained in T1 and T5, respectively. Based on crop yield rate, the watering ranked as follows: T1 > T3 > T2 > T4 > T5. The maximum and minimum heavy metal values were observed in T1 and T5, respectively. Based on the cadmium, nickel and lead accumulations in shoots and tubers (except cadmium in shoots), the watering treatments ranked as: T1 > T3 > T2 > T4 > T5.  相似文献   

5.
The accurate assessment of drought and its monitoring is highly depending on the selection of appropriate indices. Despite the availability of countless drought indices, due to variability in environmental properties, a single universally drought index has not been presented yet. In this study, a new approach for developing comprehensive agricultural drought index from satellite-derived biophysical parameters is presented. Therefore, the potential of satellite-derived biophysical parameters for improved understanding of the water status of pistachio (Pistachio vera L.) crop grown in a semiarid area is evaluated. Exploratory factor analysis with principal component extraction method is performed to select the most influential parameters from seven biophysical parameters including surface temperature (T s), surface albedo (α), leaf area index (LAI), soil heat flux (G o), soil-adjusted vegetation index (SAVI), normalized difference vegetation index (NDVI), and net radiation (R n). T s and G o were found as the most effective parameters by this method. However, T s, LAI, α, and SAVI that accounts for 99.6 % of the total variance of seven inputs were selected to model a new biophysical water stress index (BPWSI). The values of BPWSI were stretched independently and compared with the range of actual evapotranspiration estimated through well-known METRIC (mapping evapotranspiration at high resolution with internal calibration) energy balance model. The results showed that BPWSI can be efficiently used for the prediction of the pistachio water status (RMSE of 0.52, 0.31, and 0.48 mm/day on three image dates of April 28, July 17, and August 2, 2010). The study confirmed that crop water status is accounted by several satellite-based biophysical parameters rather than single parameter.  相似文献   

6.
The thermal evolution of 10-Å phase Mg3Si4O10(OH)2·H2O, a phyllosilicate which may have an important role in the storage/release of water in subducting slabs, was studied by X-ray single-crystal diffraction in the temperature range 116–293 K. The lattice parameters were measured at several intervals both on cooling and heating. The structural model was refined with intensity data collected at 116 K and compared to the model refined at room temperature. As expected for a layer silicate on cooling in this temperature range, the a and b lattice parameters undergo a small linear decrease, α a  = 1.7(4) 10?6 K?1 and α b  = 1.9(4) 10?6 K?1, where α is the linear thermal expansion coefficient. The greater variation is along the c axis and can be modeled with the second order polynomial c T  = c 293(1 + 6.7(4)10?5 K?1ΔT + 9.5(2.5)10?8 K?2T)2) where ΔT = T ? 293 K; the monoclinic angle β slightly increased. The cell volume thermal expansion can be modeled with the polynomial V T  V 293 (1 + 8.0 10?5 K?1 ΔT + 1.4 10?7 K?2T)2) where ΔT = T ? 293 is in K and V in Å3. These variations were similar to those expected for a pressure increase, indicating that T and P effects are approximately inverse. The least-squares refinement with intensity data measured at 116 K shows that the volume of the SiO4 tetrahedra does not change significantly, whereas the volume of the Mg octahedra slightly decreases. To adjust for the increased misfit between the tetrahedral and octahedral sheets, the tetrahedral rotation angle α changes from 0.58° to 1.38°, increasing the ditrigonalization of the silicate sheet. This deformation has implications on the H-bonds between the water molecule and the basal oxygen atoms. Furthermore, the highly anisotropic thermal ellipsoid of the H2O oxygen indicates positional disorder, similar to the disorder observed at room temperature. The low-temperature results support the hypothesis that the disorder is static. It can be modeled with a splitting of the interlayer oxygen site with a statistical distribution of the H2O molecules into two positions, 0.6 Å apart. The resulting shortest Obas–OW distances are 2.97 Å, with a significant shortening with respect to the value at room temperature. The low-temperature behavior of the H-bond system is consistent with that hypothesized at high pressure on the basis of the Raman spectra evolution with P.  相似文献   

7.
Thermal diffusivity (D) was measured up to ~1,800 K of refractory materials using laser-flash analysis, which lacks radiative transfer gains and contact losses. The focus is on single-crystal MgO and Al2O3. These data are needed to benchmark theoretical models and thereby improve understanding of deep mantle processes. Measurements of AlN, Mg(OH)2, and isostructural BeO show that the power law (D = AT ?B ) where T is temperature holds for simple structures. Results for more structurally complicated corundum Al2O3 with and without impurity atoms are best fit by CT d  + ET f where d ~ ?1 and f ~ ?4, whereas for isostructural Fe2O3, f is near +3 and multiphase ilmenite Fe1.12Ti0.88O3 is fit by the above power law. The positive temperature response for hematite is attributed to diffusive radiative transfer arising from electronic–vibronic coupling. We find good agreement of k and D data on single-crystal and non-porous ceramic Al2O3. For the corundum structure, D is nearly independent of T at high T. Although D at 298 K depends strongly on chemical composition, at high temperature, these differences are reduced. Thermal conductivity provided for MgO and Al2O3, using LFA data and literature values of density and heat capacity, differs from contact measurements which include systematic errors. The effect of pressure is discussed, along with implications for the deepest mantle.  相似文献   

8.
This study was conducted in six plots along an elevation gradient in the Qinghai spruce (Picea crassifolia Kom.) forest ecosystem of the Qilian Mountains, northwest China. Soil CO2 efflux over bare soil (R s) and moss covered soil (R s+m) were investigated from June to September in 2010 and 2011 by means of an automated soil CO2 flux system (LI-8100). The results showed that R s ranged from 1.51 to 3.96 (mean 2.64 ± 0.72) μmol m?2 s?1 for 2010, and from 1.41 to 4.09 (mean 2.55 ± 0.70) μmol m?2 s?1 for 2011. The daily change trend of R s resembled that of air temperature (T a), and there was a hysteresis between R s and soil temperature (T s). The seasonal variations of R s at lowlands (i.e., Plot 1, Plot 2 and Plot 3) were driven by soil moisture and temperature (T a and T s), while that at highlands (i.e., Plot 4, Plot 5 and Plot 6) were obviously affected by temperature. There were higher values at Plot 2 and Plot 6, which were caused by the interaction between soil moisture and temperature. In addition, soil CO2 efflux over moss covered soil (R s+m) was 8.83 % less than that over bare soil (R s), indicating that moss was another factor affecting R s. It was concluded that R s had temporal and spatial variations and was mainly controlled by temperature and soil moisture; the main determinants differed at different elevations; moss could reduce R s.  相似文献   

9.
The high-temperature thermoelastic behavior of a natural cancrinite has been investigated by in situ single-crystal X-ray diffraction. The unit-cell volume variation as a function of temperature (T) exhibits a continuous trend up to 748 K (hydrous expansion regime). The unit-cell edges expansion clearly shows an anisotropic expansion scheme (α a  < α c ). At 748 K, a dehydration process takes place, and a series of unit-cell parameter measurements at constant temperature (748 K) for a period of 12 days indicate that the dehydration process continued for the entire period of time, until the cell parameters were found to be constant. After the dehydration process is completed, the structure expands almost linearly with increasing temperature up to 823 K, where a sudden broadening of the diffraction peaks, likely due to the impending decomposition, did not allow the collection of further data points. Even with a very limited temperature range for the anhydrous regime, we observed that the behavior of the two (i.e., hydrous and anhydrous) high-temperature structures is similar in terms of (1) volume thermal expansion coefficient and (2) thermoelastic anisotropy. The structure refinements based on the data collected at 303, 478 and 748 K (after the dehydration), respectively, showed a change in the mechanism of tilting of the quasi-rigid (Si,Al)O4 tetrahedra, following the loss of H2O molecules, ascribable to the high-temperature Na+ coordination environment within the cages.  相似文献   

10.
Cooling and decompression experiments have been carried out on trachytic melts in order to investigate crystallization kinetics of alkali feldspar, the effect of the degree of undercooling (ΔT = T liquidus ? T experimental) and time on nucleation and crystal growth process. This experimental work gives us new data about crystallization kinetics of trachytic melts, and it that will be useful to better understand the natural system of Campi Flegrei volcanoes. Experiments have been conducted using cold seal pressure vessel apparatus, at pressure between 30 and 200 MPa, temperature between 750 and 855 °C, time between 7,200 and 57,600 s and redox condition close to the NNO +0.8 buffer. These conditions are ideal to reproducing pre- and syn-eruptive conditions of the Campi Flegrei volcanoes, where the “conditions” pertain to the complete range of pressures, temperatures and time at which the experiments were performed. Alkali feldspar is the main phase present in this trachyte, and its abundance can strongly vary with small changes in pressure, temperature and water content in the melt, implying appreciable variations in the textures and in the crystallization kinetics. The obtained results show that crystallization kinetics are strictly related to ΔT, time, final pressure, superheating (?ΔT) and water content in the melt. ΔT is the driving force of the crystallization, and it has a strong influence on nucleation and growth processes. In fact, the growth process dominates crystallization at small ΔT, whereas the nucleation dominates crystallization at large ΔT. Time also is an important variable during crystallization process, because long experiment durations involve more nucleation events of alkali feldspar than short experiment durations. This is an important aspect to understand magma evolution in the magma chamber and in the conduit, which in turn has strong effects on magma rheology.  相似文献   

11.
In situ X-ray diffraction measurements of KAlSi3O8-hollandite (K-hollandite) were performed at pressures of 15–27 GPa and temperatures of 300–1,800 K using a Kawai-type apparatus. Unit-cell volumes obtained at various pressure and temperature conditions in a series of measurements were fitted to the high-temperature Birch-Murnaghan equation of state and a complete set of thermoelastic parameters was obtained with an assumed K300,0=4. The determined parameters are V 300,0=237.6(2) Å3, K 300,0=183(3) GPa, (?K T,0/?T) P =?0.033(2) GPa K?1, a 0=3.32(5)×10?5 K?1, and b 0=1.09(1)×10?8 K?2, where a 0 and b 0 are coefficients describing the zero-pressure thermal expansion: α T,0 = a 0 + b 0 T. We observed broadening and splitting of diffraction peaks of K-hollandite at pressures of 20–23 GPa and temperatures of 300–1,000 K. We attribute this to the phase transitions from hollandite to hollandite II that is an unquenchable high-pressure phase recently found. We determined the phase boundary to be P (GPa)=16.6 + 0.007 T (K). Using the equation of state parameters of K-hollandite determined in the present study, we calculated a density profile of a hypothetical continental crust (HCC), which consists only of K-hollandite, majorite garnet, and stishovite with 1:1:1 ratio in volume. Density of HCC is higher than the surrounding mantle by about 0.2 g cm?3 in the mantle transition zone while this relation is reversed below 660-km depth and HCC becomes less dense than the surrounding mantle by about 0.15 g cm?3 in the uppermost lower mantle. Thus the 660-km seismic discontinuity can be a barrier to prevent the transportation of subducted continental crust materials to the lower mantle and the subducted continental crust may reside at the bottom of the mantle transition zone.  相似文献   

12.
Wadeite-type K2Si4O9 was synthesized with a cubic press at 5.4 GPa and 900 °C for 3 h. Its unit-cell parameters were measured by in situ high-T powder X-ray diffraction up to 600 °C at ambient P. The TV data were fitted with a polynomial expression for the volumetric thermal expansion coefficient (αT = a 0 + a 1 T), yielding a 0 = 2.47(21) × 10?5 K?1 and a 1 = 1.45(36) × 10?8 K?2. Compression experiments at ambient T were conducted up to 10.40 GPa with a diamond-anvil cell combined with synchrotron X-ray radiation. A second-order Birch–Murnaghan equation of state was used to fit the PV data, yielding K T = 97(3) GPa and V 0 = 360.55(9) Å3. These newly determined thermal expansion data and compression data were used to thermodynamically calculate the PT curves of the following reactions: 2 sanidine (KAlSi3O8) = wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite (SiO2) and wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite/stishovite (SiO2) = 2 hollandite (KAlSi3O8). The calculated phase boundaries are generally consistent with previous experimental determinations.  相似文献   

13.
Evapotranspiration (ET) plays an important role in exchange of water budget and carbon cycles over the Inner Mongolia autonomous region of China (IMARC). However, the spatial and decadal variations in terrestrial ET and drought over the IMARC in the past was calculated by only using sparse meteorological point-based data which remain quite uncertain. In this study, by combining satellite and meteorology datasets, a satellite-based semi-empirical Penman ET (SEMI-PM) algorithm is used to estimate regional ET and evaporative wet index (EWI) calculated by the ratio of ET and potential ET (PET) over the IMARC. Validation result shows that the square of the correlation coefficients \((R^{2})\) for the four sites varies from 0.45 to 0.84 and the root-mean-square error (RMSE) is  \(0.78\) mm. We found that the ET has decreased on an average of 4.8 mm per decade (\(p=0.10\)) over the entire IMARC during 1982–2009 and the EWI has decreased on an average of 1.1% per decade (\(p=0.08\)) during the study period. Importantly, the patterns of monthly EWI anomalies have a good spatial and temporal correlation with the Palmer Drought Severity Index (PDSI) anomalies from 1982 to 2009, indicating EWI can be used to monitor regional surface drought with high spatial resolution. In high-latitude ecosystems of northeast region of the IMARC, both air temperature \((T_{a})\) and incident solar radiation \((R_{s})\) are the most important parameters in determining ET. However, in semiarid and arid areas of the central and southwest regions of the IMARC, both relative humidity (RH) and normalized difference vegetation index (NDVI) are the most important factors controlling annual variation of ET.  相似文献   

14.
We used an in situ measurement method to investigate the phase transition of Fe2SiO4 polymorphs under high pressures and temperatures. A multi-anvil high-pressure apparatus combined with synchrotron X-ray radiation was used. The stability of each polymorph was identified by observing the X-ray diffraction data from the sample. In most experiments, the diffraction patterns were collected 10–30 min after reaching the desired pressure and temperature conditions. The transition boundary between the olivine and spinel phase at T = 1,000–1,500 K and P = 2–8 GPa was determined to occur at P (GPa) = 0.5 + 0.0034 × T (K). The transition pressure determined in this study was in general agreement with that observed in previous high-pressure experiments. However, the slope of the transition, dP/dT, determined in our study was significantly higher than that estimated by the previous study combined with the in situ X-ray method.  相似文献   

15.
Tibetan Plateau (TP) is the highest and most extensive plateau in the world and has been known as the roof of the world, and it is sensitive to climate change. The researches of CO2 fluxes (F C) in the TP region play a significant role in understanding regional and global carbon balance and climate change. Eddy covariance flux measurements were conducted at three sites of south-eastern TP comprising Dali (DL, cropland ecosystem), LinZhi (LZ, alpine meadow ecosystem) and Wenjiang (WJ, cropland ecosystem); amongst those DL and LZ are located in plateau region, while WJ is in plain region. Dynamics of F C and influences of vegetation, meteorological (air temperature, photosynthetically active radiation, soil temperature and soil water content) and terrain factors (altitude) were analysed on the basis of data taken during 2008. The results showed that, in the cool sub-season (March, April, October and December), carbon sink appeared even in December with fluxes of (?0.021 to ?0.05) mg CO2 m?2 s?1 and carbon source only in October (0.03 ± 0.0048) mg CO2 m?2 s?1 in DL and WJ site. In LZ site, carbon sink was observed in April: (?0.036 ± 0.0023) mg COm?2 s?1 and carbon sources in December and March (0.008–0.010 mg CO2 m?2 s?1). In the hot sub-season (May–August), carbon source was observed only in May with (0.011 ± 0.0022), (0.104 ± 0.0029) and (0.036 ± 0.0017) fluxes in LZ, DL and WJ site, respectively, while carbon sinks with (?0.021 ± 0.0041), (?0.213 ± 0.0007) and (?0.110 ± 0.0015) mg CO2 m?2 s?1 fluxes in LZ, DL, and WJ, respectively. Comparing with plain region (WJ), carbon sinks in plateau region (DL and LZ) lasted for a longer time, and the absorption sum was large and up to (–357.718 ± 0.0054) and (?371.111 ± 0.0039) g C m?2 year?1, respectively. The LZ site had the weakest carbon sink with (?178.547 ± 0.0070) g C m?2 year?1. Multivariate analysis of covariance showed that altitude (AL) as an independent factor explained 39.5 % of F C (P < 0.026). F C had a quadratic relationship with Normalized difference vegetation index (NDVI) (R 2 ranges from 0.485 to 0.640 for three sites), an exponential relationship with soil temperature at 5-cm depth (ST 5) at night time and a quadratic relationship with air temperature (T a) at day time. Path analysis indicated that photosynthetically active radiation (PAR), sensible heat fluxes (H) and other factors all had direct or indirect effects on F C in all of the three tested sites around the south-eastern TP.  相似文献   

16.
Remote sensing data can be used as the basis for meteorological data. Due to the limitations of meteorological stations on the Earth, derivation of land surface temperature is one of the most important aspects of the remote sensing application in climatology studies. In the present study, Landsat-8 thermal infrared sensor data of the scene located over Khuzestan province with row/path of 165/38 were used to derive land surface temperature (LST). Normalized difference vegetation index (NDVI), fraction of vegetation cover, satellite brightness temperature, and land surface emissivity were calculated as the vital criteria to derive LSTs using the split window algorithms. LST determination was performed by nine different split window algorithms. Eventually, LST products were evaluated using ground-based measurements at the meteorological stations of the study area. The results showed that algorithm of Coll and Casselles had a highest accuracy with RMSE 1.97 °C, and Vidal’s method presented the lowest accuracy to derive LST with RMSE 4.11 °C. According to the results, regions with high density of vegetation and water resources have lowest diurnal temperature and regions with bare soils and low density of vegetation have a highest diurnal temperature. Results of the study indicated that LST algorithm accuracy is an important factor in the environmental and climate change studies.  相似文献   

17.
Atmospheric conditions are critical for a range of biological functions—locomotion among others—and long-term changes in these conditions have been identified as causal for different macroevolutionary patterns. Here we examine the influence of variations in atmospheric O2 concentration (AOC), temperature (Tair), and air density (ρair) on the power efficiency, as it relates to locomotion, during the evolutionary history of birds. Specifically, our study centers on four key evolutionary events: (1) the body mass reduction of non-avian theropods prior to the rise of birds; (2) the emergence of flapping flight in the earliest birds; (3) the divergence of basal pygostylians; and (4) the diversification of modern birds. Our results suggest that a marked increase in AOC and ρair during the Middle Jurassic—coeval with a trend in miniaturization—improved the power efficiency of the dinosaurian predecessors of birds. Likewise, an increase in these conditions is hypothesized as having played a major role in the diversification of early pygostylians during the Early Cretaceous. However, our analyses do not identify any significant paleoatmospheric effects on either the emergence of flapping flight or the early cladogenesis of modern birds. Extinct birds flew within the range of atmospheric conditions in which modern birds fly but varying past conditions influenced their flight performance. Our study thus highlights the importance of considering paleoatmospheric conditions when reconstructing the flight efficiency of the forerunners of modern birds.  相似文献   

18.
We have collected high resolution neutron powder diffraction patterns from Na2SO4·10D2O over the temperature range 4.2–300 K following rapid quenching in liquid nitrogen, and over a series of slow warming and cooling cycles. The crystal is monoclinic, space-group P21/c (Z = 4) with a = 11.44214(4) Å, b = 10.34276(4) Å, c = 12.75486(6) Å, β = 107.847(1)°, and V = 1436.794(8) Å3 at 4.2 K (slowly cooled), and a = 11.51472(6) Å, b = 10.36495(6) Å, c = 12.84651(7) Å, β = 107.7543(1)°, V = 1460.20(1) Å3 at 300 K. Structures were refined to R P (Rietveld powder residual, \( R_{P} = {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } \mathord{\left/ {\vphantom {{\sum {\left| {I_{\text{obs}} - I_{\text{calc}} } \right|} } {\sum {I_{\text{obs}} } }}} \right. \kern-\nulldelimiterspace} {\sum {I_{\text{obs}} } }} \)) better than 2.5% at 4.2 K (quenched and slow cooled), 150 and 300 K. The sulfate disorder observed previously by Levy and Lisensky (Acta Cryst B34:3502–3510, 1978) was not present in our specimen, but we did observe changes with temperature in deuteron occupancies of the orientationally disordered water molecules coordinated to Na. The temperature dependence of the unit-cell volume from 4.2 to 300 K is well represented by a simple polynomial of the form V = ? 4.143(1) × 10?7 T 3 + 0.00047(2) T2 ? 0.027(2) T + 1437.0(1) Å3 (R 2 = 99.98%). The coefficient of volume thermal expansion, α V , is positive above 40 K, and displays a similar magnitude and temperature dependence to α V in deuterated epsomite and meridianiite. The relationship between the magnitude and orientation of the principal axes of the thermal expansion tensor and the main structural elements are discussed; freezing in of deuteron disorder in the quenched specimen affects the thermal expansion, manifested most obviously as a change in the behaviour of the unit-cell parameter β.  相似文献   

19.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   

20.
The speciation of CO2 in dacite, phonolite, basaltic andesite, and alkali silicate melt was studied by synchrotron infrared spectroscopy in diamond anvil cells to 1,000 °C and more than 200 kbar. Upon compression to 110 kbar at room temperature, a conversion of molecular CO2 into a metastable carbonate species was observed for dacite and phonolite glass. Upon heating under high pressure, molecular CO2 re-appeared. Infrared extinction coefficients of both carbonate and molecular CO2 decrease with temperature. This effect can be quantitatively modeled as the result of a reduced occupancy of the vibrational ground state. In alkali silicate (NBO/t = 0.98) and basaltic andesite (NBO/t = 0.42) melt, only carbonate was detected up to the highest temperatures studied. For dacite (NBO/t = 0.09) and phonolite melts (NBO/t = 0.14), the equilibrium CO2 + O2? = CO3 2? in the melt shifts toward CO2 with increasing temperature, with ln K = ?4.57 (±1.68) + 5.05 (±1.44) 103 T ?1 for dacite melt (ΔH = ?42 kJ mol?1) and ln K = ?6.13 (±2.41) + 7.82 (±2.41) 103 T ?1 for phonolite melt (ΔH = ?65 kJ mol?1), where K is the molar ratio of carbonate over molecular CO2 and T is temperature in Kelvin. Together with published data from annealing experiments, these results suggest that ΔS and ΔH are linear functions of NBO/t. Based on this relationship, a general model for CO2 speciation in silicate melts is developed, with ln K = a + b/T, where T is temperature in Kelvin and a = ?2.69 ? 21.38 (NBO/t), b = 1,480 + 38,810 (NBO/t). The model shows that at temperatures around 1,500 °C, even depolymerized melts such as basalt contain appreciable amounts of molecular CO2, and therefore, the diffusion coefficient of CO2 is only slightly dependent on composition at such high temperatures. However, at temperatures close to 1,000 °C, the model predicts a much stronger dependence of CO2 solubility and speciation on melt composition, in accordance with available solubility data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号