首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
Eighteen coastal-plain depositional sequences that can be correlated to shallow- to deep-water clinoforms in the Eocene Central Basin of Spitsbergen were studied in 1 × 15 km scale mountainside exposures. The overall mud-prone (>300 m thick) coastal-plain succession is divided by prominent fluvial erosion surfaces into vertically stacked depositional sequences, 7–44 m thick. The erosion surfaces are overlain by fluvial conglomerates and coarse-grained sandstones. The fluvial deposits show tidal influence at their seaward ends. The fluvial deposits pass upwards into macrotidal tide-dominated estuarine deposits, with coarse-grained river-dominated facies followed further seawards by high- and low-sinuosity tidal channels, upper-flow-regime tidal flats, and tidal sand bar facies associations. Laterally, marginal sandy to muddy tidal flat and marsh deposits occur. The fluvial/estuarine sequences are interpreted as having accumulated as a series of incised valley fills because: (i) the basal fluvial erosion surfaces, with at least 16 m of local erosional relief, are regional incisions; (ii) the basal fluvial deposits exhibit a significant basinward facies shift; (iii) the regional erosion surfaces can be correlated with rooted horizons in the interfluve areas; and (iv) the estuarine deposits onlap the valley walls in a landward direction. The coastal-plain deposits represent the topset to clinoforms that formed during progradational infilling of the Eocene Central Basin. Despite large-scale progradation, the sequences are volumetrically dominated by lowstand fluvial deposits and especially by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units in only about 30% of the sequences. The depositional system remained an estuary even during highstand conditions, as evidenced by the continued bedload convergence in the inner-estuarine tidal channels.  相似文献   

3.
The Upper Jurassic Guará Formation comprises an 80–200 m thick continental succession exposed in the western portion of the Rio Grande do Sul State (Brazil). It comprises four distinct facies associations: (i) simple to locally composite crescentic aeolian dune sets, (ii) aeolian sand sheets, (iii) distal floodflows, and (iv) fluvial channels. The vertical stacking of the facies associations defines several 5–14 m thick wetting-upward cycles. Each cycle starts with aeolian dune sets followed by aeolian sand sheets deposits and culminating in either fluvial channels or distal flood strata. Within some cycles, aeolian sand sheets are absent and fluvial deposits rest directly above aeolian dune facies. The transitions from one facies association to another are abrupt and marked by erosive surfaces that delineate distinct episodes of sediment accumulation. The origin of both the wetting-upward cycles and the erosive surfaces was controlled by the ground-water table level, dry sand availability and aeolian and fluvial sediment transport capacity variations, related to climatic fluctuations between relatively arid and humid conditions. Preservation of the fluvial–aeolian deposits reflects an overall relative water table rise driven by subsidence.  相似文献   

4.
The Late Proterozoic Bakoye 3 Formation is a predominantly aeolian unit deposited in the glacially influenced cratonic Taoudeni Basin of western Africa. The Bakoye 3 can be divided into five distal units, two proximal units, and a local upper massive sandstone. The basal Unit 1 shows a complex interfingering of aeolian and subaqueous structures, and is interpreted as the precursor of the overlying erg sequences. Unit 2 consists of compound, trough cosets of aeolian cross-strata dominated by grain-flow strata. The unit is interpreted to represent draas with superimposed, small, crescentic dunes. A super bounding surface marks the termination and planation of the erg. Unit 3 is distinguished from the underlying Unit 2 by its larger, overall simple sets of trough cross-strata, interpreted to represent simple, large, crescentic dunes. Unit 4 occurs only locally in laterally discontinuous, large troughs. In one case the trough is filled by small sets of tabular cross-strata dominated by grain-flow deposits. At another section, wedges of coarse-grained wind-ripple strata fill the trough. Unit 4 may represent remnants of ergs or, more likely, local deposition in depressions. The depressions, in the latter scenario, formed with the development of a second super surface that truncates Unit 3. Unit 5 consists of very large sets of wind-ripple cross-strata with less common sets of grain-flow deposits. These deposits are believed to represent enormous dunes with large plinths and subordinate slip face development. A third super surface separates Unit 5 from overlying marine deposits. Together, Units 1–5 represent the core of the ergs in a distal position relative to adjacent upland source areas. Proximally, aeolian deposits are simple, smaller, trough sets interpreted as moderate sized crescentic dunes. Coarse-grained braided stream deposits are prominent. Locally, the top of the Bakoye 3 is marked by channelized mass-flow deposits containing aeolian blocks, and is believed to have resulted from iceberg grounding. An overall environment for the Bakoye 3 is one of uplands marked by ice sheets, with outwash plains extending distally to aeolian ergs. Super surfaces, all marked by polygonal fractures and coarsegrained sediment, represent periods of erg termination that may be linked to glacial-fluvial-aeolian cycles.  相似文献   

5.
The Guará and Botucatu formations comprise an 80 to 120 m thick continental succession that crops out on the western portion of the Rio Grande do Sul State (Southernmost Brazil). The Guará Formation (Upper Jurassic) displays a well-defined facies shift along its outcrop belt. On its northern portion it is characterised by coarse-grained to conglomeratic sandstones with trough and planar cross-bedding, as well as low-angle lamination, which are interpreted to represent braided river deposits. Southwards these fluvial facies thin out and interfinger with fine- to medium-grained sandstones with large-scale cross-stratification and horizontal lamination, interpreted as eolian dune and eolian sand sheets deposits, respectively. The Botucatu Formation is characterised by large-scale cross-strata formed by successive climbing of eolian dunes, without interdune and/or fluvial accumulation (dry eolian system). The contact between the Guará and the Botucatu formations is delineated by a basin-wide deflation surface (supersurface). The abrupt change in the depositional conditions that took place across this supersurface suggests a major climate change, from semi-arid (Upper Jurassic) to hyper-arid (Lower Cretaceous) conditions. A rearrangement of the Paraná Basin depocenters is contemporaneous to this climate change, which seems to have changed from a more restrict accumulation area in the Guará Formation to a wider sedimentary context in the Botucatu Formation.  相似文献   

6.
Eolian landforms are widespread alongside proglacial valley-sandurs in West Greenland and comprise low-relief sand sheets, climbing dunes, and upland loess. Sedimentary facies mainly reflect distance to outwash-source zones and the influence of vegetation cover. The sediments show stratification types typical for poorly to moderately vegetated sand-sheets, alternately laminated silt/peat sequences, and unstratified loess. Twenty-five accelerator mass spectrometry 14C dates provide the basis for the chronostratigraphy of the inland eolian deposits. 14C dates from interstratified sand-sheets suggest that the bulk of eolian sands were deposited prior to 3400 cal yr B.P. and after 550 cal yr B.P. This two-phase formation for the inland dunes most likely reflects local changes in proglacial floodplain development and meltwater rerouting associated with a significant recession of the Greenland ice sheet during the mid Holocene climate optimum. Subsequent floodplain regeneration and renewed sand-sheet formation after 550 cal yr B.P. followed when the ice margin readvanced to its present position. In contrast, atmospheric deposition of regionally derived silt in upland peat mires has been continuous since at least 4750 cal yr B.P. Silt influx data demonstrate a strongly episodic history of the intensity of eolian activity over the past five millennia, which tentatively reflects alternating periods of (winter) aridity associated with the variable incursion of maritime air masses over the interior ice-free areas of West Greenland.  相似文献   

7.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

8.
The Lower Cretaceous geological record of the intracratonic Paraná Basin in southern Brazil comprises a thick succession of aeolian sandstones and volcanic rocks. The intercalation between aeolian sandstone and volcanic floods allowed the preservation of distinct aeolian genetic units. Each genetic unit represents an accumulation episode, bounded by supersurfaces, that coincides with the base of lava flood events. The entire package can be subdivided into a Lower Genetic Unit, which corresponds to aeolian sandstones preserved below the initial lava flows (Botucatu Formation), and an upper set of genetic units, which comprises interlayered aeolian deposits and lava floods (Serra Geral Formation). The Lower Genetic Unit is up to 100 m thick. Its base is composed of ephemeral stream and aeolian sand sheet deposits that are overlain by cross‐bedded sandstones whose origin is ascribed to simple, locally composite, crescentic and complex linear aeolian dunes. Aeolian accumulation of the lower unit was possible as a result of the existence of a wide topographic basin, which caused wind deceleration, and a large sand availability that promoted a positive net sediment flux. The Upper Genetic Units comprise isolated sand bodies that occur in two different styles: (1) thin lenses (<3 m thick) formed by aeolian sand sheets; and (2) thick sand lenses (3–15 m) comprising cross‐bedded cosets generated by migration and climbing of simple to locally composite crescentic aeolian dunes. Accumulation of the aeolian strata was associated with wind deceleration within depressions on the irregular upper surface of the lava floods. The interruption of sedimentation in the Lower and Upper Genetic Units, and related development of supersurfaces, occurred as a result of widespread effusions of basaltic lava. Preservation of both wind‐rippled topset deposits of the aeolian dunes and pahoehoe lava imprints indicates that lava floods covered active aeolian dunes and, hence, protected the aeolian deposits from erosion, thus preserving the genetic units.  相似文献   

9.
M. L. PORTER 《Sedimentology》1987,34(4):661-680
The Lower Jurassic Aztec Sandstone is an aeolian-deposited quartzose sandstone that represents the western margin of the southerly-migrating Navajo-Nugget sand sea (or erg). Vertical and lateral facies relations suggest that the erg margin encroached upon volcanic highlands, alluvial fan, wadi and sabkha environments. In southern Nevada, 700 m thick facies successions record the arrival of the Aztec sand sea. Initial erg sedimentation in the Valley of Fire consists of lenticular or tongue-shaped aeolian sand bodies interstratified with fluvially-deposited coarse sandstone and mudstone. Above, evaporite-rich fine sandstone and mudstone are overlain by thick, cross-stratified aeolian sandstone that shows an upsection increase in set thickness. The lithofacies succession represents aeolian sand sheets and small dunes that migrated over a siliciclastic sabkha traversed by ephemeral wadis. These deposits were ultimately buried by large dunes and draas of the erg. In the Spring Mountains, a similar facies succession also contains thin, lenticular volcaniclastic conglomerate and sandstone. These sediments represent the distal margin of an alluvial fan complex sourced from the west. Thin aeolian sequences are interbedded with volcanic flow rocks, ash-flow tuffs, debris flows, and fluvial deposits in the Mojave Desert of southern California. These aeolian strata represent erg migration up the eastern flanks of a magmatic arc. The westward diminution of aeolian-deposited units may reflect incomplete erg migration, thin accumulation of aeolian sediment succeptible to erosion, and stratigraphic dilution by arc-derived sediment. A two-part division of the Aztec erg is suggested by lithofacies associations, the size and geometry of aeolian cross-strata, and sediment dispersal data. The leading or downwind margin of the erg, here termed the fore-erg, is represented by a 10–100 m thick succession of isolated pods, lenses, and tongues of aeolian-deposited sediment encased in fluvial and sabkha deposits. Continued sand-sea migration brought large dunes and draas of the erg interior into the study area; these 150–500 m thick central-erg sediments buried the fore-erg deposits. The trailing, upwind margin of the erg is represented by back-erg deposits in northern Utah and Wyoming.  相似文献   

10.
Geological structures influence the formation and evolution of sedimentary rocks. The Minas do Camaquã fault zone is a primary structure of the Camaquã Basin, controlling the uplift of the ore-bearing units of the Santa Bárbara Group. To the south of the Camaquã River, the fault zone deforms alluvial and eolian sequences attributed either to the Santa Bárbara or Guaritas groups. In this study, a facies and petrographic composition and diagenetic analysis are presented to understand the evolution of the fault zone. Facies analysis was accomplished using high-resolution orthophoto mosaics and field surveys. Seven sedimentary facies were defined, grouped into three facies associations. Facies associations correspond to a succession of climate-influenced depositional environments. The transition from humid to dry conditions occurs from a fluvial (facies association 1) to eolian environments (facies association 2). These deposits are overlaid at the top by a high energy environment deposits characterized by amalgamated gravelly and sandy bodies, corresponding to an alluvial environment (facies association 3). Despite a small compositional variation, sandstones present a continental block provenance which may be related to mixed anorogenic or orogenic provenance. Diagenetic features are similar in the three facies associations, suggesting the same burial history for the sedimentary deposits separated by the fault zone. The Minas do Camaquã fault zone in the study area is an intraformational structure, as analyzed sequences are attributed to the Guaritas Group, implying a relatively high degree of deformation late after its deposition.  相似文献   

11.
Pleistocene coastal terrace deposits exposed in sea cliffs near Gold Beach, Oregon can be divided into four stratigraphic units: a basal gravelly unit and three overlying sandy units, each with mud beds, a paleosol, or the modern soil in its uppermost part. The gravelly unit consists of gravel and sand in its lower part, sand, in part pebbly or cobbly, in its middle part, and mud and sand in its upper part. Black sand and transported pieces of wood are common in the middle part of the unit, and wood is common in the mud. This unit is interpreted as a progradational deposit including environments ranging from lower forebeach at the base to backbeach flats and streams at the top.The main sandy parts of the sandy units are made up of a crossbedded sand facies, the dominant structure in which is medium-scale crossbedding, and an irregularly bedded sand facies, which is locally pebbly and is dominated by scour-and-fill structures. Deciding between shallow marine and eolian interpretations of the sandy units proved exceptionally difficult until modern analogues were found in the fine details of the internal structures. Largely on the basis of such structural details, the crossbedded sand facies is interpreted as the product of small eolian dunes, and the irregularly bedded sand facies is interpreted as deposits of interdune ephemeral streams, ephemeral ponds, and wet to dry subaerial flats. The mud beds and paleosols at the tops of the sandy units represent times of temporary stabilization of the dune field.  相似文献   

12.
Abstract Accumulation within the unconformity‐based Hauterivian Avilé Sandstone of the Neuquén Basin, Argentina, was characterized by a close interaction between fluvial and aeolian processes developed after a major relative sea‐level drop that almost completely desiccated the entire basin and juxtaposed these non‐marine deposits on shallow‐ and deep‐marine facies. Aeolian deposits within the Avilé Member include dune (A1) and sand sheet (A2) units that characterize the lower part of the unit. Fluvial deposits comprise distal flood units (F1) interbedded with aeolian dune deposits in the middle part of the succession, and low‐ (F2) and high‐sinuosity (F3) channels associated with floodplain deposits (F4) towards the top. The internal characteristics of the aeolian system indicate that its accumulation was strongly controlled by water‐table dynamics, with the development of multiple horizontal deflation super surfaces that truncate dune deposits and form the basal boundary of flood deposits and sand sheet units. A long‐term wetting‐upward trend is recorded throughout the entire unit, with an increase in fluvial activity towards the top and the development of a more permanent fluvial system overlying a major erosion surface interpreted as a sequence boundary. The upward increase in water‐table influence might be related to relative sea‐level rise, which controlled the position of the water table and allowed the accumulation of tabular aeolian units bounded by horizontal deflation surfaces. This high‐frequency, eustatically driven process acted together with a long‐term climatic change towards wetter conditions.  相似文献   

13.
黄土高原西部风成沉积的研究,是近年古气候研究的重要问题之一,但对新生代风成沉积底界的认识仍存在争议。渐新世晚期发育于兰州地区的咸水河组的岩性特征与黄土高原的风尘沉积有相似的特征,对其进行系统的沉积相和沉积环境研究对认识黄土高原西部早期风尘沉积有重要意义。本研究对兰州以北厚约916m的凤凰山剖面进行了岩石磁学、粒度、成份分析和电镜等多种分析,初步结果表明,咸水河组大部分黏土没有水平层理,其粒度概率分布曲线、概率累积曲线、组成特征和磁化率、元素含量及扫描电镜与典型黄土、古土壤和红黏土非常相似,为风成沉积,是目前发现的兰州地区新生代最老的风成沉积。这套黏土的色调和磁化率等环境代用指标与黄土高原的第四纪黄土接近,指示了第三纪早期一个低温干旱的地质环境。咸水河组中出现的砂砾石层,以颗粒大、分选差、一般无水平层理或层理不明显为特征,其粒度概率曲线、累积概率曲线与典型河流沉积物非常相似,是河流沉积物,指示了多期河流发育,可能与青藏高原的隆升有关。  相似文献   

14.
The Kimmeridgian Quebrada del Sapo Formation in the southernmost Neuquén Basin in Argentina represents a succession up to 40 m thick of coarse- to fine-grained fluvial deposits overlain by aeolian deposits. These fluvial–aeolian deposits reflect a significant palaeogeographic change in the basin and are related to a major, tectonically enhanced, relative sea-level fall. The fluvial section is dominated by braided-channel, fine-grained ephemeral, and sheetflood deposits. Aeolian facies are dominated by dune deposits, with minor sandsheet and interdune units. Changes in the nature of both fluvial and aeolian sedimentation within the studied area suggest a regional variability of accommodation/sediment supply conditions. The regional changes of the aeolian succession likely reflect different relative positions within a major erg. In the upwind margin of the erg, a shallow water table promoted water-lain sedimentation in interdune areas, whereas in the central parts of the erg, dry sediment accumulation took place above the regional water-table level. The vertical transition observed in the Quebrada del Sapo Formation, from fluvial to aeolian deposits, may be the result of a local climatic change to drier conditions due to the development of a climatic barrier imposed by growth of a magmatic arc to the west. Alternatively, the vertical transition could be related to a lowering of the water table associated with the compartmentalization of the basin during a period of low sea level.  相似文献   

15.
The Pennsylvanian to Permian lower Cutler beds comprise a 200 m thick mixed continental and shallow marine succession that forms part of the Paradox foreland basin fill exposed in and around the Canyonlands region of south‐east Utah. Aeolian facies comprise: (i) sets and compound cosets of trough cross‐bedded dune sandstone dominated by grain flow and translatent wind‐ripple strata; (ii) interdune strata characterized by sandstone, siltstone and mudstone interbeds with wind‐ripple, wavy and horizontal planar‐laminated strata resulting from accumulation on a range of dry, damp or wet substrate‐types in the flats and hollows between migrating dunes; and (iii) extensive, near‐flat lying wind‐rippled sandsheet strata. Fluvial facies comprise channel‐fill sandstones, lag conglomerates and finer‐grained overbank sheet‐flood deposits. Shallow marine facies comprise carbonate ramp limestones, tidal sand ridges and bioturbated marine mudstones. During episodes of sand sea construction and accumulation, compound transverse dunes migrated primarily to the south and south‐east, whereas south‐westerly flowing fluvial systems periodically punctuated the dune fields from the north‐east. Several vertically stacked aeolian sequences are each truncated at their top by regionally extensive surfaces that are associated with abundant calcified rhizoliths and bleaching of the underlying beds. These surfaces record the periodic shutdown and deflation of the dune fields to the level of the palaeo‐water‐table. During episodes of aeolian quiescence, fluvial systems became more widespread, forming unconfined braid‐plains that fed sediment to a coastline that lay to the south‐west and which ran approximately north‐west to south‐east for at least 200 km. Shallow marine systems repeatedly transgressed across the broad, low‐relief coastal plain on at least 10 separate occasions, resulting in the systematic preservation of units of marine limestone and calcarenite between units of non‐marine aeolian and fluvial strata, to form a series of depositional cycles. The top of the lower Cutler beds is defined by a prominent and laterally extensive marine limestone that represents the last major north‐eastward directed marine transgression into the basin prior to the onset of exclusively non‐marine sedimentation of the overlying Cedar Mesa Sandstone. Styles of interaction between aeolian, fluvial and marine facies associations occur on two distinct scales and represent the preserved expression of both small‐scale autocyclic behaviour of competing, coeval depositional systems and larger‐scale allocyclic changes that record system response to longer‐term interdependent variations in climatic and eustatic controlling mechanisms. The architectural relationships and system interactions observed in the lower Cutler beds demonstrate that the succession was generated by several cyclical changes in both climate and relative sea‐level, and that these two external controls probably underwent cyclical change in harmony with each other in the Paradox Basin during late Pennsylvanian and Permian times. This observation supports the hypothesis that both climate and eustasy were interdependent at this time and were probably responding to a glacio‐eustatic driving mechanism.  相似文献   

16.
塔里木盆地喀什凹陷侏罗系沉积特征及其演化   总被引:2,自引:2,他引:2  
野外地质调查和室内地震解释认为,喀什凹陷侏罗系为陆相河流—湖泊沉积,整个侏罗纪代表了一个水体由浅—深—浅的沉积演化,早侏罗世莎里塔什组属干燥、氧化环境中的冲积扇沉积,到康苏组时演化为潮湿气候条件下的辫状河流沉积;中侏罗世盆地沉积范围扩大,出现湖泊和扇三角洲沉积,晚侏罗世盆地又演化为干燥—半干燥环境下的河流与冲积扇沉积。  相似文献   

17.
Eolian sediments are common within the middle Gila River Valley, southern Arizona, and reflect variability in eolian and fluvial processes during the late Holocene. This study focuses on deciphering the stratigraphic record of eolian deposition and associated luminescence dating of quartz extracts by single aliquot regeneration (SAR) protocols. Stratigraphic assessment coupled with luminescence ages indicates that there are four broad eolian depositional events at ca. 3145 ± 220 yr, 1950-1360 yr, 800 ± 100 yr, and 690-315 yr. This nascent chronology, correlated with regional archeological evidence and paleoclimate proxy datasets, leads to two general conclusions: (1) loess deposits, transverse-dune formation and sand-sheet deposition in the late Holocene are probably linked to flow variability of the Gila River, though the last two events are concordant with regional megadroughts; and (2) the stability of eolian landforms since the 19th century reflects the lack of eolian sediment supply during a period of fluvial incision, resulting in Entisol formation on dunes. The prime catalyst of eolian activity during the late Holocene is inferred to be sediment supply, driven by climate periodicity and variable flow within the Gila River catchment.  相似文献   

18.
在野外区域地质调查的基础上 ,通过岩性、沉积构造、古流向、垂向序列、沉积体三维形态和组合及室内粒度分析、扫描电镜分析等 ,于研究区第三纪地层中识别出了三角洲相、三角洲平原相、河流相、湖泊相、冲积扇相及风成砂丘。系统地研究了盆地的垂向充填序列 ,并且就对应的环境演变进行了较详细的探讨。  相似文献   

19.
The Hornby Bay Group is a Middle Proterozoic 2.5 km-thick succession of terrestrial siliciclastics overlain by marine siliciclastics and carbonates. A sequence of conglomeratic and arenaceous rocks at the base of the group contains more than 500 m of mature hematitic quartz arenite interpreted to have been deposited by migrating aeolian bedforms. Bedforms and facies patterns of modern aeolian deposits provided a basis for recognizing two sequences of aeolian arenite. Both sequences interfinger with alluvial—wadi fan conglomerates and arenites deposited by braided streams. Depositional processes, facies patterns and paleotopographic position of the arenites are consistent with modern sand sea dynamics.Distal aeolian facies in both sequences are composed of trough crossbed megasets deposited by climbing, sinuous-crested, transverse dunes. Megasets comprise a gradational assemblage of tabular to wedge-planar cosets formed by deflation/reactivation of dune lee slopes and migration of smaller superposed aeolian bedforms (small dunes and wind ripples). Megasets in the proximal facies are thinner, display composite internal stratification and have a tabular-planar geometry which suggests that they were formed by smaller, straight-crested transverse dunes. Most stratification within the crossbeds is inferred to have formed by the downwind climbing of aeolian ripples across the lee slopes of dunes.Remarkably few Precambrian aeolian deposits have been reported previously. This seems anomalous, because most Precambrian fluvial sediments appear to have been deposited by low sinuosity (braided) streams, the emergent parts of which are prime areas for aeolian deflation. Frequent floods and rapid lateral migration of Precambrian humid climate fluvial systems probably restricted aeolianite deposition to arid paleoclimates. Thus the apparent anomaly may reflect non-recognition and/or non-preservation of aeolianites and/or variations in some aspect of sand sea formation and migration unique to the Precambrian. Reconstruction of the Hornby Bay Group aeolianites using recently developed criteria for their recognition suggests that the latter reason did not exert a strong influence.  相似文献   

20.
The Weichselian deposits of the flat Dutch-Belgian coversand area are characterized by highly varying facies types. The geomorphological location and the role of water during the deposition and the transportation of the original eolian sediments may fully explain the texture and sedimentary structures of the lithostratigraphic units. Directly deposited eolian loams and sands on the dry interfluves contrast with the same, but reworked, sediments in wet valleys and depressions. The formation of periglacial phenomena is also dependent on the geomorphologic, lithologic, and hydrologic conditions. The occurrence of peaty beds is restricted to wet environments without precise climatic significance. The Pleniglacial sequence is subdivided into early and late Pleniglacial stades, both characterized by (partial) permafrost conditions, interrupted by a middle Pleniglacial interstadial complex with clearly milder conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号