首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 593 毫秒
1.
为了有效评估平衡分馏模式和动力分馏模式模拟水稳定同位素分馏的合理性,开展了不同大气条件下的蒸发皿蒸发实验和2种模式的模拟试验,实验与模拟结果表明:随着蒸发的进行,蒸发皿剩余水体中稳定同位素不断富集,同位素的分馏速率与蒸发速率成正比,并表现出夏季高、冬季低的特点;但在降水发生时段,蒸发水体稳定同位素容易受到相对湿度和大气水汽稳定同位素的影响,出现贫化现象。受到温度和相对湿度等蒸发条件的影响,实测蒸发线斜率呈现夏季低、冬季高的特点。4次实验剩余水体中的过量氘随着剩余水比率(f)的变化总体上呈下降趋势,降水时段的过量氘出现上升现象。在模拟试验中,与平衡模拟结果相比,动力模拟再现水体蒸发过程中稳定同位素变化的能力更强,能体现出实际蒸发过程中水稳定同位素比率随f变化的细节;动力模拟的蒸发线更能反映实际蒸发过程;过量氘的动力模拟值更接近实测值的大小及其变化趋势。  相似文献   

2.
李桐  邱国玉 《热带地理》2018,38(6):857-865
水面蒸发是水循环的重要部分,目前大量的研究集中在淡水或低盐度咸水体蒸发,仅以淡水的蒸发特性或计算方法应用于全部水体并不准确。研究盐水蒸发与淡水蒸发的差异对蒸发过程机理研究、推动蒸发模型的创新改进至关重要。研究中使用蒸发皿对比盐水与纯水的蒸发过程,利用稳定氢氧同位素比较盐水与纯水蒸发的动力学分馏过程,结果表明:盐水蒸发量较纯水少,但仍存在蒸发日内变化规律,蒸发速率与气温变化规律同步,并在正午前后达日最大值;随着蒸发的进行,重同位素在液相富集,盐度对于H/D分馏有更显著的抑制作用;盐水与纯水的蒸发线拟合均有良好的线性关系,盐分使水体蒸发受到更强的非平衡分馏影响;热红外拍摄液面观测到蒸发过程中盐水液面温度始终高于纯水0.1~2.2℃,平均温差达1℃,这是因为盐水蒸发量较纯水小,更少的热量通过潜热释放;Craig & Gordon模型计算蒸发水汽同位素特征值,表明随着蒸发的进行,蒸发水汽组分重同位素也在不断富集,但程度不如剩余水体,检验盐水与纯水蒸发水汽氢氧同位素拟合方程却无明显差异,与前述结论相悖,说明该方程在小尺度上的应用还有待研究。  相似文献   

3.
云底二次蒸发导致的同位素动力分馏可显著影响观测的降水同位素组成和大气水线。本文利用海河流域7个监测站点的降水δ2H和δ18O数据,分析了云底二次蒸发对流域降水同位素的影响。结果表明:流域降雨水样的大气水线为δ2H=7.19δ18O-0.74,显著不同于降雪水样的大气水线(δ2H=8.42δ18O+15.88);流域降雨,特别是小降雨(<5 mm)事件,易受到云底二次蒸发的影响,导致其大气水线的斜率和截距均随着降雨量的减小而减小。流域降雨同位素的云底二次蒸发主要受气温和相对湿度控制,随着气温的升高和相对湿度的减小,云底二次蒸发加剧,导致观测的地面降雨富集重的同位素,同时伴随的同位素动力分馏导致流域降水过量氘(d)值以及大气水线的斜率和截距均减小。与平原地区相比较,流域山间盆地地区受“雨影效应”影响,气候相对干燥,其降雨同位素受更强的云底二次蒸发影响。观测期间,流域小的降雨事件占总降水事件的42%,故云底二次蒸发对流域降水同位素具有重要的影响。  相似文献   

4.
在干旱区,雨滴在云下降落易受到二次蒸发的影响,明确降水从云层底部降落到地面过程中稳定氢氧同位素的变化在同位素水文学研究中很有必要。基于新疆地面气象站逐小时的观测资料,采用改进后的Stewart模型,研究了新疆雨滴云下蒸发剩余比(从云下到近地面雨滴蒸发后剩余体积占原体积的百分率f)、雨滴中δD变化量(△δD)和过量氘变化量(△d)的时空特征,并分析了△d与气象要素的关系。结果表明:(1)新疆降水中△d和蒸发剩余比存在明显的空间差异。(2)当在气温低、相对湿度大、降水强度大、雨滴直径大的情况下,蒸发剩余比较大,△d接近于0,蒸发剩余比与△d间的线性关系明显,斜率较低。不同气象条件下,蒸发剩余比与△d的关系并不固定,利用这一线性关系反推蒸发剩余比应慎重。(3)敏感性分析可以得出,如果各气象站的气温升高2℃,△d降幅为0.26%~3.10%;如果相对湿度升高5%,△d升幅为1.23%~8.34%;如果雨强增大10%,△d升幅为0.06%~0.89%;如果雨滴直径增加0.2 mm,△d升幅为0.98%~8.16%,但雨滴直径增加量大于1.2 mm时,△d变化量趋于稳定。  相似文献   

5.
利用2015年8月至2016年7月在印度河上游流域Bagrot山谷降水稳定同位素(δ18O和δD)观测结果以及当地气象资料,利用同位素示踪及统计分析方法,并结合HYSPLIT模型,对研究区降水稳定同位素变化特征、大气水线以及水汽来源进行了分析。结果表明,观测期间Bagrot山谷降水稳定同位素的季节变化明显,δ18O与δD秋冬季偏低,春夏季偏高,且与气温变化一致,存在显著的温度效应,而降水量效应不明显。而且发现,研究区局地大气水线截距和斜率均低于全球的,反映了降水过程中云下二次蒸发作用较为强烈,特别是,不同的降水形态导致该研究区局地大气水线的斜率和截距不同。当液态降水(降雨)发生时,由于在较为干旱的气候环境下,雨滴在降落的过程中受到二次蒸发相对较强,使得局地大气水线的斜率和截距偏低;而当固态降水(降雪)发生时,由于温度较低,受再循环水汽和二次蒸发的影响较小,导致局地大气水线的斜率和截距均偏高。Bagrot山谷及其周边地区,从南到北局地大气水线的斜率相差不大,而其截距总体上随着纬度升高而降低,可能与云下二次蒸发导致稳定同位素发生的不平衡分馏逐渐强烈有关。通过Bagrot山谷站点降水稳定同位素观测结果并结合HYSPLIT模型的后向追踪,研究还发现,研究区全年主要受西风环流以及局地环流的影响。但与研究区以北的临近站点(慕士塔格、和田等)相比有所不同,由于Bagrot山谷位置更靠南,其仍然偶尔受到来自南方的海洋性水汽影响。这一研究结果可能对该地区树轮稳定同位素记录的解译具有一定的指示意义。  相似文献   

6.
雨滴从云底降落到地面过程的云下二次蒸发现象会影响雨滴中的同位素比率,明确降水过程中稳定同位素的变化对研究流域水循环具有重要意义。基于全球降水同位素网络(GNIP)、相关文献同位素数据以及气象数据,首先建立局地大气水线(LMWL)定性分析了黄河流域云下二次蒸发与各气象要素间的关系,其次运用改进的Stewart模型定量计算了蒸发剩余比(f)和云底降水与地面降水的D-excess之差(Δd)。结果表明:(1) 黄河流域LMWL方程为:δ2H=7.01δ18O+1.25(n=293,R2=0.92),斜率和截距相比GMWL均较小,说明雨滴在下落过程中受到云下二次蒸发的影响。其中0~10 mm的降雨事件对云下二次蒸发影响显著;气温越高,或者水汽压、相对湿度越小,云下二次蒸发越强烈。(2) 季节变化上,从春季到冬季, f和Δd逐渐增大,云下二次蒸发逐渐减小。空间变化上,蒙甘区、蒙中区、晋陕甘区和渭河区的西安,年际间云下二次蒸发变化较大,而青南区、祁连-青海湖区、渭河区的平凉、长武、华山和鲁淮区年际差异较小。(3) 降水中Δd和f之间的线性关系在不同气象要素范围内有不同的数值,由于不同区域各气象条件存在差异,因此在应用经验公式时需考虑研究区的具体气象条件。  相似文献   

7.
玉龙雪山冰川稳定同位素分馏冬夏对比   总被引:8,自引:0,他引:8  
利用玉龙雪山白水1号冰川区冬季和夏季表面积雪、雪坑、融水以及白水河河水中δ18O资料,对比分析了冬季和夏季我国典型季风温冰川系统内稳定同位素分馏行为的差异。分析结果表明,夏季冰川系统内各水体相变过程中稳定同位素分馏程度均比冬季强烈,指示出夏季季风海洋型冰川强烈消融的特点。另外,不论是冬季还是夏季,从表面积雪到融水再到由融水补给的河流,δ18O垂直变化梯度依次增大,反映了从固态降雪向冰川融水补给的河流河水转换过程中,稳定同位素分馏程度逐渐增强,体现了沉积后过程对海洋型冰川区同位素记录的影响具有空间差异性。  相似文献   

8.
基于2018年4—10月在兰州市南北两山采集的降水、河水及土壤样品,对不同水体中的氢氧稳定同位素进行测定,并应用Craig-Gordon模型分析了南北两山土壤蒸发的时空变化及其成因。结果表明:① 兰州市局地大气水线LMWL斜率相比全球大气水线GMWL较小,主要是相对湿度小,雨滴在下落过程中受到云下二次蒸发的影响。由表层0~10 cm至深层60~120 cm,土壤水δ2H和δ18O逐渐贫化,土壤水线SWL的斜率均呈现规律性增大,说明表层土壤受到的蒸发分馏最为强烈,随着土壤深度的增加,蒸发分馏逐渐减弱。② 时间变化上,局地蒸发线斜率SLEL在4月较大,土壤蒸发较小,4—6月减小,土壤蒸发增大,6—8月趋于稳定,其中7月土壤蒸发最为强烈,自8月SLEL增大,土壤蒸发开始减小,一直减小至10月。③ 空间变化上,北山相比南山蒸发损失量f更为强烈,主要原因是北山气温、相对湿度和土壤含水量均高于南山。④ 2018年4—10月,各采样点蒸发损失量f达到峰值和谷值的时间相比降水δ 18O均存在明显的滞后,主要原因是降水在土壤基质入渗过程中存在滞留。  相似文献   

9.
长沙降水中稳定同位素的昼夜差别   总被引:1,自引:0,他引:1  
常昕  章新平  刘仲藜  王锐 《热带地理》2021,41(3):635-644
基于长沙地区降水稳定同位素的实测数据,对不同季节(暖半年、冷半年)、不同降水类型(对流降水、平流降水)、不同降水强度下昼、夜降水中稳定同位素的变化特征进行分析和比较,旨在揭示昼夜降水中稳定同位素的差异及其影响因素,深化对季风区降水稳定同位素变化规律的认识。结果表明:降水中δ18O在暖半年时段夜间比白天偏正,而在冷半年时段白天比夜间偏正,且均与降水量呈反比;无论在暖半年还是冷半年,相较于白天,夜间温度低相对湿度大,降落雨滴中重同位素蒸发富集作用较弱,从而降水中过量氘d在夜间偏正;由于下垫面水汽再循环对大气水线(LMWL)的影响大于雨滴云下二次蒸发的影响,LMWL的斜率在白天较夜间偏正。在对流降水主导条件下,强烈的辐合气流携带低层具有相对富集同位素的水汽上升,形成降水中的δ18O明显偏正;相较于对流降水主导,平流云中微弱的空气垂直运动使得高层具有相对贫化同位素的水汽辐合,形成降水中的δ18O较为偏负;LMWL的斜率则在平流降水主导时更大。随降水强度的增加,降水中稳定同位素逐渐偏负,LMWL斜率和截距均明显增大;在降水强度≥0.1 mm/12 h时,LMWL的斜率在白天更大,截距在暖半年晚上和冷半年白天更大;降水强度≥5.0 mm/12 h时,LMWL的斜率和截距在暖半年白天和冷半年晚上更大。  相似文献   

10.
水的稳定同位素(D和O)是水文过程的重要示踪剂。本文以哈尼梯田文化景观遗产核心区全福庄河扇形小流域为研究对象,通过采集流域内雨季和旱季的大气降水样品,并测定和分析氢氧同位素值(D和δ18O),得出以下结论:(1)研究区全年大气降水线方程为:δD=8.35δ~(18)O+22.41(R2=0.98,n=48),但年内旱季和雨季降水线方程的斜率和截距差异明显。(2)研究区大气降水中氢氧稳定同位素组成具有明显季节差异,雨季降水中氢氧同位素贫化,d值偏低;旱季降水氢氧同位素值相对偏正,d值偏高,这与我国季风区旱雨季水汽来源差异有关。(3)根据相关分析可知,温度、降水和相对湿度3个要素的变化是研究区降水同位素值变化的主要影响因素,但在不同的时间尺度下影响降水同位素变化的环境因素存在差异。(4)在年尺度下降水和相对湿度是主要的影响因素;在旱雨季尺度下,温度是雨季降水同位素值变化的主要因素,而温度、降水量和相对湿度对旱季降水同位素值变化的影响则不显著,旱季降水同位素δ18O值变化为三因素共同作用的结果。  相似文献   

11.
为探讨极端天气降水中稳定同位素的变化,应用2015年9号台风“灿鸿”影响期间中国东部沿海城市台北、温岭、海宁、南通降水中稳定同位素资料,分析降水中稳定同位素的时空变化。结果表明:台风“灿鸿”影响期间,台北降水的δ18O平均值为-4.40‰,为最高值;温岭降水δ18O的平均值最低,为-9.80‰;海宁与南通降水的δ18O平均值居于两者之间,分别为-8.83‰和-7.88‰。4地降水δ18O均呈现出2个阶段的“厂”型变化特征。“灿鸿”降水δ18O值在时空分布上冲刷效应明显,采样站点距离台风中心越近降水δ18O值越低d值越高。台风灿鸿影响期间整个降水过程以湿润的热带海洋气团为主,台北阶段1降水受台风外围云系影响,降水的冲刷程度较轻,δ18O值偏高;台北阶段2降水与温岭降水受单一水汽团冲刷效应影响,降水δ18O不断降低;海宁和南通与灿鸿中心的距离基本相似,且水汽源相同,降水δ18O值波动比较接近。  相似文献   

12.
Under Rayleigh equilibrium condition, stable isotopic ratio in residual water increases with the decrease of the residual water proportion f exponentially, and the fractionation rate of stable isotopes is inversely proportional to temperature. However, under kinetic evaporation condition, the fractionation of stable isotopes is not only related to the phase temperature but also influenced by the atmospheric humidity and the mass exchange between liquid and vapor phases. The ratio δ in residual water will not change with f after undergoing evaporation of a long time for great relative humidity. The rate that the evaporating water body reaches isotopic steady state is mainly dependent on the relative humidity in atmosphere. The analysis shows that the actual mean linear variety rates, about -30.0, of the δ18O in residual water versus the residual water proportion at Nagqu and Amdo stations are consistent with the simulated process under temperature of 20 oC and relative humidity of 50%. The distillation line simulated under Rayleigh equilibrium condition is analogous to the global meteoric water line (MWL) as the temperature is about 20 oC. Under non-equilibrium condition, the slope and constant values of distillation line are directly proportional to temperature and relative humidity. According to the basic data, the simulated distillation line is very consistent with the actual distillation line of Qinghai Lake.  相似文献   

13.
水体蒸发过程中稳定同位素的分形机制   总被引:1,自引:0,他引:1  
The variations of stable isotopes in atm ospheric vapor and precipitation are caused by stableisotopic fractionation during phase changes in w ater cycle. The isotopic fractionation m ainlyhappens in the m ass transportation of stable isotopes from free w…  相似文献   

14.
石羊河流域1961-2005年蒸发皿蒸发量变化趋势及原因初探   总被引:4,自引:0,他引:4  
 利用1961—2005年石羊河流域上、中、下游当地气象站的逐月20 cm口径蒸发皿蒸发量、平均气温、平均相对湿度、降水量、平均风速、日照时数、最高气温和最低气温资料,研究了近45 a石羊河流域蒸发皿蒸发量变化趋势及原因。结果表明,45 a来,石羊河流域及上、下游年蒸发皿蒸发量呈上升趋势,中游年蒸发皿蒸发量呈下降趋势,上游上升趋势最明显。四季中,春、秋、冬季蒸发皿蒸发量呈上升趋势,上升最明显的是冬季,其次为秋季,春季变化不明显,夏季蒸发皿蒸发量变化呈下降趋势。石羊河流域在不同时段不同区域年蒸发皿蒸发量都存在明显的6~7 a周期和1~2 a的短周期,并都发生了突变。相关系数法分析表明,影响石羊河流域及中、下游年蒸发皿蒸发量变化的主要影响因子是相对湿度和降水,上游的主要影响因子是相对湿度和气温。四季中,春季的主要影响因子是相对湿度和降水;夏季影响石羊河流域及上、中蒸发皿蒸发量变化的主要因子是相对湿度和气温,下游的主要影响因子是相对湿度和降水;秋季影响石羊河流域及中、下游蒸发皿蒸发量变化的主要影响因子是相对湿度和气温日较差,上游其主要影响因子是相对湿度和降水;冬季的主要影响因子是气温和相对湿度。影响年以及春、夏、秋最显著的因子是相对湿度,冬季最显著的影响因子是气温。  相似文献   

15.
台风“海马”对洞庭湖流域降水同位素的影响研究   总被引:2,自引:1,他引:1  
基于2011年第4号台风“海马”登陆前后洞庭湖流域内长沙降水同位素资料,分析了降水同位素的变化特征以及水汽输送对降水同位素的影响。结果表明:台风“海马”在洞庭湖流域内长沙所形成降水的大气水线的斜率和截距均小于长沙夏季大气水线,这与根据同位素分馏理论做出的推测相吻合。台风天气系统影响下的流域降水δ 18O值为研究时段内的最低值,即降水同位素被显著贫化,而降水过量氘(deuterium excess,记为d)波动明显要小于其他时段,后者反映了形成台风降水的水汽来源较为单一。研究时段内长沙降水d指示台风降水前、台风降水中两个阶段水汽来源于西太平洋,水汽输送轨迹也印证了降水d所指示的水汽来源情况,如流域台风降水的水汽主要来自前期台风输送至南海北部的西太平洋水汽。台风降水后这一阶段降水中d指示海洋水汽来源的效果降低,其原因在于海洋水汽输送减少、陆地蒸发旺盛以及下落雨滴蒸发强烈所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号