首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Natural amphiboles with composition close to the binary join cummingtonite–grunerite and crystals of the same samples annealed at 700 °C for 55.5 h, in order to obtain different degrees of non-convergent cation order, have been characterised by means of X-ray single-crystal diffraction and IR spectroscopy. Long-range order parameters describing the non-convergent order of Mg/Fe among the different octahedral sites have been calculated from the site occupancies of the investigated samples. Values of the O6-O5-O6 angles and of the 〈M4-O〉 mean bond distances depend on the C2/m → P21/m phase transition for a given degree of order. In the IR spectra, only two phonon lines dominated by the bending of the tetrahedral chains are sensitive to the displacive phase transition and to the different degree of cation order; all the other wavenumber shifts are correlated with compositional changes only. The local strains arising from the cation substitution, ordering and phase transition have been quantified by means of the autocorrelation function. Very small local heterogeneities are associated with the Mg/Fe substitution and disordering in samples at intermediate composition. The displacive phase transition seems to occur in order to reduce local distortions and the P21/m samples are as homogeneous as orthorhombic anthophyllites. The orthorhombic structure, however, appears less flexible than the monoclinic in accommodating cations larger than Mg at the octahedral sites. Received: 9 February 2000 / Accepted: 30 September 2000  相似文献   

2.
Lattice diffusion coefficients have been determined for 19 elements (Li, Be, Na, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Eu, Gd, Lu and Hf) in a single crystal of San Carlos olivine as a function of crystallographic orientation, at 1,300°C, 1 bar and fO2 = 10−8.3 bars, by equilibration with a synthetic silicate melt. Results for Li, Na, V, Cr, Fe and Zn are from diffusion of these elements out of the olivine, starting from their indigenous concentrations; those for all other elements are from diffusion into the olivine, from the silicate melt reservoir. Our 25-day experiment produced diffusion profiles 50 to > 700 μm in length, which are sufficiently long that precise analyses could be achieved by scanning laser ablation inductively coupled plasma mass spectrometry, even at concentration levels well below 1 μg g−1. For the divalent cations Ca, Mn, Fe and Ni, profiles were also obtained by electron microprobe analysis. The results of the two methods agree well with each other, and are consistent with divalent cation diffusion coefficients previously determined using different experimental methodologies. Olivine/melt partition coefficients retrieved from the data are also consistent with other published partitioning data, indicating that element incorporation and transport in olivine in our experiment occurred via mechanisms appropriate to natural conditions. Most of the examined trace elements diffuse through olivine at similar rates to the major octahedral cations Fe and Mg, showing that cation charge and radius have little direct influence on diffusion rates. Aluminium and P remain low and constant in the olivine, implying negligible transport at our analytical scale, hence Al and P diffusion rates that are at least two orders of magnitude slower than the other cations studied here. All determined element diffusivities are anisotropic, with diffusion fastest along the [001] axis, except Y and the REEs, which diffuse isotropically. The results suggest that element diffusivity in olivine is largely controlled by cation site preference, charge balance mechanisms and point-defect concentrations. Elements that are present on multiple cation sites in olivine (e.g. Be and Ti) and trivalent elements that are charge-balanced by octahedral site vacancies tend to diffuse at relatively fast rates.  相似文献   

3.
Neutron powder diffraction experiments in the temperature range 300–1770 K were performed at BENSC, Berlin, Germany, on synthetic (Mg0.70Fe0.23) Al1.97O4. The cation partitioning over the crystallographic tetrahedral and octahedral sites was determined as a function of temperature through joint Rietveld refinements and advanced minimization techniques. The thermal expansion coefficients of the lattice parameter and inter-atomic bond lengths were also obtained from the full-profile structure refinements. The behaviour of the polyhedral bond-lengths, especially the T−O distances, and of the cell constant upon heating, clearly indicate that the interdiffusion of tetrahedral and octahedral Mg/Al cations starts at about 950 K. This result is straightforwardly supported by the direct analysis of the neutron site scattering factors: Fe always retains tetrahedral coordination at all temperatures, and the cation rearrangement is entirely due to Mg and Al diffusion. Received: 18 November 1997 / Revised, accepted: 23 August 1998  相似文献   

4.
A crystallographic and m?ssbauer spectroscopy study of Fe   总被引:1,自引:0,他引:1  
The crystal chemistry of garnet solid solutions on the Fe 3 2+ Al2Si3O12-Fe 3 2+ Fe 2 3+ Si3O12 (almandine-“skiagite”) and Ca3Fe 2 3+ Si3O12-Fe 3 2+ Fe 2 3+ Si3O12 (andradite-“skiagite”) joins have been investigated by single-crystal X-ray structure refinements and M?ssbauer spectroscopy. Together, these two solid solution series encompass the complete range in Fe3+/ΣFe from 0.0 to 1.0. All garnets are isotropic and were re0fined in the Ia d space group. Small excess volumes of mixing are observed in andradite-“skiagite” solid solutions (W v =1.0±0.2 cm3 mol-1) and along the almandine-“skiagite” join (W v =-0.77±0.17cm3 mol-1). The octahedral (Al, Fe3+)-O bond lengths show a much greater variation across the almandine-skiagite join compared to the andradite-skiagite garnets. The dodecahedral (X)-O bond lengths show the opposite behaviour. In andradite-“skiagite” solid solutions, the octahedral site passes from being flattened to elongated parallel to the 3 axis of symmetry with increasing “skiagite” content. A perfect octahedron occurs in a composition of ≈35 mol% “skiagite”. The occupancy of the neighboring dodecahedral sites has the greatest effect on octahedral distortion and vice versa. The M?ssbauer hyperfine parameters of Fe2+remain constant in both solid solutions. The hyperfine parameters of Fe3+ (at room temperature: centre shift=0.32–0.40 mm/sec, quadrupole splitting (QS)≈0.21–0.55 mm/ sec) indicate that all Fe3+ is in octahedral coordination. The Fe3+ parameters are nearly constant in almandine-“skiagite” solid solutions, but vary significantly across the andradite-“skiagite” join. The structural unit that contributes to the electric field gradient of the octahedral site is different from that of the coordinating oxygen polyhedron, probably involving the neighboring dodeca-hedral sites.  相似文献   

5.
Partition coefficients between olivine and melt at upper mantle conditions, 3 to 14 GPa, have been determined for 27 trace elements (Li, Be, B, Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr, Y, Zr, Cs, Ba, La and Ce) using secondary-ion mass-spectrometry (SIMS) and electron-probe microanalysis (EPMA). The general pattern of olivine/melt partitioning on Onuma diagrams resembles those reported previously for natural systems. This agreement strongly supports the argument that partitioning is under structural control of olivine even at high pressure. The partition coefficients for mono- and tri-valent cations show significant pressure dependence, both becoming larger with pressure, and are strongly correlated with coupled substitution into cation sites in the olivine structure. The dominant type of trace element substitution for mono- and tri-valent cations into olivine changes gradually from (Si, Mg)↔(Al, Cr) at low pressure to (Si, Mg)↔(Al, Al) and (Mg, Mg)↔(Na, Al) at high pressure. The change in substitution type results in an increase in partition coefficients of Al and Na with pressure. An inverse correlation between the partition coefficients for divalent cations and pressure has been observed, especially for Ni, Co and Fe. The order of decreasing rate of partition coefficient with pressure correlates to strength of crystal field effect of the cation. The pressure dependence of olivine/melt partitioning can be attributed to the compression of cation polyhedra induced by pressure and the compensation of electrostatic valence by cation substitution. Received: March 6, 1997 / Revised, accepted: March 12, 1998  相似文献   

6.
采用提纯后的蒙脱石在不同浓度硫酸铬溶液中进行交换吸附制备了含铬蒙脱石,并利用包括粉末X射线衍射术 (XRD)、电子自旋共振谱术(ESR) 和傅里叶变换红外吸收光谱术(FTIR) 等分析测试手段对铬在蒙脱石中的吸附位置进 行了探索研究。研究结果显示铬离子不仅置换了层间域中的Ca2+,K+和Na+等,而且置换了位于八面体位的Mn2+ 和少量 Al3+,并较大量的进入硅氧四面体的六边形孔洞、甚至有可能置换极少量的四面体位的Al3+和Fe3+等。此外,根据X射线衍 射分析可知,在0.2 mol/L硫酸铬溶液中充分交换吸附后的蒙脱石存在两层水型和单层水型两种含铬蒙脱石,其水合阳离子 分别为[Cr(H2O)6]3+和[Cr(H2O)3O3]3+,当吸附量增大至一定程度后水合铬离子借助TOT结构片的硅氧四面体的底氧形成配位多 面体。  相似文献   

7.
The seasonal variation in the trace metals’ concentrations (Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) were investigated in surface sediments of the Pandoh Lake. The horizontal distribution of TC, TN, and TP reflects spatial and temporal differences in sedimentary organic production. The chemical sequential extraction of heavy metals was carried out by seven-step fractionation scheme (Leleyter and Probst in Int J Environ Chem 73:109–128, 1999). The significant concentrations of Ni and Cd were associated with “water soluble (Eua)” fraction in the monsoon and winter, respectively, while “exchangeable (Exch)” and “carbonate-bound (Carb)” fractions for Ni and Cd were abundant in winter and summer. The Cd, Cu, and Pb associated with “Exch” fraction in the summer season support their availability on exchange sites due to oxidized nature of surface sediments. Enrichment of Co, Fe, Mn, and Zn in “AFeO” fraction showed poor bioavailability, while Cd, Cu, and Mn in the monsoon, Co in the winter and summer, and Zn in the winter season showed significant “organically bound (Org)” fraction. The ANOVA was significant for chemical fractions of trace elements except “Carb” fraction of Pb and Zn and “CFeO” fraction of Pb. Factor analysis revealed that the “Eua”, “Exch”, and “Carb” fractions together control the metal enrichment of “MnO”, “AFeO”, and “CFeO” fractions in the summer season.  相似文献   

8.
Pumpellyite of the general formula W8X4Y8-Z12O56-n(OH)n contains Fe, Al and Mg in two crystallographically different octahedral sites. Three different pumpellyite samples covering the known compositional field from Al- to Fe-rich have been studied to determine the valence state and intracrystalline partitioning of the Fe cations between the two independent octahedral sites. Fe+2 and Fe+3 cation partitioning is interpreted on the basis of results obtained by 57Fe Mössbauer spectroscopy at 293 and 77 K and from Rietveld structure analysis performed on powder X-ray diffraction data. Pumpellyite from low-grade metamorphic rocks typically contains a majority of iron in the Fe+3 oxidation state, which is found in the smaller and less symmetrical octahedral Y-site. Fe+2 was also present in all pumpellyite samples studied and it is located in the larger and more symmetrical octahedral X-site.  相似文献   

9.
The distribution of Fe atoms within the octahedral sheet of a series of trioctahedral micas has been investigated by polarized Fe K-edge EXAFS spectroscopy. Single crystals have been oriented in the X-ray beam with the layer plane at 35° with respect to the electric field vector. At this “magic angle”, contributions to the EXAFS spectrum of nearest cation shells are equal to those recorded on a completely disoriented powder. The average number of Fe and Mg cations surrounding each Fe atom has been determined and compared with those deduced from NMR spectra. It is shown that the distribution of Fe atoms is not random, the deviation from this distribution depending on the fluorine content. The agreement between these independent results proves the reliability of the structural information deduced from EXAFS and NMR spectra as well as the usefulness of these two methods in analyzing the local distribution of cations in minerals.  相似文献   

10.
In order to determine whether Li+ cations penetrate into the octahedral layers of montmorillonites upon mild heating (Hofmann-Klemen effect) 57Fe Mössbauer spectra of Na+ and Li+ exchanged montmorillonite were obtained before and after treatment at 220 ° C. The 57Fe nucleus was used as a remote probe to detect electronic perturbations which would occur if a Li cation was to move into the octahedral layer from the interlayer after heating. The ambient Mössbauer spectra showed that a high charge density interlayer cation such as Li+ is effective in reducing the phonon energy of VIFe2+. In addition the EFG at octahedral sites can be significantly modified by interlayer cations as evidenced by the larger quadrupole splitting value measured for the Li+-exchanged sample with respect to the Na+-sample. Interlayer collapse and migration of exchange cations into the montmorillonite lattice after heating to 220 ° C resulted in the oxidation of the VIFe2+ and a decrease in site distortion for IVFe3+. Similar spectral parameters for the Fe3+ resonances of both Na+ — and Li+-heated samples suggested the interlayer cations do not penetrate as far as the octahedral layers. In order to utilize the enhanced sensitivity of VIFe2+ Δ values to changes in EFG the Fe3+ in the heated montmorillonites was reduced to Fe2+ with hydrazine. Similar spectral parameters for both the Na+ — and Li+-exchanged montmorillonite were observed giving further evidence that Li cations do not migrate into vacant octahedral sites.  相似文献   

11.
Experiments using distilled water, spiked with heavy metal cations and passed through a filtration system composed of greensand containing 80% glauconite at a rate of 2–4 ml/min, showed: (1) starting fluids containing Cd, Co, Cu, Pb, Mn, Ni, Ag, or Zn had an average of 90% of the contaminating cation removed from acidic solutions and an average of 84% removed from the basic solutions; and, (2) filtration through greensand tended to neutralize both acidic and basic solutions. The removal of the contaminant cation from starting fluids containing K, Na, Ca, Mg, Fe, Si, or Al (the principal constituents of glauconite plus Ca from shell material) is not as consistently effective as for the first named metals.  相似文献   

12.
High-resolution manganese K-edge X-ray absorption near edge structure spectra were collected on a set of 40 Mn-bearing minerals. The pre-edge feature information (position, area) was investigated to extract as much as possible quantitative valence and symmetry information for manganese in various “test” and “unknown” minerals and glasses. The samples present a range of manganese symmetry environments (tetrahedral, square planar, octahedral, and cubic) and valences (II to VII). The extraction of the pre-edge information is based on a previous multiple scattering and multiplet calculations for model compounds. Using the method described in this study, a robust estimation of the manganese valence could be obtained from the pre-edge region at 5% accuracy level. This method applied to 20 “test” compounds (such as hausmannite and rancieite) and to 15 “unknown” compounds (such as axinite and birnessite) provides a quantitative estimate of the average valence of manganese in complex minerals and silicate glasses. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
 Three chlorite-rich and one garnet-pyroxenite xenolith from the diatreme at Moses Rock, Utah, document storage and transport of water and consequent metasomatism in the mantle within the stability field of garnet peridotite, probably at depths of at least 75 km. Three mineral assemblages are present in zones in one chlorite-rich xenolith: in that xenolith, an assemblage of chlorite+enstatite+diopside+ ilmenite+titanian chondrodite is separated by diop- side+“talc” from an assemblage of chlorite+diopside+ilmenite+pyrite. Euhedral grains of enstatite (0.02% Al2O3, 0.05% CaO)+diopside record low temperatures, and high Mn/Fe in these pyroxenes was caused by growth in chlorite-dominated rock. Derivation from garnet lherzolite is established by relict pyrope (Py71Gr11Alm18). The “talc” has Fe/Mg unusually high relative to that of associated chlorite, and electron probe analyses of the “talc” sum low, consistent with excess water; the unusual composition may be due solely to alteration and consequent submicroscopic intergrowths of other phases, but the “talc” could be an analogue of the high-pressure synthetic 10-Å phase. Garnet pyroxenite has a retrograde assemblage of chlorite-garnet-omphacite. The chlorite-rich rocks formed at contacts between garnet peridotite and other mantle rock in response to fluid flow. Pressures ≥2.2 GPa are consistent with stability of enstatite + aqueous fluid and of diopside + talc, with the occurrence of titanian chondrodite, and with the stability of garnet lherzolite. A chlorite separate has δ18O=6.9, consistent with mantle hydration. The small-scale reaction zones could have formed in a geologically brief time, plausibly just before eruption at about 25 Ma, and the responsible fluids probably also catalyzed recrystallization of associated eclogites. The hydration may have been restricted to shear zones that traversed the lower crust and the mantle to at least 75 km depth. The chlorite-rich rocks may be from the deepest part of the mantle that was sampled by the diatreme eruption. Chlorite-garnet pairs in garnet pyroxenites and pyrope megacrysts yield temperatures in the range 410–510° C. Low temperatures in the mantle of the Colorado Plateau are consistent with an unusually low mantle heat flux and with cooling of lithosphere by an underlying subducted slab. Received: 14 April 1994/Accepted: 23 December 1994  相似文献   

14.
The distributions of Al 3+/Mg 2+ and Al 3+/ Fe 3+ were studied in the octahedral sheet of illites and smectites. Cation exchange interaction parameters J i, as first, second, third and fourth neighbours were calculated by means of empirical interatomic potentials. Several compositions with different interlayer cations and tetrahedral charge were studied in both Al/Mg and Al/Fe systems. The values of J i parameters were similar in all Al/Mg samples. From these J i values, a strong trend to form AlMg pairs was observed in the Al/Mg system. In the Al/Fe system, the values of J i are very small, indicating no preference for Al/Fe mixing. From these J i parameters, Monte Carlo simulations of octahedral cation ordering were performed. In the Al/Mg system, an order/disorder phase transition was observed obtaining a fully ordered distribution without presence of an MgMg pair, according to experimental data. Similar phase transitions were observed for the octahedral compositions Al/Mg 1/1 and 3/1. In the Al/Fe system an order/disorder phase transition was also detected but at very low temperature for illite and smectite. Complete Al/Fe mixing is observed in the most stable ordered distribution. This is consistent with experimental results for synthetic Fe/Al smectites.  相似文献   

15.
 Interactions between several silicate and metallic phases are studied by applying a self consistent thermodynamic approach and using recent thermodynamic data. We compute proportions and compositions of oxidized silicates and of reduced metallic phase in equilibrium at various temperatures and oxygen fugacities. The empirically observed activity-composition relationships for ternary metallic alloys are used and their applications to a general thermodynamic expression for a non-regular ternary system is explicitly discussed. We show that the stability limits of olivines and pyroxenes with respect to precipitation of metallic phases under reducing conditions are directly related to the presence of nickel impurities. We precisely evaluate the modifications of the stability limits as a function of nickel content. For typical mantle olivines [Fe/(Fe+Mg) = 0.1] the stability limits are given for values of x Ni= Ni/(Ni+Fe+Mg) ranging from 10 ppm to 1% by: ln f O2=−39.83+ 7.86 ln x Ni, ln f O2=−14.68+6.21 ln x Ni, at 900 K and 1600 K, respectively. Received: 17 November 1999 / Accepted: 14 May 2000  相似文献   

16.
Summary ?Results of experimental investigations in the dry system PtS-PdS-NiS at 1100°C, 1000°C, and 900°C are presented. The phases observed at 1100°C are “cooperite” and a melt, at 1000°C “cooperite”, “braggite”, and a melt and at 900°C “cooperite”, “braggite”, “vysotskite”, Ni1−xS, and a melt. At 1100°C the maximum solubility of Ni in ideal, Pd-free “cooperite” is 2.7 atomic per cent and the Pd-content limit in Ni-free “cooperite” is 12.8 atomic per cent. At 1000°C the maximum solubility of Ni in ideal, Pd-free “cooperite” is 3.3 atomic per cent and the Pd-content in Ni-free “cooperite” is 13.7 atomic per cent. The “braggite” composition ranges from Pt0.56Pd0.38Ni0.06S and Pt0.59Pd0.41S in a Ni-saturated and Ni-free environment respectively to Pt0.18Pd0.80Ni0.02S and Pt0.14Pd0.86S respectively. At 900°C the maximum Ni-content in ideal Pd-free “cooperite” is 3.1 atomic per cent and the Pd-limit in Ni-free “cooperite” is 12.5 atomic per cent. The “braggite” composition ranges from Pt0.59Pd0.29Ni0.12S and Pt0.60Pd0.40S for a Ni-saturated and Ni-free environment respectively, to Pd0.91Ni0.09S and PdS respectively. The Ni-content in “braggite” and “vysotskite” increases slightly with increasing Pt/Pd ratios and is higher at 900°C than at 1000°C. Comparison of experimental trends with cooperite, braggite, and vysotskite analyses from the literature implies high temperatures of formation for Pt-Pd-Ni sulphides in placers if Ni-saturation is assumed.
Zusammenfassung ?Synthetischer ,,Cooperit”, ,,Braggit” und “Vysotskit” im System PtS-PdS-NiS bei 1100°C, 1000°C und 900°C Ergebnisse experimenteller Untersuchungen im trockenen System PtS-PdS-NiS bei 1100°C, 1000°C und 900°C werden dargestellt. Bei 1100°C sind die Phasen “Cooperit” und Schmelze, bei 1000°C “Cooperit”, “Braggit” und Schmelze und bei 900°C “Cooperit”, “Braggit”, “Vysotskit”, Ni1−xS und Schmelze stabil. Bei 1100°C ist die maximale L?slichkeit von Ni in idealem, Pd-freiem “Cooperit” 2.7 Atomprozent und der Pd-Gehalt in Ni-freien “Cooperit” liegt bei maximal 12.8 Atomprozent. Bei 1000°C ist die maximale L?slichkeit von Ni in idealem, Pd-freien “Cooperit” 3.3 Atomprozent und der Pd-Gehalt in Ni-freien “Cooperit” liegt bei maximal 13.7 Atomprozent. Die Zusammensetzung des “Braggits” variiert zwischen Pt0.56Pd0.38Ni0.06S und Pt0.18Pd0.80Ni0.02S in einem Ni-ges?ttigtem und zwischen Pt0.59Pd0.41S und Pt0.14Pd0.86S in einem Ni-freien Umfeld. Bei 900°C liegt die maximale L?slichkeit von Ni in idealem Pd-freien “Cooperit” bei 3.1 Atomprozent und der Pd-Gehalt in Ni-freien “Cooperit” liegt bei maximal 12.5 Atomprozent. Die Zusammensetzung des “Braggits” variiert zwischen Pt0.59Pd0.29Ni0.12S und Pd0.89Ni0.08S in einem Ni-ges?ttigten und zwischen Pt0.59Pd0.40S und PdS in einem Ni-freien Umfeld. Der Nickelgehalt in “Braggit” und “Vysotskit” nimmt mit zunehmendem Pt/Pd Verh?ltnis zu und ist bei 900°C h?her als bei 1000°C. Ein Vergleich der experimentellen Trends mit Cooperit, Braggit und Vysotskit Analysen aus der Literatur weist auf eine Hochtemperaturbildung der Pt-Pd-Ni Sulfide in Seifenlagerst?tten hin, wenn man von Nickels?ttigung ausgeht.


Received October 1, 1998;/revised version accepted September 7, 1999  相似文献   

17.
Binary, ternary, and quaternary rhombohedral ordered titanates, Ni1/2Mn1/2TiO3, Ni1/2Mg1/2TiO3, Ni1/3Zn1/3Mg1/3TiO3, and Ni1/4Zn1/4Mg1/4Mn1/4TiO3, were obtained by solid-state synthesis at 1095°C at ambient pressure in a nitrogen atmosphere. All of the compounds adopt ATiO3 (A = Ni, Mn, Zn, and Mg) stoichiometry. Crystal structures were refined by the Rietveld method from powder X-ray diffraction data. Unit cell parameters and unit cell volumes decrease with decreasing average radius of the vi A 2+ cation. All the synthetic titanates adopt the space group and the ilmenite structure consisting of distorted AO6 and TiO6 octahedra. The divalent cations and Ti4+ are distributed in layers of octahedra alternating along c with no evidence for disorder. In common with pyrophanite, NiTiO3, and ilmenite sensu stricto, the distortion of the AO6 octahedra is less than that of the TiO6 octahedra. The Ti4+ and A-site cations in the titanates are off-centred within the coordination polyhedra. Deviation of the z positional parameters from their theoretical values for the A and Ti atoms indicate that in the titanates with the larger A 2+ cations and Goldschmidt tolerance factors, t ≥ 0.745, the AO6 octahedral layer is more “puckered” above and below planes parallel to (001) than that of the TiO6 octahedra, and vice versa in the titanates with smaller R A 2+ for which t≤0.745. Data are given for the volumes and distortion indices of all the coordination polyhedra. This study confirms the existence and stability of complex solid solutions between ordered rhombohedral titanates of Ni and first-row transition metals at ambient conditions over a range of t from 0.786 to 0.737. These experimental data suggest that the formation of ilmenite-type titanates enriched in Ni is possible in exotic mineral-forming systems at low pressure and/or in extraterrestrial rocks.  相似文献   

18.
An experimental method of melt inclusion synthesis within olivine crystals has been developed to determine the composition of the melt present in a partially molten peridotite assemblage. Trace element doped peridotite was equilibrated with 5 wt% of a C-O-H volatile source at 20 kbar/1175 °C in a piston-cylinder apparatus under buffered oxygen and sulphur fugacity conditions [log(f O2) ∼ IW +1 log unit, log (f S2) ∼ Fe/FeS > +1 log unit]. A single crystal of olivine, which had been cut to a disc shape, was included in the sample capsule. At run conditions the peridotite charge formed olivine, orthopyroxene, clinopyroxene, Fe-Ni sulphide and a volatile-bearing melt. The melt phase is preserved as homogeneous glass inclusions up to 50 μm in size, trapped in situ in the olivine disc. The major element composition of the glass inclusions showed them to be of broadly basaltic character, but with a low Mg/(Mg + ΣFe), which is associated with precipitation of olivine from the melt inclusion onto the walls of the olivine disc during quenching. Thus the equilibrium melt composition has been calculated from the glass inclusion composition by addition of olivine component using the Fe/Mg exchange coefficient of Roeder and Emslie (1970); the desired Mg/(Mg + ΣFe) being determined from the composition of olivine formed at run conditions in the peridotite section of the charge. The melt composition obtained is close to the trend for dry melting established by Falloon and Green (1988), and it is evident that although the reduced volatiles in this case have induced a liquidus depression of some 250 °C, there has been only a small shift in melt composition. Trace element, carbon and hydrogen contents of thirteen melt inclusions have been determined by secondary ion mass spectrometry (SIMS). The trace element signature is consistent with ∼29% melting in equilibrium with a lherzolitic assemblage. The equilibrium melt has a C/H of 0.48 by weight. Carbon solubility in partial melts is thus significant under reducing conditions in the presence of dissolved “water components” and establishes a major melt fluxing role for carbon in the upper mantle. The ubiquitous presence of carbon and hydrogen in basaltic magmas underscores the importance of determining both the position of vapour-present solidi and the composition of melts generated, when developing petrogenetic models. Received: 1 July 1996 / Accepted: 25 June 1997  相似文献   

19.
Three generations of tourmaline have been identified in propylite in the Vetka porphyry copper-molybdenum deposit of the Chukchi Peninsula of Russia. Tourmaline-I is characterized by its Fetot/(Fetot + Mg) value, which ranges from 0.33 to 0.49. Tourmaline-II, which crystallizes at a lower temperature, overgrowing tourmaline-I or occurring as isolated crystals, is distinguished by a higher Fetot/(Fetot + Mg), which varies from 0.46 to 0.72. The Fetot/(Fetot + Mg) ratio in tourmaline-III, which overgrows tourmaline-II is lower (0.35–0.49), and is identical to that of the first tourmaline generation. This is probably caused by the beginning of sulfide deposition. Tourmalines in the deposit characterized by complex isomorphic substitutions can be attributed to the intermediate members of the dravite—“hydroxy-uvite”-“oxy-uvite” and schorl-“hydroxy-feruvite”-“oxy-feruvite” series. Tourmaline starts to crystallize at temperatures above 340°C. The fluid responsible for the tourmaline deposition was magmatic, with a significant admixture of meteoric water (δ18OH 2O = −0.85 to −0.75‰). The high Fe3+/Fetot ratio (0.50) indicates high oxygen activity when the tourmaline precipitated. It has been established that the isomorphic substitution Fetot → Al is typomorphic of tourmalines from porphyry copper deposits worldwide.  相似文献   

20.
Single-crystal X-ray and neutron structure refinements carried out on neptunite (KNa2Li(Fe, Mg, Mn)2Ti2Si8O24) from San Benito, California at various temperatures (neutrons: 15 K and 293 K; X-rays: 110 K, 293 K and 493 K) indicate that this mineral crystallizes in the acentric space group Cc (T=293K: a=16.427 Å, b=12.478 Å, c=9.975 Å, = 115.56°, Z=4, V=1844.53 Å3) due to ordering of octahedrally coordinated metals (Ti, Fe, Mn, Mg). In the neptunite structure, Ti and (Fe, Mn, Mg) octahedra share edges to form chains that run along [110] and [110]. These chains are, in turn, linked through shared corners along [001]. The resulting octahedral framework is interwoven by a similar [Si8O22] tetrahedral framework. Li, Na and K occupy 6-, 8- and 10- coordinated sites within the framework. The metal-containing polyhedra show strong distortions at all temperatures. In particular, Ti exhibits a strong off-center displacement (0.25 Å) within its octahedron, leading to four Ti-O distances of 2.0 Å, one of 2.2 Å and one of 1.7 Å. The displaced Ti position is in good agreement with a position that minimizes differences between ionic bond strengths and is interpreted as an energy minimum in an ionic potential model. Mössbauer spectra collected at 77 K, 293 K and 400 K indicate all Fe to be present as octahedral Fe2+. Although two distinct Fe positions were found in the structure, 77 K and 293 K spectra display only one quadrupole doublet. Two Fe sites can only be resolved in the 400 K spectrum. It is suggested that the temperature dependence of octahedral edge distortions is responsible for the separation of the Mössbauer doublets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号