首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We present a search for the acoustic oscillation deficit which may exist at the antipodes of sunspots. Dopplergrams from Big Bear Solar Observatory 1988 helioseismology data were selected for five days on which large sunspots were known to be on the unseen hemisphere of the Sun. Acoustic oscillation amplitudes in the antipodal regions of these sunspots were compared with amplitudes in surrounding quiet-Sun regions. We did not detect a statistically significant acoustic amplitude deficit in our data. Our results indicate that the amplitude deficit at the sunspot antipodal points is limited to no more than 3% of the acoustic amplitude in the region, for solar oscillation modes of spherical harmonic degree l 200. We conclude that no strong acoustic deficit exists at the antipodes of sunspots. A more sensitive search, requiring more elaborate observations than we have performed, would be desirable in order to determine if a weak acoustic amplitude deficit exists at some level at the antipodes of sunspots, perhaps at higher spatial frequencies of oscillation. The noise level in any signals detected by such observations would probably limit their usefulness as seismic probes. However, information on the lifetimes of solar oscillation modes can be deduced even if no acoustic amplitude deficit is detected.  相似文献   

2.
Carl A. Rouse 《Solar physics》1986,106(2):205-216
The high-Z core (HZC) model of the Sun, supported in Rouse (1985) by superior agreements of nonradial g-mode periods of oscillation with long period observations, is used to calculate frequencies of oscillation in the five-minute band (5MB). Allowing for the fact that the present HZC model profile does not include an upper photosphere and self-consistent chromosphere, the HZC model of the Sun is also supported by the very good agreements of the 5MB nonradial frequencies of oscillation with observations for HZC l degrees 0 to 19 and orders n 20, and the good agreement of the HZC purely radial frequencies of oscillation with about the same n-orders with observations previously identified as l = 0 oscillations. Two important aspects of these agreements are (1) the nonradial frequencies were calculated with the equations that neglect the gravitational perturbation (the Cowling approximation), and (2) the radial frequencies were calculated with the equation that includes the gravitational perturbation. The present agreements suggest that for solar-type stars, the gravitational perturbation may not affect the nonradial p-modes of oscillation as much as it affects the radial modes and the nonradial g-modes. More research will be performed.  相似文献   

3.
It is likely that precise and reliable frequencies of high-degree modes will soon be available from the SOI/MDI experiment. Here we examine the ability of such modes (with l>300) to resolve the solar structure in the near-surface region. In particular, we investigate inversions to determine the adiabatic exponent 1 as a test of the solar equation of state, as well as the potential of such data to constrain the solar envelope helium abundance.  相似文献   

4.
We report quantitative analysis of the radial gradient of solar angular velocity at depths down to about 15 Mm below the solar surface for latitudes up to 75° using the Michelson Doppler Imager (MDI) observations of surface gravity waves (fmodes) from the Solar and Heliospheric Observatory (SOHO). A negative outward gradient of around –400 nHz/R , equivalent to a logarithmic gradient of the rotation frequency with respect to radius which is very close to –1, is found to be remarkably constant between the equator and 30° latitude. Above 30° it decreases in absolute magnitude to a very small value at around 50°. At higher latitudes the gradient may reverse its sign: if so, this reversal takes place in a thin layer extending only 5 Mm beneath the visible surface, as evidenced by the most superficial modes (with degrees l>250). The signature of the torsional oscillations is seen in this layer, but no other significant temporal variations of the gradient and value of the rotation rate there are found.  相似文献   

5.
Carl A. Rouse 《Solar physics》1987,110(2):211-235
Radial and nonradial oscillation equations without and with the gravitation perturbation (with and without the Cowling approximation, CA) are solved numerically using the profile from a more accurate high-Z core (HZC) solar model. This more accurate HZC model was generated with the CRAY X-MP/48 supercomputer at the San Diego Supercomputer Center. Frequencies of oscillation in the five-min band (5MB) and frequencies with period near 160 min are presented in tables and plotted in echelle diagrams. The model was generated by integrating the stellar structure equations from the center to he surface, as done in Rouse (1964), using a maximum space step, ;x m = 5 × 10–4, decreasing to 10–6 in the hydrogenionization zone just below the photosphere. Two subsets of space mesh points are used to calculate the oscillation frequencies, viz., one with a maximum space step of 5 × 10–3, decreasing to 10–6 with a total of 621 points (mesh 5I) and the other with a maximum space step of 2 × 10–3, with a total of 867 points (mesh 5J).With the surface boundary condition applied at x = 1.0, the l – 1 degree nonradial frequencies with CA and the l-degree frequencies without CA are in very good agreement with the frequency spacings for observed frequencies of oscillation labeled l = 1 to 5, but with the l – 1 frequencies with CA about 10 Hz or so less than the observations and the l frequencies without CA about 10 Hz or so greater than the observations. And for the Duvall and Harvey (1983) observations labeled l = 10 and l = 20, the l = 9 and l = 19 nonradial solutions with CA agree to about 5 Hz or less with the observations. Considering from the two preceeding papers in this series that increasing the density in the outer envelope and photosphere will increase the 5MB frequencies and applying the outer boundary condition at x > 1.0 will decrease the 5MB frequencies, the net affects of such changes could move one or the other set of frequencies closer to the observations — or require a slightly different model structure to obtain accurate agreements with the values of the observed frequencies throughout the 5MB.In either case, it is concluded that the first-order, radially-symmetric structure of the model outside the HZC is close to the structure of the real Sun. This is of fundamental importance because a real gas adiabatic temperature gradient (Rouse, 1964, 1971) is used in the outer convective region without free parameters.Other aspects of agreements and differences between radial and nonradial solutions, with CA and without CA are discussed. In particular, the l = 4, 6, 8, and 9 g-mode solutions with CA indicate that the observed 160.01 min period may be a common l-mode period of oscillation. More research is proposed.  相似文献   

6.
This paper presents the latest results obtained from the analysis of the full-disk Doppler shift observations obtained at the geographic South Pole in 1981. About 80 normal modes of oscillation (l = 0–3) have now been identified. Their frequencies range from 1886 Hz (l = 1, n = 12) to 5074.5 Hz (l = 2, n = 35), and their amplitudes are as low as 2.5 cm s-1. Amplitude modulation occurs with periods of 1–2 days, and the individual oscillations appear to be excited randomly and independently. In cases where other groups have observed some of the modes identified by us, the agreement in frequency is good.Proceedings of the 66th IAU Colloquium: Problems in Solar and Stellar Oscillations, held at the Crimean Astrophysical Observatory, U.S.S.R., 1–5 September, 1981.  相似文献   

7.
Helioseismology is a direct and most informative method of studying the structure and dynamics of the Sun. Determining the internal differential rotation of the Sun requires that the frequencies of its eigentones be estimated with a high accuracy, which is possible only on the basis of continuous long-term observations. The longest quasi-continuous series of data have been obtained by the Global Oscillation Network Group (GONG). The parameters of each individual mode of solar acoustic oscillations with low spherical degrees l=0, 1, 2, 3, 4, 5, 6 are determined by using 1260-day-long series of GONG observations. The mean frequency splitting by rotation for the modes of each radial order n is calculated by using all possible combinations between the eigenfrequencies in multiplets. As a result, it has become possible to statistically estimate the splitting and its measurement errors for the modes of each radial order. The mean splitting for each given degree l=1–6 is presented under the assumption of its independence of oscillation frequency, which holds for the achieved accuracy. The frequencies and splittings for the modes with low spherical degrees l, together with the MDI group results for higher degrees l, are used to invert the radial profile of solar angular velocity. Using the SOLA method to solve the inverse problem of restoring the rotation profile has yielded solutions sensitive to the deepest stellar interiors. Our results indicate that the solar core rotates faster than the surface, and there may be a local minimum in angular velocity at its boundary.  相似文献   

8.
Kuhn  J. R.  O'Hanlon  Michael 《Solar physics》1983,87(2):207-219
Medium resolution CCD-spectrograph observations have been obtained that are suitable for studying long spatial wavelength 5-min oscillations. We find evidence that at wavelengths of order one solar radius the oscillation field is not isotropic. It is also not well described by modes of uniform excitation. The velocity power density per spherical harmonic increases with decreasing l to 1.1 × 103 cm2 s–2 per 3.5 × 10–4 Hz angular frequency bandwidth at l = 4. These results are inconsistent with the data of Fossat and Ricort (1975) as analyzed by Christensen-Dalsgaard and Gough (1982), who found a substantially constant modal amplitude at intermediate l values. It is interesting that other calculations have seen a similar dependence at small l in the growth rate of p-modes due to the -mechanism.Visiting Astronomer, Sacramento Peak Observatory.  相似文献   

9.
Power spectra of the 1979 solar differential observations (Bos, 1982) have been analyzed for evidence of intermediate-degreef-modes. A set of 19 intermediate-degreef-mode multiplets has been identified and classified based on more than 300 classified modes of oscillation. The angular degree of the multiplets ranges from 18 to 36. Them=0 eigenfrequency spectrum, measured with an accuracy of typically 0.01–0.02 Hz, was found to be on the average 10 Hz greater than that predicted by the standard solar model of Saio (1982). Rotational splitting effects up to fifth order inm were obtained. The multiplet fine structure that is linear inm was found to be consistent with the internal rotation curve obtained by Hillet al. (1986a). The multiplet fine structure that is described by terms that are cubic and fifth order inm were found to be consistent with the differential rotation curve of Hillet al. (1986b). The probability that this set of 19 Zeeman-like frequency patterns were obtained from a set of peaks randomly distributed in frequency was estimated to be 10–9. The effectiveness of the mode detection and classification program in this work has been established in part by observing the horizontal spatial properties of thef-mode eigenfunctions. One consequence obtained from the study of the horizontal spatial properties of the modes is the estimate, obtained observationally, of the number of correct mode identifications: these results indicate that 73±6% of the 374 modes are correctly classified.SCLERA is an acronym for Santa Catalina Laboratory for Experimental Relativity by Astrometry, a facility operated by the University of Arizona.  相似文献   

10.
We examine the non-radial modes of oscillation, belonging to spherical harmonics of ordersl=1 andl=3, of a gaseous polytrope with a toroidal magnetic field. We find that a toroidal magnetic field increases the growth rate of convective instability for deformations belonging to the spherical harmonicl=1 whereas it decreases the growth rate of convective instability for deformations belonging to the harmonicsl=2 andl=3. The frequencies of the ‘acoustic’ mode and the ‘Kelvin’ mode are decreased by the presence of the toroidal magnetic field.  相似文献   

11.
A detector sharing the orbital rate of Venus has a unique perspective on solar periodicities. Fourier analysis of the 8.6 year record of solar EUV output gathered by the Langmuir probe on Pioneer Venus Orbiter shows the influences of global oscillation modes located in the convective envelope and in the radiative interior. Seven of the eight lowest angular harmonic r-mode families are detected by their rotation rates which differ almost unmeasurably from ideal theoretical values. This determines a mean sidereal rotation rate for the envelope of 457.9 ± 2.0 nHz which corresponds to a period of 25.3 days. Many frequencies are aliased at ± 106 nHz by modulation from the lowest angular harmonic r-mode in the envelope. The rotation of this mode seems slightly retrograde, -1.5 ± 2.0 nHz, but small positive values are not excluded. We confirm that the rotation of the radiative interior, 381 nHz, is slower than the envelope by detecting g-mode frequencies for angular harmonics, 2 l 6, and a possible first detection of the rotation rate for the l = 1 case. Solar EUV lacks the sudden darkenings (dips) shown by visible irradiance; vortex cores in the photosphere and below are again suggested as a possible explanation.  相似文献   

12.
Global wave patterns in the Sun's magnetic field   总被引:2,自引:0,他引:2  
When the observed pattern of solar magnetic fields is decomposed in its spherical-harmonic components and a time series analysis is performed, a resonant global wave pattern is revealed. The power spectrum indicates modes with discrete frequencies, obeying a strict parity selection rule in the case of the zonal, rotationally-symmetric modes (with spherical-harmonic orderm=0). For instance, the 22 yr resonance that dominates for the anti-symmetric modes (with odd values of the spherical-harmonic degreel) is completely absent for the symmetric modes, which instead exhibit a number of resonances having frequencies increasing withl.A more traditional way of looking at the evolution of the zonal magnetic pattern is in the form of isocontours in latitude-time space (as in the butterfly diagram of sunspots). We show how this pattern can to a good approximation be represented as a superposition of 14 discrete modes, each with a purely sinusoidal time variation, one mode for each value ofl (=1,2, ..., 14). This corresponds to the assumption that the true, fully resolved and noise-free power spectrum consists of -function peaks, one for eachl value.This approach allows us to analyse the roles of the individual discrete modes in generating the well-known features in the traditional btterfly diagrams, e.g., the drift of the sunspot zones towards the equator and the prominence zones towards the poles during the course of the 11 yr cycle. It is shown that these features are accounted for entirely by the odd parity modes with the single, sinusoidal period of 22 yr. The drifts (and thus the arrow of time) are caused by the systematic phase relations between the 22 yr modes. The even modes exhibit an entirely different pattern. Since they have considerably shorter periods, they cause an undulation of the odd-mode contour lines when superposed on the anti-symmetric pattern.The dispersion, amplitude, and phase relations of the discrete modes are given. It is indicated how they can be used in combination with spectral inversion techniques to determine the depth variation of the parameters in the governing global wave equation.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

13.
The fundamental frequencies of the non-radial mode of oscillation belonging to the second harmonic (l=2) of magnetically distorted polytropic gas spheres are evaluated in the second approximation by a variational method. The magnetic field is assumed to have both the toroidal and the poloidal components. We find that the frequencies of oscillation are increased due to the presence of the magnetic field and that these depend only slightly on the value of , the ratio of the specific heats. We have also determined the value of <1+1/n for the mode of oscillation which exhibits convective instability. This value is lower than the one which is obtained in the absence of a magnetic field.  相似文献   

14.
We present a comparative study of low-l solar p-mode parameters extracted by genetic-algorithm and ‘standard’ hill-climbing minimisation routines. To effect this we make use of observations made in integrated sunlight by the Birmingham Solar-Oscillations Network (BiSON) and the GOLF instrument on board the ESA/NASA SOHO satellite, in addition to artificial data. We find that over the central part of the p-mode range the two fitting routines return similar results. However, at low frequencies — where the S/N in the modes is low and their resonant peaks narrow — we find that the genetic routine appears to offer more robust estimates of the underlying parameters.  相似文献   

15.
The total solar irradiance measurements obtained by the active-cavity radiometer on board the Solar Maximum Mission have been analyzed for evidence of global oscillations. We find that the most energetic low-degree p-mode oscillations in the five-minute band have amplitudes of a few parts per million of the total irradiance, and we positively detect modes with l = 0, 1, and 2. The distribution in l differs from that of the velocity spectrum, with relatively more power at lower l values. The individual modes have narrow line widths, corresponding to values of Q greater than a few thousand, or lifetimes of at least a week. We do not detect the 160-min oscillation in the power spectrum, and place an upper limit of 5 parts per million (99.9% confidence) on its amplitude.  相似文献   

16.
We present the results of modelling the subgiant star β Hydri using seismic observational constraints. We have computed several grids of stellar evolutionary tracks using the Aarhus STellar Evolution Code (ASTEC, Christensen-Dalsgaard in Astrophys. Space Sci. 316:13, 2008a), with and without helium diffusion and settling. For those models on each track that are located at the observationally determined position of β Hydri in the Hertzsprung-Russell (HR) diagram, we have calculated the oscillation frequencies using the Aarhus adiabatic pulsation package (ADIPLS, Christensen-Dalsgaard in Astrophys. Space Sci. 316:113, 2008b). Applying the near-surface corrections to the calculated frequencies using the empirical law presented by Kjeldsen et al. (Astrophys. J. 683:L175, 2008), we have compared the corrected model frequencies with the observed frequencies of the star. We show that after correcting the frequencies for the near-surface effects, we have a fairly good fit for both l=0 and l=2 frequencies. We also have good agreement between the observed and calculated l=1 mode frequencies, although there is room for improvement in order to fit all the observed mixed modes simultaneously.  相似文献   

17.
Inversions of solar internal structure employ both the frequencies and the associated uncertainties of the solar oscillation modes as input parameters. In this paper we investigate how systematic errors in these input parameters may affect the resulting inferences of the sun's internal structure. Such systematic errors are likely to arise from inaccuracies in the theoretical models which are used to represent the spectral lines in the observational power spectra, from line blending, from asymmetries in the profiles of these lines, and from other factors. In order to study such systematic effects we have employed two different duration observing runs (one of 60 days and the second of 144 days) obtained with the Medium-l Program of the Michelson Doppler Imager experiment onboard the SOHO spacecraft. This observing program provides continuous observations of solar oscillation modes having angular degrees, l, ranging from 0 to ∼ 300. For this study intermediate- and high-degree p-mode oscillations having degrees less than 251 were employed. In the first of our tests we employed two different methods of estimating the modal frequencies and their associated uncertainties from the 144-day observational power spectra. In our second test we also repeated both methods of frequency estimation on the 60-day time series in order to assess the influence of the duration of the observed time series on the computed frequencies and uncertainties. In a third test we investigated the sensitivity of the computed frequencies to the choice of initial-guess, or ‘seed’ frequencies that are used in the frequency estimation codes. In a fourth test we attempted to investigate the possible systematic frequency errors which are introduced when the observational asymmetry in the p-mode peaks is ignored. We carried out this particular test by fitting simple models of asymmetric line profiles to the peaks in the observational power spectra. We were then able to compute the differences between those frequencies and our previous frequencies which had been obtained using the assumption that all of the observational peaks were symmetric in shape. In order to study the possible influence of the two different frequency estimation methods upon the radial profile of the internal sound speed, we carried out four parallel structural inversions using the different sets and subsets of frequency estimates and uncertainties as computed from the 144-day observing run as inputs. The results of these four inversions confirm the previous finding by the GONG project (Gough et al., 1996) and by the MDI Medium-l Program (Kosovichev et al., 1997) that, in a thin layer just beneath the convection zone, helium appears to be less abundant than predicted by theory. However, differences in our four inverted radial sound speed profiles demonstrate that the currently-available techniques for determining the frequencies of the Medium-l oscillation peaks introduce systematic errors which are large enough to affect the results of the structural inversions. Moreover, based upon the differences in these four inverted sound speed profiles, it appears that the choice of which subset of modes is included in a particular inversion and which modes are not included may also be introducing systematic errors into our current understanding of solar internal structure. Hence, it appears to be very important that consistent sets of modal selection criteria be employed. Finally, at least one of the two frequency estimation codes which we used was not sensitive to changes in the input ‘seed’ frequencies which were employed as initial guesses for that code. This result allays fears that the difference in the helium abundance between the sun and the reference solar model in the thin layer beneath the convection zone which was mentioned above might have been due to the particular seed frequencies which were employed in the earlier inversions. Since this thin layer may likely be the place where the solar dynamo operates, it will be extremely important to observe any possible evolution of this transition layer throughout the upcoming 11-year activity cycle. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004963425123  相似文献   

18.
The Solar Oscillations Investigation (SOI) uses the Michelson Doppler Imager (MDI) instrument to probe the interior of the Sun by measuring the photospheric manifestations of solar oscillations. Characteristics of the modes reveal the static and dynamic properties of the convection zone and core. Knowledge of these properties will improve our understanding of the solar cycle and of stellar evolution. Other photospheric observations will contribute to our knowledge of the solar magnetic field and surface motions. The investigation consists of coordinated efforts by several teams pursuing specific scientific objectives.The instrument images the Sun on a 10242 CCD camera through a series of increasingly narrow spectral filters. The final elements, a pair of tunable Michelson interferometers, enable MDI to record filtergrams with a FWHM bandwidth of 94 m. Normally 20 images centered at 5 wavelengths near the Ni I 6768 spectral line are recorded each minute. MDI calculates velocity and continuum intensity from the filtergrams with a resolution of 4 over the whole disk. An extensive calibration program has verified the end-to-end performance of the instrument.To provide continuous observations of the longest-lived modes that reveal the internal structure of the Sun, a carefully-selected set of spatial averages are computed and downlinked at all times. About half the time MDI will also be able to downlink complete velocity and intensity images each minute. This high rate telemetry (HRT) coverage is available for at least a continuous 60-day interval each year and for 8 hours each day during the rest of the year. During the 8-hour HRT intervals, 10 of the exposures each minute can be programmed for other observations, such as measurements in MDI's higher resolution (1.25) field centered about 160 north of the equator; meanwhile, the continuous structure program proceeds during the other half minute. Several times each day, polarizers will be inserted to measure the line-of-sight magnetic field.MDI operations will be scheduled well in advance and will vary only during the daily 8-hour campaigns. Quick-look and summary data, including magnetograms, will be processed immediately. Most high-rate data will be delivered only by mail to the SOI Science Support Center (SSSC) at Stanford, where a processing pipeline will produce 3 Terabytes of calibrated data products each year. These data products will be analyzed using the SSSC and the distributed resources of the co-investigators. The data will be available for collaborative investigations.The MDI Engineering Team leaders include: D. Akin, B. Carvalho, R. Chevalier, D. Duncan, C. Edwards, N. Katz, M. Levay, R. Lindgren, D. Mathur, S. Morrison, T. Pope, R. Rehse, and D. Torgerson.  相似文献   

19.
Vanlommel  P.  Čadež  V.M. 《Solar physics》2000,196(2):227-244
We study high-order acoustic modes which reside in the outer layers of the solar interior. Magnetic field effects are not taken into account in this paper as we wish first to filter out how the modal frequencies depend on physical characteristics of a particular model structure of the Sun. In particular, we are interested in how the modal frequencies of solar global oscillations depend on the thickness of the convection layer and on the temperature gradient of the solar interior below. The model we use consists of three planar layers: an isothermal atmosphere, while the convection layer and the interior have temperature gradients that are adiabatic and sub-adiabatic, respectively. The presence of a convection layer with a finite thickness brings in additional modes while the variations in temperature gradient of the interior cause shifts in eigenfrequencies that are more pronounced for the p modes than for the g modes. These shifts can easily be of the order of several hundreds of Hz, which is much larger than the observational accuracy.  相似文献   

20.
The low l solar acoustic spectrum has been measured with great accuracy (v/v 10–4), for intermediate radial order modes, 11 n 34 (Jiménez et al., 1986; Grec, Fossat, and Pomerantz, 1983; Pallé et al., 1986). The measurement of the frequencies of modes of lower n, up to the fundamental one, are very important as they depart from asymptotic behaviour and, therefore, put more severe constraints on solar models. However, their amplitudes are very low (under 2 cm s–1) and when compared to the solar velocity background noise (Jiménez et al., 1986), a S/N 1 is obtained. Taking advantage of the fact that lifetimes seem to be higher at lower frequencies (lower n values) (Jefferies et al., 1988; Elsworth et al., 1990), very long Doppler velocity measurements, obtained at Teide Observatory, have been used to increase S/N, therefore, providing the possibility to detect such modes. The frequencies observed are compared to those predicted by a solar model (Christensen-Dalsgaard, Däppen, and Lebreton, 1988), using the best equation of state yet computed (Mihalas, Däppen, and Hummer, 1988).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号