首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The forest ecosystem in the Maolan karst forest, southwest China is the only concentrated, intact, and relatively stable karst forest ecosystem which has survived in the area at the same latitude in the world, and is a valuable karst forest plant resource as well. Groundwater samples from Maolan karst forest were collected from wells and springs during summer; and concentrations of major ions and dissolved inorganic carbon (DIC) isotopic compositions were measured. The pH values range from 7.2 to 8.3 results from the dissolution of carbonate, HCO3 is the dominant species of DIC in groundwater. Calcium and HCO3 , followed by Mg2+ and SO4 2− dominate the chemical composition of major ions in the groundwaters. Groundwater samples have δ13C values in the range from −8.1‰ to −16.6‰, which are lower than that of the other karst city groundwaters in the southwest China. Combining δ13CDIC ratios with measurements of HCO3 and pH clearly distinguishes the principal processes underlying the geochemical evolution of groundwater in Carboniferous carbonate aquifers, where processes can be both degradation of organic matters in the soil and the carbonate dissolution.  相似文献   

3.
To assess the effects of river damming on dissolved inorganic carbon in the Jialing River, a total of 40 water samples, including inflow, outflow, and stratified water in four cascade reservoirs (Tingzikou, Xinzheng, Dongxiguan, Caojie) were collected in January and July, 2016. The major cations, anions, and δ13CDIC values were analyzed. It was found that the dissolved compositions are dominated by carbonate weathering, while sulfuric acids may play a relatively important role during carbonate weathering and increasing DIC concentration. Different reservoirs had variable characteristics of water physiochemical stratification. The DIC concentrations of reservoir water were lower in summer than those in winter due to the dilute effects and intensive aquatic photosynthesis, as well as imported tributaries. The δ13CDIC values in Tingzikou Reservoir were higher during summer than those in winter, which indicated that intensive photosynthesis increased the δ13CDIC values in residual water, but a similar trend was not obvious in other reservoirs. Except for in Xinzheng Reservoir, the δ13CDIC values in inflow and outflow reservoir water were lower than those in the surface water of stratified sampling in summer. For stratified sampling, it could be found that, in summer, the Tingzikou Reservoir δ13CDIC values significantly decreased with water depth due to the anaerobic breakdown of organic matter. The significant correlation (p < 0.01 or 0.05) between the DIC concentrations, the δ13CDIC values and anthropogenic species (Na++K+, Cl, \({\text{SO}}_{4}^{2 - }\)and \({\text{NO}}_{3}^{ - }\)) showed that the isotope composition of DIC can be a useful tracer of contaminants. In total, Tingzikou Reservoir showed lacustrine features, Xinzheng Reservoir and Dongxiguan Reservoir had “transitional” features, and Caojie Reservoir had a total of “fluvial” features. Generally, cascade reservoirs in the Jialing River exhibited natural river features rather than typical lake features due to characteristics of reservoir water in physiochemical stratification, spatiotemporal variations of DIC concentrations and isotopic compositions. It is evident that the dissolved inorganic carbon dynamics of natural rivers had been partly remolded by dam building.  相似文献   

4.
The Oylat spa is located 80 km southeast of Bursa and 30 km south of Ineg?l in the Marmara region. With temperature of 40°C and discharge of 45 l/s, the Oylat main spring is the most important hot water spring of the area. Southeast of the spa the Forest Management spring has a temperature of 39.4°C and discharge of 2 l/s. The G?z spring 2 km north of the spa, which is used for therapy of eye disease, and cold waters of the Saadet village springs with an acidic character are the further important water sources of the area. EC values of Main spring and Forest Management hot spring (750–780 μS/cm) are lower than those of Saadet and G?z spring waters (2,070–1,280 μS/cm) and ionic abundances are Ca > Na + K > Mg and SO4 > HCO3 > Cl. The Oylat and Sızı springs have low Na and K contents but high Ca and HCO3 concentrations. According to AIH classification, these are Ca–SO4–HCO3 waters. Based on the results of δ18O, 2H and 3H isotope analyses, the thermal waters have a meteoric origin. The meteoric water infiltrates along fractures and faults, gets heated, and then returns to surface through hydrothermal conduits. Oylat waters do not have high reservoir temperatures. They are deep, circulating recharge waters from higher enhanced elevations. δ13CDIC values of the Main spring and Forest Management hot spring are −6.31 and −4.45‰, respectively, indicating that δ13C is derived from dissolution of limestones. The neutral pH thermal waters are about +18.7‰ in δ34S while the sulfate in the cold waters is about +17‰ (practically identical to the value for the neutral pH thermal waters). However, the G?z and Saadet springs (acid sulfate waters) have much lower δ34S values (~+4‰).  相似文献   

5.
The stable isotopic composition of the bivalve shell has been widely used to reconstruct the pa-laeo-climate and palaeo-environment. The climatic and environmental significance of carbon isotopic composition of the bivalve shell is still in dispute, and incorporation of metabolic carbon can obscure carbon isotope records of dis-solved inorganic carbon. This study deals with freshwater bivalve, Corbicula fluminea aragonite shell. The results indicated that the δ13C values of bivalve shells deposited out of equilibrium with the host water and showed an onto-genic decrease, indicating that there are metabolic effects and more metabolic carbon is incorporated into larger shells. The proportion of metabolic carbon of shells varies between 19.8% and 26.8%. However, δ13CS can still be used as qualitative indicators of δ13CDIC and environmental processes that occurred during shell growth.  相似文献   

6.
The isotopic composition of dissolved inorganic carbon (DIC) in estuarine environments has been studied for its significant role in determining the isotopic composition of inorganic/organic matter and its applications to the study of various natural processes. In this paper, based on the stable isotope geochemical characteristics of dis- solved inorganic carbon in the Jiulong River Estuary, the following conclusions are drawn: (1) δ13CDIC values are mainly controlled by the mixing ratio of fresh water and sea water; (2)δ13Cphytoplankton values are linearly related to the δ13CDIC values; (3) δ13CpoM values for the Jiulong River Estuary are affected by anthropogenic pollution signifi- cantly; and (4) the comprehensive analysis of δ13Cphytoplankton, δ13CpoM and δ13CDIc shows that along with increasing salinity, the proportion of POM derived from the degradation of phytoplanktons gradually increases.  相似文献   

7.
Natural and anthropogenic impacts on dissolved inorganic carbon (DIC) within an urban river, Nanming River in southwestern China, were investigated using hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (δ13CDIC). Because of the anthropogenic inputs, generally, the TDS values and major ionic compositions showed an increasing trend along the mainstream. The TDS values and most of the dissolved solutes compositions showed a dilution effect during storms, but the dilution effect did not strictly follow the theoretical dilution curve. Lighter δ13CDIC values in the river after a rainstorm reflected the influx of rain water with biological CO2 during the rain event. Meanwhile, the negative relationship between δ13CDIC values and dissolved inorganic carbon concentrations in the mainstream at different sampling campaigns suggested significant degradation of organic matter in the riverine channels. The variabilities of DIC in an urban river were mainly impacted by biological activities and infiltration of soil carbon dioxide. This study demonstrated that hydrological events and anthropogenic inputs are the main controls on the variations of dissolved solutes compositions and the DIC dynamics for an urban river.  相似文献   

8.
Monitoring and sampling of main plants,soil CO2,soil water,bedrock,spring water,drip water and its corresponding speleothem were performed at four cave systems of Guizhou,Southwest China,from April 2003 to May 2004,in order to understand stable carbon isotope ratios variations of dissolved inorganic Carbon(DIC) in cave percolation waters(δ13CDIC) and their implications for paleoclimate.Stable carbon isotopic compositions and ions(Ca,Mg,Sr,SO4,Cl etc.) were measured for all samples.The results indicate that there are significant differences among the δ13CDIC values from inter-cave,even inter-drip of intra-cave in the four caves.The δ13CDIC values from the Liangfeng Cave(LFC) is lightest among the four caves,where vegetation type overlying the cave is primary forest dominated by tall trees with lighter average δ13C value(–29.9‰).And there are remarkable differences in δ13CDIC values of different drip waters in the Qixing Cave(QXC) and Jiangjun Cave(JJC),up to 6.9‰ and 7.8‰,respectively.Further analyses show that the δ13CDIC values in cave drip waters are not only controlled by vegetation biomass overlying the cave,but also hydro-geochemical processes.Therefore,accurate interpreting of δ13C recorded in speleothems cannot be guaranteed if these effects of the above mentioned factors are not taken into consideration.  相似文献   

9.
Unraveling the factors controlling the carbon chemistry and transport of carbon within extant karst systems has important implications concerning the assessment of time-series δ13C records of speleothems. Here we report the results of a 3-year study of total dissolved inorganic carbon [DIC] and δ13CDIC from cave waters at DeSoto Caverns (Southeastern USA) that offer valuable insight on carbon transport and the accompanied isotope fractionations from end-member sources to speleothems.[DIC] and δ13CDIC values of cave waters range from 0.2 to 6.0 mM and 2.7 to −12.9 (‰ VPDB), respectively. [DIC] and δ13CDIC of “seasonal drips” show seasonal, albeit noisy, variability and are inversely related (δ13CDIC = −2.49[DIC] + 0.64, r2 = 0.84). A shallow pool fed by multiple drips shows a bimodal δ13CDIC distribution with an isotopically heavier mode during winter (−4‰ to −5‰ VPDB) relative to summer months (−9‰ to −10‰ VPDB). A multi-year trend of decreasing water availability during the study period is not reflected in a response of cave water carbon chemistry suggesting that rainfall amount may not be a significant controlling factor of the carbon chemistry. Coupled cave air winter ventilation/summer stagnation and varying CO2 fluxes through the soil horizon and epikarst exert the strongest influence on seasonal [DIC] and δ13CDIC variability. Measured values of high [DIC] and low δ13CDIC from cave waters collected during the summer/early fall closely approximate isotopic equilibrium conditions. Conversely, low [DIC] and high δ13CDIC values during winter/early months indicate kinetically enhanced isotopic fractionations within the cave waters. The kinetically enhanced isotopic fractionation of partitioned between degassed CO2 and precipitated CaCO3(1000lnα[(CO2-HCO3)+(CaCO3(AR)-HCO3)]/2) is greater by about a factor of two (−6.7 ± 0.3‰) relative to the same isotopic fractionation under equilibrium conditions (−3.1‰).On the basis of 14C mass balance and paired 14C-U/Th measurements we estimate that on average about ∼23% of C delivered annually by the drips to the aragonite stalagmites is derived from 14C-dead dolomite cap while the remainder of ∼77% is derived from 14C-live biomass. δ13C measurements of aragonite (n = 12) sampled from the tips of active speleothems during the summer months are consistent with theoretical aragonite δ13C values calculated using the shallow pool summer/early fall data thus confirming the δ13C seasonality in both drips and coeval aragonite. δ13C values of an active stalagmite section spanning the last 200 years show a normal distribution with a mean of −7.1 ± 1.2‰ (n = 81) and a mode of −7‰ to −8‰ that are statistically indistinguishable from the annual mean and mode of all dripwaters. Thus secular time-series δ13C records of stalagmites at DeSoto Caverns with resolving power >10−1 year will likely carry the imprints of drip annual means that record climate-driven δ13C seasonal biases.  相似文献   

10.
11.
The hydrogeochemical and carbon isotope characteristics of the Krka River, Slovenia, were investigated to estimate the carbon transfer from the land ecosystem in the watershed. During the 3-year sampling period (2008–2010), temperature, pH, electrical conductivity, major ion content, dissolved inorganic carbon (DIC) and dissolved organic carbon content, and the isotopic composition of DIC (δ13CDIC) were monitored in the main stream of the Krka River and its tributaries. The major solute composition of analysed waters is dominated by an input of HCO3 ?, Ca2+ and Mg2+ originating from carbonate dissolution. The Mg2+/Ca2+ and Mg2+/HCO3 ? molar ratio values ranging from 0.24 to 0.71 and 0.05 to 0.30, respectively, indicate a high degree of dolomite dissolution relative to calcite. Dissolved CO2 concentrations in the river were up to tenfold supersaturated relative to the atmosphere, resulting in supersaturation with respect to calcite and degassing of CO2 downstream. The δ13C values in river water range from ?15.6 to ?9.4 ‰ and are controlled by the input of tributaries, exchange with atmospheric CO2, degradation of organic matter, and dissolution of carbonates. The mass balance calculations for riverine DIC suggest that the contribution from carbonate dissolution and degradation of organic matter have major influence, whereas the exchange with atmospheric CO2 has minor influence on the inorganic carbon pool in the Krka River.  相似文献   

12.
We report the dissolved major element, organic carbon, and δ13CDOC, δ13CPOC, δD, δ18O, and 87Sr/86Sr composition of 19 summer samples from the Amur River. The Amur transported 2.6 Tg C/year of total organic carbon to the Sea of Okhotsk. The physical weathering rate (PWR) based on suspended particulate material was 13 (1.4–14) tons/(km2 year), and the chemical weathering rate based on total dissolved solids was 7 (4.3–46) tons/(km2 year). We further quantified the sources of the dissolved cations using an inverse model: rain accounted for 2 (0.6–5)%, evaporite 3 (0.7–7)%, carbonate 51 (29–74)%, and silicate 45 (25–64)%. The silicate weathering rate (SWR) in the Amur basin was 23 (15–98) × 103 mol/(km2 year) or 0.67 (0.40–2.81) tons/(km2 year), comparable to those of the Siberian rivers and the Mackenzie at higher latitudes. The SWR of the Amur was negatively correlated with elevation and relief, and positively correlated with runoff.  相似文献   

13.
The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ13CDIC) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO3-rich, SO42−-rich and Cl-rich. The HCO3-rich groundwater is undergoing closed system carbonate evolution from soil CO2(g) and weathering of aquifer carbonates. The SO42−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ13CDIC of the HCO3-rich groundwater was controlled by nearly equal contribution of carbon from soil CO2(g) and the aquifer carbonates, such that the δ13C of carbon added to the groundwater was −11.6‰. In the SO42−-rich groundwater, gypsum induced dedolomitization increased the 13C such that the δ13C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl-rich groundwater, common ion induced precipitation of calcite depleted the 13C such that the δ13C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution.  相似文献   

14.
The carbon stable isotopic value of dissolved inorganic carbon (δ13CDIC) was measured over several years at different depths in the water column in six carbonate-precipitating temperate lakes. δ13CDIC behavior in three of these lakes departed from the conventional model wherein epilimnetic waters are seasonally enriched relative to all hypolimnetic waters, and in general δ13CDIC values in the water column were not readily correlated to parameters such as lake stratification, algal productivity, hydraulic residence time, or water chemistry. Additionally, the processes implicated in generating the δ13CDIC values of individual lakes differ between lakes with similar δ13CDIC compositions. Each lake thus initially appears idiosyncratic, but when the effects of carbonate mineral equilibria, microbial activity, and lake residence time are viewed in terms of the magnitude of distinct DIC pools and fluxes in stratified lakes, generalizations can be made that allow lakes to be grouped by δ13CDIC behavior. We recognize three modes in the relationship between δ13CDIC values and DIC concentration ([DIC]) of individual lakes: (A) δ13CDIC values decreasing with increasing [DIC]; (B) δ13CDIC values increasing with increasing [DIC]; (C) δ13CDIC values decreasing with increasing [DIC] but increasing again at the highest [DIC]. This approach is useful both in understanding δ13CDIC dynamics in modern hardwater lakes and in reconstructing the environmental changes recorded by sedimentary δ13C components in the lacustrine paleorecord.  相似文献   

15.
Saline groundwaters were recovered from undisturbed (Restigouche deposit) and active (Brunswick #12 mine) Zn-Pb volcanogenic massive sulfide deposits in the Bathurst Mining Camp (BMC), northern New Brunswick, Canada. These groundwaters, along with fresh to brackish meteoric ground and surface waters from the BMC, have been analyzed to determine their major, trace element and stable isotopic (O, H, C, and B) compositions. Saline groundwaters (total dissolved solids = 22-45 g/L) are characterized by relatively high Na/Ca ratios compared to brines from the Canadian Shield and low Na/Clmolar and δ11B isotopic compositions (−2.5‰ to 11.1‰) compared to seawater. Although saline waters from the Canadian Shield commonly have oxygen and hydrogen isotopic compositions that plot to the left of the global meteoric water line, those from the BMC fall close to the water line. Fracture and vein carbonate minerals at the Restigouche deposit have restricted carbon isotopic compositions of around −5‰ to −6‰. The carbon isotopic compositions of the saline waters at the Restigouche deposit (+12‰ δ13CDIC) are the result of fractionation of dissolved inorganic carbon by methanogenesis. We suggest that, unlike previous models for shield brines, the composition of saline waters in the BMC is best explained by prolonged water-rock reaction, with no requirement of precursor seawater. We suggest that elevated Br/Cl ratios of saline waters compared to seawater may be explained by differential uptake of Br and Cl during groundwater evolution through water-rock reaction.  相似文献   

16.
A series of samples, including vegetation, soil organic matter, soil waters, spring, bedrock, pool water, drip waters (upper-drip waters and ground-drip waters) and their corresponding speleothems were collected at Liangfeng Cave (LFC) system of Guizhou Province, southwest of China, respectively, from 2003 to 2004 year, then their stable carbon isotopes were measured and analyzed. Results reveal that vegetation is C3 type in LFC system; cave overlying δ 13C signals, including values and variations, could be transmitted to drip water (speleothem); speleothem δ 13C mainly shows a biogenic δ 13C value character (soil CO2 from plant respiration and decay); and there are remarkable seasonal variations of δ 13C values for drip water TDIC (speleothem), which are lighter at least 2.0‰ in the rainy seasons than in the dry ones. So, it could be feasible to reconstruct high-resolution changes of paleoecology and paleoclimate by using speleothem δ 13C values.  相似文献   

17.
The Terme and Karakurt thermal resorts are located in the center of Kirşehir city in central Anatolia. Thermal waters with temperatures of 44–60°C are used for central heating and balneologic purposes. Paleozoic rocks of the Kirşehir Massif are the oldest units in the study area. The basement of the Massif comprises Paleozoic metamorphic schist and marbles which partly contain white quartzite layers of a few tens of cm thickness. The metamorphic schists which are cut by granites of Paleocene age are overlain by horizontally bedded conglomerate, sandstone, claystone, and limestone of upper Paleocene-Eocene age. Among the thermal and cold waters collected from the areas of Terme and Karakurt, those from thermal waters are enriched with Ca–HCO3 and cold waters are of Ca–Mg–HCO3 type waters. The pH values of samples are 6.31–7.04 for the thermal well waters, 6.41 for thermal spring, 7.25 and 7.29 for the cold waters, and 7.52 for the Hirla lake water. EC values are 917–2,295 μS/cm for the thermal well waters, 2,078 μS/cm for thermal spring, and 471 and 820 μS/cm for the cold springs. The lowest TDS content is from water of T10 thermal well in the Terme area (740.6 mg/l). The hot and cold waters of Terme show very similar ion contents while the Karakurt hot waters at western most parts are characterized by distinct chemical compositions. There is ion exchange in thermal waters from the T5 (5), T6 (6), T12 (7), and T1 (8) wells in the Terme area. The thermal waters show low concentrations of Fe, Mn, Ni, Al, As, Pb, Zn and Cu. Waters in the study area are of meteoric origin, and rainwater percolated downwards through faults and fractures, and are heated by the geothermal gradient, later rising to the surface along permeable zones. δ13CVPDB values measured on dissolved inorganic carbon in samples range from −1.65 to +5.61‰ for thermal waters and from −11.81 to −10.15‰ for cold waters. Carbon in thermal waters is derived from marine carbonates or CO2 of metamorphic origin while carbon in cold waters originates from freshwater carbonates.  相似文献   

18.
Coalbed natural gas (CBNG) production from coal bed aquifers requires large volumes of produced water to be pumped from the subsurface. The produced water ranges from high quality that meets state and federal drinking water standards to low quality due to increased salinity and/or sodicity. The Powder River Basin of northeastern Wyoming is a major coalbed natural gas producing region, where water quality generally decreases moving from the southeastern portion of the basin towards the center. Most produced water in Wyoming is disposed into impoundments and other surface drainages, where it may infiltrate into shallow groundwater. Groundwater degradation caused by infiltration of CBNG produced water holding impoundments into arid, soluble salt-rich soils is an issue of immense importance because groundwater is a major source for stock water, irrigation, and drinking water for many small communities in these areas. This study examines the potential of using stable C isotope signatures of dissolved inorganic C (δ13CDIC) to track the fate of CBNG produced water after it is discharged into the impoundments. Other geochemical proxies like the major cations and major anions were used in conjunction with field water quality measurements to understand the geochemical differences between CBNG produced waters and ambient waters in the study area. Samples were collected from the CBNG discharge outfalls, produced water holding impoundments, and monitoring wells from different parts of the Powder River Basin and analyzed for δ13CDIC. The CBNG produced waters from outfalls and impoundments have positive δ13CDIC values that fall within the range of +12‰ to +22‰, distinct from the ambient regional surface and groundwaters with δ13CDIC values ranging from −10‰ to −14‰. The results from the study demonstrate that these contrasting δ13CDIC signatures can be used to trace seepage out of CBNG produced water impoundments into shallow groundwaters.  相似文献   

19.
There is considerable discussion and uncertainty in the literature regarding the importance of fresh litter versus older soil organic matter as sources of soil dissolved organic carbon (DOC) in forest floor. In this study, the differences of organic carbon concentration and stable isotope composition were analyzed under different background conditions to identify the origins of DOC in forest soil. The data show that there is no significant difference in SOC content between these collected soil samples (P > 0.05), but the litter-rich surface soils have relatively higher DOC concentration than the litter-lacking (P < 0.01) ones, and the δ 13C values of DOC (δ 13CDOC) are closer to δ 13C of litter than δ 13C values of SOC (δ 13CSOC). In the litter-lacking surface soil samples, the range of δ 13CDOC is between δ 13CSOC and δ 13C of dominant plant leaves. These results suggest that DOC mainly derive from litter in the litter-rich surface soil with, and the main path of DOC sources may change with surrounding conditions. In addition, δ 13CSOC and δ 13CDOC become more positive, and the absolute values of Δ (δ 13CDOC − δ 13CSOC) decrease with depth in the soil profiles, which indicate that the percentage of DOC below 5 cm, derived from degradation of humus, may increase with soil depth.  相似文献   

20.
The chemical and stable isotope compositions of unpolluted ground waters in carbonate terranes are a function of the pH, PCO2, 13C content of the ground water recharge, the 13C content of the carbonate rock, and the manner in which the rock is dissolved or precipitated. Physico-chemical models show that significantly different relationships exist between Ca2+ plus Mg2+, HCO3?, pH and 13C content of unpolluted ground waters when carbonate solution occurs in the presence or absence of a gas phase. A study was made of these relationships in waters from 21 springs and 13 wells in Nittany Valley, Pennsylvania. Assuming that CO2 in the recharge zone has a 13C contents below ?21%. vs PDB, the data indicate that ground water flow to wells and springs, and carbonate rock solution probably occurs chiefly in the absence of a gas phase. This is in spite of the fact that most of such flow is under water table conditions. 13C contents averaged ?12·3%. for the spring waters and ?13·3%. for the well waters. Five well waters polluted by septic tank or sewage effluents had carbon isotopic compositions from ?13·5 to ?16·4%.,vs ?11·3 to?12·7 %. for the eight well waters relatively free of organic wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号