首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We use semi-analytical modelling of galaxy formation to predict the mix of elliptical galaxies with boxy and disky isophotes, assuming they originated from major mergers of different mass ratios. Numerical simulations of merging spiral galaxies indicate equal mass mergers leading to boxy and merger with a mass ratio of 3:1 to disky ellipticals. Assigning isophotal shapes to elliptical galaxies in our model we find bright disky ellipticals being as frequent or more frequent as bright boxy ellipticals, in contrast to observations which indicate that most of the bright ellipticals should be boxy. The precursors of bright ellipticals in our model are mainly also ellipticals which merge with each other later. Assuming that the merger of two ellipticals results in boxy ellipticals increases the fraction of bright boxy ellipticals. By defining a disky as a bulge dominated galaxy with an additional disk mass of more than 20% the total baryonic mass, increases the fraction of low mass disky ellipticals and reproduces the observed trend of a steep increase in the fraction of low mass disky ellipticals. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
We analyse N -body galaxy merger experiments involving disc galaxies. Mergers of disc–bulge–halo models are compared to those of bulgeless, disc–halo models to quantify the effects of the central bulge on merger dynamics and the structure of the remnant. Our models explore galaxy mass ratios 1:1 through 3:1, and use higher bulge mass fractions than previous studies. A full comparison of the structural and dynamical properties with our observations is carried out. The presence of central bulges results in longer tidal tails, oblate final intrinsic shapes, surface brightness profiles with a higher Sérsic index, steeper rotation curves and oblate-rotator internal dynamics. Mergers of bulgeless galaxies do not generate long-lasting tidal tails, and their strong triaxiality seems inconsistent with observations; these remnants show shells, which we do not find in models including central bulges. Giant ellipticals with boxy isophotes and anisotropic dynamics cannot be produced by the mergers modelled here; they could be the result of mergers between lower luminosity ellipticals, themselves plausibly formed in disc-disc mergers.  相似文献   

3.
We carry out numerical simulations of dissipationless major mergers of elliptical galaxies using initial galaxy models that consist of a dark matter haloes and a stellar bulge with properties consistent with the observed fundamental plane. By varying the density profile of the dark matter haloes [standard Navarro, Frenk & White (NFW) profile versus adiabatically contracted NFW profile], the global stellar to dark matter mass ratio and the orbit of the merging galaxies, we are able to assess the impact of each of these factors on the structure of the merger remnant. Our results indicate that the properties of the remnant bulge depend primarily on the angular momentum and energy of the orbit; for a cosmologically motivated orbit, the effective radius and velocity dispersion of the remnant bulge remain approximately on the fundamental plane. This indicates that the observed properties of elliptical galaxies are consistent with significant growth via late dissipationless mergers. We also find that the dark matter fraction within the effective radius of our remnants increases after the merger, consistent with the hypothesis that the tilt of the fundamental plane from the virial theorem is due to a varying dark matter fraction as a function of galaxy mass.  相似文献   

4.
The colour–magnitude relation (CMR) of cluster elliptical galaxies has been widely used to constrain their star formation histories (SFHs) and to discriminate between the monolithic collapse and merger paradigms of elliptical galaxy formation. We use a Λ cold dark matter hierarchical merger model of galaxy formation to investigate the existence and redshift evolution of the elliptical galaxy CMR in the merger paradigm. We show that the SFH of cluster ellipticals predicted by the model is quasi-monolithic , with only ∼10 per cent of the total stellar mass forming after   z ∼ 1  . The quasi-monolithic SFH results in a predicted CMR that agrees well with its observed counterpart in the redshift range  0 < z < 1.27  . We use our analysis to argue that the elliptical-only CMR can be used to constrain the SFHs of present-day cluster ellipticals only if we believe a priori in the monolithic collapse model. It is not a meaningful tool for constraining the SFH in the merger paradigm, since a progressively larger fraction of the progenitor set of present-day cluster ellipticals is contained in late-type star-forming systems at higher redshift, which cannot be ignored when deriving the SFHs. Hence, the elliptical-only CMR is not a useful discriminant between the two competing theories of elliptical galaxy evolution.  相似文献   

5.
The discovery of protoglobular cluster candidates in many present-day mergers allows us to understand better the possible effects of a merger event on the globular cluster system of a galaxy, and to foresee the properties of the end-product. By comparing these expectations with the properties of globular cluster systems of elliptical galaxies at the present time we can constrain merger models. The observational data indicate that (i) every gaseous merger induces the formation of new star clusters, and (ii) the number of new clusters formed in such a merger increases with the gas content of the progenitor galaxies. Low-luminosity (about M V  > −21), discy ellipticals are generally thought to be the result of a gaseous merger. As such, new globular clusters are expected to form but have not been detected to date. We investigate various reasons for the non-detection of subpopulations in low-luminosity ellipticals, i.e. absence of an old population, absence of a new population, destruction of one of the populations and, finally, an age–metallicity conspiracy that allows old and new globular clusters to appear indistinguishable at the present epoch. All of these possibilities lead us to a similar conclusion, namely that low-luminosity ellipticals did not form recently ( z  < 1) in a gas-rich merger, and might not have formed in a major merger of stellar systems at all. High-luminosity ellipticals do reveal globular cluster subpopulations. However, it is difficult to account for the two populations in terms of mergers alone and, in particular, we can rule out scenarios in which the second subpopulation is the product of a recent, gas-poor merger.  相似文献   

6.
We present here the first study of the X-ray properties of an evolutionary sample of merging galaxies. Both ROSAT PSPC and HRI data are presented for a sample of eight interacting galaxy systems, each believed to involve a similar encounter between two spiral discs of approximately equal size. The mergers span a large range in age, from completely detached to fully merged systems.
A great deal of interesting X-ray structure is seen, and the X-ray properties of each individual system are discussed in detail. Along the merging sequence, several trends are evident: in the case of several of the infrared bright systems, the diffuse emission is very extended, and appears to arise from material ejected from the galaxies. The onset of this process seems to occur very soon after the galaxies first encounter one another, and these ejections soon evolve into distorted flows. More massive extensions (perhaps involving up to 1010 M⊙ of hot gas) are seen at the 'ultraluminous' peak of the interaction, as the galactic nuclei coalesce.
The amplitude of the evolution of the X-ray emission through a merger is markedly different from that of the infrared and radio emission, however. Although the X-ray luminosity rises and falls along the sequence, the factor by which the X-ray luminosity increases, relative to the optical, appears to be only about a tenth of that seen in the far-infrared. This, we believe, may well be linked with the large extensions of hot gas observed.
The late, relaxed remnants appear relatively devoid of gas, and possess an X-ray halo very different from that of typical ellipticals, a problem for the 'merger hypothesis', whereby the merger of two disc galaxies results in an elliptical galaxy. However, these systems are still relatively young in terms of total merger lifetime, and they may still have a few Gyr of evolution to go through before they resemble typical elliptical galaxies.  相似文献   

7.
Gradients of absorption line indices are studied and mean stellar metallicities are estimated for 46 elliptical galaxies. The mean stellar metallicities range from 〈 [Fe/H] 〉 ≃ =0.8 to +0.2 and ellipticals with smaller central velocity dispersions tend to have lower 〈 [Fe/H] 〉 thus the mass-metallicity relation holds not only for the galaxy center but also for the whole part of the galaxy. There is an evidence that the magnesium is enhanced systematically in all ellipticals by 0.2 dex with respect to the iron. Giant elliptical galaxies show lack of metal-poor stars (the G-dwarf problem). Metal-poor globular clusters of ellipticals formed well in advance of the formation of metal-rich ones which formed simultaneously with the bulk of stars of mother galaxies under the influence of galaxy chemical enrichment. The bimodal [Fe/H] distribution of globular clusters does not necessarily mean that elliptical galaxies formed by the mergers of disc galaxies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We present HST WFPC2 V -band imaging for 23 ultraluminous infrared galaxies (ULIRGs) taken from the QDOT redshift survey. The fraction of sources observed to be interacting is 87 per cent. Most of the merging systems show a number of compact 'knots', whose colour and brightness differ substantially from their immediate surroundings. Colour maps for nine of the objects show a non-uniform colour structure. Features include blue regions located towards the centres of merging systems which are likely to be areas of enhanced star formation, and compact red regions which are likely to be dust shrouded starbursts or active galactic nuclei. The host galaxies of the quasi-stellar objects (QSOs) in the sample were found to be either interacting systems or ellipticals. Our data show no evidence that ULIRGs are a simple transition stage between galaxy mergers and QSOs. We propose an alternative model for ULIRGs based on the morphologies in our sample and previous N -body simulations. Under this model ULIRGs as a class are much more diverse than a simple transition between galaxy merger and QSO. The evolution of IR power source and merger morphology in ULIRGs is driven solely by the local environment and the morphologies of the merger progenitors.  相似文献   

9.
A study of galaxy mergers, on the basis of the collisional theory, using galaxy models without halos and considering the evolution of the proginator galaxies only from a time when the gravitational interaction between them is physically significant, indicates that most of the mergers are affected in 2 to 3 orbital periods for progenitors of comparable mass: shorter and longer time-scales being underabundant. These results have a bearing on the evolution of binary galaxies; indicating that once the relative orbit of a binary is circularized, the components will merge during the subsequent orbit or the next one (in a time-scale ~ 108 years). These results are also indicative of the fact that binary evolution is very likely to cause a gradual evolution of the fundamental plane occupied by paired ellipticals from that of isolated ellipticals. After the merger, the remnant is very likely to define a fundamental plane with a slightly different slope.  相似文献   

10.
We investigate the role that dry mergers play in the build-up of massive galaxies within the cold dark matter paradigm. Implementing an empirical shut-off mass scale for star formation, we find a nearly constant dry merger rate of  ∼6 × 10−5 Mpc−3 Gyr−1  at   z ≤ 1  and a steep decline at larger z . Less than half of these mergers are between two galaxies that are morphologically classified as early-types, and the other half is mostly between an early- and late-type galaxy. Latter are prime candidates for the origin of tidal features around red elliptical galaxies. The introduction of a transition mass scale for star formation has a strong impact on the evolution of galaxies, allowing them to grow above a characteristic mass scale of   M *, c ∼ 6.3 × 1010 M  by mergers only. As a consequence of this transition, we find that around   M *, c   , the fraction of 1:1 mergers is enhanced with respect to unequal mass major mergers. This suggests that it is possible to detect the existence of a transition mass scale by measuring the relative contribution of equal mass mergers to unequal mass mergers as a function of galaxy mass. The evolution of the high-mass end of the luminosity function is mainly driven by dry mergers at low z . We however find that only 10–20 per cent of galaxies more massive than   M *, c   experience dry major mergers within their last Gyr at any given redshift   z ≤ 1  .  相似文献   

11.
Hubble Space Telescope images of a sample of 285 galaxies with measured redshifts from the Canada–France Redshift Survey (CFRS) and Autofib–Low Dispersion Spectrograph Survey (LDSS) redshift surveys are analysed to derive the evolution of the merger fraction out to redshifts z ∼1. We have performed visual and machine-based merger identifications, as well as counts of bright pairs of galaxies with magnitude differences δm ≤1.5 mag. We find that the pair fraction increases with redshift, with up to ∼20 per cent of the galaxies being in physical pairs at z ∼0.75–1. We derive a merger fraction varying with redshift as ∝(1+ z )3.2±0.6, after correction for line-of-sight contamination, in excellent agreement with the merger fraction derived from the visual classification of mergers for which m =3.4±0.6. After correcting for seeing effects on the ground-based selection of survey galaxies, we conclude that the pair fraction evolves as ∝(1+ z )2.7±0.6. This implies that an average L * galaxy will have undergone 0.8–1.8 merger events from z =1 to z =0, with 0.5 to 1.2 merger events occuring in a 2-Gyr time-span at around z ∼0.9. This result is consistent with predictions from semi-analytical models of galaxy formation. From the simple coaddition of the observed luminosities of the galaxies in pairs, physical mergers are computed to lead to a brightening of 0.5 mag for each pair on average, and a boost in star formation rate of a factor of 2, as derived from the average [O  ii ] equivalent widths. Mergers of galaxies are therefore contributing significantly to the evolution of both the luminosity function and luminosity density of the Universe out to z ∼1.  相似文献   

12.
The overabundance of Mg relative to Fe, observed in the nuclei of bright ellipticals, and its increase with galactic mass, poses a serious problem for all current models of galaxy formation. Here, we improve on the one-zone chemical evolution models for elliptical galaxies by taking into account positive feedback produced in the early stages of supermassive central black hole growth. We can account for both the observed correlation and the scatter if the observed anti-hierarchical behaviour of the AGN population couples to galaxy assembly and results in an enhancement of the star formation efficiency which is proportional to galactic mass. At low and intermediate galactic masses, however, a slower mode for star formation suffices to account for the observational properties.  相似文献   

13.
We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger-driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disc galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local universe. We find that the merger-driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger-driven star formation and test that it is insensitive to uncertainties in the feedback parametrization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disc and suppresses merger-driven star formation for large mass ratio mergers. Direct, coplanar merging orbits produce the largest tidal disturbance and yield the most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of smoothed particle hydrodynamics employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.  相似文献   

14.
Using high-resolution SPH simulations in a fully cosmological Λ cold dark matter context, we study the formation of a bright disc-dominated galaxy that originates from a 'wet' major merger at   z = 0.8  . The progenitors of the disc galaxy are themselves disc galaxies that formed from early major mergers between galaxies with blue colours. A substantial thin stellar disc grows rapidly following the last major merger and the present-day properties of the final remnant are typical of early-type spiral galaxies, with an i -band bulge-to-disc ratio ∼0.65, a disc scalelength of 7.2 kpc,   g − r = 0.5 mag  , an H  i linewidth ( W 20/2) of 238 km s−1 and total magnitude   i =−22.4  . The key ingredients for the formation of a dominant stellar disc component after a major merger are (i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, (ii) supernova feedback that is able to partially suppress star formation during mergers and (iii) relative fading of the spheroidal component. The gas fraction of the progenitors' discs does not exceed 25 per cent at   z < 3  , emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of discs and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disc galaxies by the high likelihood of interactions and mergers for galaxy-sized haloes at relatively low z .  相似文献   

15.
We use two-dimensional kinematic maps of simulated binary disc mergers to investigate the  λR  -parameter, which is a luminosity-weighted measure of projected angular momentum per unit mass. This parameter was introduced to subdivide the SAURON sample of early-type galaxies in so-called fast  λR > 0.1  and slow rotators  λR < 0.1  . Tests on merger remnants reveal that  λR  is a robust indicator of the true angular momentum content in elliptical galaxies. We find the same range of  λR  values in our merger remnants as in the SAURON galaxies. The merger mass ratio is decisive in transforming fast rotators into slow rotators in a single binary merger, the latter being created mostly in an equal-mass merger. Slow rotators have a  λR  which does not vary with projection. The confusion rate with face-on fast rotators is very small. Mergers with a gas component form slow rotators with smaller ellipticities than collisionless merger remnants have, and are in much better agreement with the SAURON slow rotators. Remergers of merger remnants are slow rotators, but tend to have too high ellipticities. Fast rotators maintain the angular momentum content from the progenitor disc galaxy if merger mass ratio is high. Some SAURON galaxies have values of  λ R   as high as our progenitor disc galaxies.  相似文献   

16.
We use Gauss–Hermite functions to study the line-of-sight velocity distributions in simulated merger remnants. Our sample contains 16 remnants; eight produced by mergers between disc galaxies of equal mass, and eight produced by mergers between disc galaxies with mass ratios of 3:1. The equal-mass mergers display a wide range of kinematic features, including counterrotation at large radii, orthogonally rotating cores and misaligned rotational axes. Most of the unequal-mass remnants exhibit fairly regular disc-like kinematics, although two have kinematics more typical of the equal-mass remnants. Our results may be compared with observations of early-type objects, including ellipticals with misaligned kinematic axes, counterrotating systems and S0 galaxies.  相似文献   

17.
We investigate numerically the chemodynamical evolution of major disc–disc galaxy mergers in order to explore the origin of the mass-dependent chemical, photometric and spectroscopic properties observed in elliptical galaxies. We investigate especially the dependence of the fundamental properties on merger progenitor disc mass (M d). Three main results are obtained in this study:– More massive (luminous) ellipticals formed by galaxy mergers between more massive spirals have higher metallicity (Z) and thus show redder colours; the typical metallicity ranges from ∼ 1.0 solar abundance (Z∼ 0.02) for ellipticals formed by mergers with M d = 1010 M to ∼ 2.0 solar (Z∼ 0.04) for those with M d= 1012 M .– Both the Mg2 line index in the central part of ellipticals (R ≤ 0.1 R e) and the radial gradient of Mg2 (δ Mg2 / δ log R) are more likely to be larger for massive ellipticals. δ Mg2 / δ log R correlates reasonably well with the central Mg2 in ellipticals. For most of the present merger models, ellipticals show a positive radial gradient of the Hβ line index. – Both M/L B and M/L K (where M, L B, and L K are the total stellar mass of galaxy mergers, the B-band and the K-band luminosities, respectively) depend on galactic mass in such a way that more massive ellipticals have larger M/L B and smaller M/L K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
We present near-infrared K -band spectroscopy of 21 elliptical or cD brightest cluster galaxies (BCGs), for which we have measured the strength of the 2.293-μm CO stellar absorption feature. We find that the strength of this feature is remarkably uniform among these galaxies, with a smaller scatter in equivalent width than for the normal elliptical population in the field or clusters. The scatter for BCGs is 0.156 nm, compared with 0.240 nm for Coma cluster ellipticals, 0.337 nm for ellipticals from a variety of other clusters, and 0.422 nm for field ellipticals. We interpret this homogeneity as being the result of a greater age, or more uniform history of star formation in BCGs than in other ellipticals; only a small fraction of the scatter can be caused by metallicity variations, even in the BCGs. Notwithstanding the small scatter, correlations are found between CO strength and various galaxy properties, including R -band absolute magnitude, which could improve the precision of these galaxies as distance indicators in measurements of cosmological parameters and velocity flows.  相似文献   

19.
The analysis of the four-colour maps of galaxies in the Hubble Deep Field (HDF) has revealed, in the sample of 0.4< z <1 early-type field galaxies, the existence of ellipticals with a predominantly old coeval stellar population. However, there is another, unexpected, category of HDF early-type galaxies, in which the galaxy core is significantly bluer than the outer regions. We demonstrate that these colour gradients are predicted by the multizone chemodynamical model for the evolution of elliptical galaxies.
We suggest that the colour gradient could be used as a chronometer for the evolution of elliptical galaxies: galaxies younger than a few Gyr exhibit cores bluer than the surrounding galaxy as a result of ongoing star formation, while more evolved galaxies have redder cores because of metallicity gradients increasing toward the centre.  相似文献   

20.
We investigate the hypothesis that the cores of elliptical galaxies and bulges are created from the binding energy liberated by the coalescence of supermassive binary black holes during galaxy mergers. Assuming that the central density profiles of galaxies were initially steep power laws,   ρ ∼ r -2  , we define the 'mass deficit' as the mass in stars that had to be removed from the nucleus in order to produce the observed core. We use non-parametric deprojection to compute the mass deficit in a sample of 35 early-type galaxies with high-resolution imaging data. We find that the mass deficit correlates well with the mass of the nuclear black hole, consistent with the predictions of merger models. We argue that cores in haloes of non-interacting dark matter particles should be comparable in size to those observed in the stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号