首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on a grid of high resolution, single channel seismic lines, this paper addresses the Late Cenozoic evolution of the western Svalbard continental shelf. The seismic structure of the shelf includes at least 16 erosional unconformities, each representing a glacial advance. The evolution during the last approximately one million years has been divided into six main erosional and depositional phases. Differential margin subsidence around a hinge zone is an important controlling mechanism for the accumulation of the sedimentary wedge at the outer shelf. The most significant depositional change appears to be related to a general climatic shift, globally recorded to be centred around 1 Ma. At this level, corresponding to the Upper Regional Unconformity (URU) on the shelf, the depositional regime changed from net erosion to net deposition and shelf aggradation. Of major significance is probably a shift from thick, eroding glaciers with steep ice profiles, to low profile fast flowing ice streams maintained by an increased amount of interglacial and interstadial sediments. The relationship between climatic fluctuations, glacial dynamics and depositional regime is discussed.  相似文献   

2.
Data on the amount and composition of organic carbon were determined in sediment cores from the Kara and Laptev Sea continental margin, representing oxygen isotope stages 1–6. The characterization of organic matter is based on hydrogen index (HI) values, n-alkanes and maceral composition, indicating the predominance of terrigenous organic matter through space and time. The variations in the amount and composition of organic carbon are mainly influenced by changes in fluvial sediment supply, Atlantic water inflow, and continental ice sheets. During oxygen isotope stage (OIS) 6, high organic carbon contents in sediments from the Laptev Sea and western East Siberian Sea continental margin were probably caused by the increased glacial erosion and further transport in the eastward-flowing boundary current along the continental margin. During OIS 5 and early OIS 3, some increased amounts of marine organic matter were preserved in sediments east of the Lomonosov Ridge, suggesting an influence of nutrient-rich Pacific waters. During OIS 2, terrigenous organic carbon supply was increased along the Barents and western Kara Sea continental margin caused by extended continental ice sheets in the Barents Sea (Svalbard to Franz Josef Land) area and increased glacial erosion. Along the Laptev Sea continental margin, on the other hand, the supply of terrigenous (organic) matter was significantly reduced due to the lack of major ice sheets and reduced river discharge. Towards the Holocene, the amount of total organic carbon (TOC) increased along the Kara and Laptev Sea continental margin, reaching average values of up to 0.5 g C cm−2 ky−1. Between about 8 and 10 ka (9 and 11 Cal ka), i.e., during times when the inner shallow Kara and Laptev seas became largely flooded for the first time after the Last Glacial Maximum, maximum supply of terrigenous organic carbon occurred, which is related to an increase in coastal erosion and Siberian river discharge. During the last 8000 years, the increased amount of marine organic carbon preserved in the sediments from the Kara and Laptev Sea continental margin is interpreted as a result of the intensification of Atlantic water inflow along the Eurasian continental margin.  相似文献   

3.
Towards a 4D topographic view of the Norwegian sea margin   总被引:1,自引:1,他引:0  
The present-day topography/bathymetry of the Norwegian mainland and passive margin is a product of complex interactions between large-scale tectonomagmatic and climatic processes that can be traced back in time to the Late Silurian Caledonian Orogeny. The isostatic balance of the crust and lithosphere was clearly influenced by orogenic thickening during the Caledonian Orogeny, but was soon affected by post-orogenic collapse including overprinting of the mountain root, and was subsequently affected by a number of discrete extensional events eventually leading to continental break-up in Early Eocene time. In the mid-Jurassic the land areas experienced deep erosion in the warm and humid climate, forming a regional paleic surface. Rift episodes in the Late Jurassic and Early Cretaceous, with differential uplift along major fault zones, led to more pronounced topographic contrasts during the Cretaceous, and thick sequences of clastic sediments accumulated in the subsiding basins on the shelf. Following renewed extension in the Late Cretaceous, a new paleic surface developed in the Paleocene. Following break-up the margin has largely subsided thermally, but several Cenozoic shortening events have generated positive contraction structures. On the western side of the on-shore drainage divide, deeper erosion took place along pre-existing weakness zones, creating the template of the present day valleys and fjords. In the Neogene the mainland and large portions of the Barents Sea were uplifted. It appears that this uplift permitted ice caps to nucleate and accumulate during the Late Pliocene northern hemisphere climatic deterioration. The Late Pliocene to Pleistocene glacial erosion caused huge sediment aprons to be shed on to the Norwegian Sea and Barents Sea margins. Upon removal of the ice load the landmass adjusted isostatically, and this still continues today.  相似文献   

4.
Seismic data combined with core analysis of the northwesternmost exploration well on the Norwegian continental margin, well 7316/5-1, has been used to map and discuss the genesis of three well-defined sand ridges. The sand ridges have a NE-SW to N-S orientation and are of Late Pliocene age. The dimensions of the ridges are: height 40 m, length 2–4 km and width 0.5–1 km.In relation to the glaciation models of the Barents Sea, the position of well 7316/5-1, and especially information from a core that penetrated one of the sand ridges, provide important information. The ridges are not, in themselves, diagnostic for grounded glaciers at the margin of the Barents Sea shelf during the Late Pliocene, although the presence of pebbles in a cored section of the ridges may represent ice-dropped material. Whether the possible influx of glaciogenic material is related to local or regional glaciations on the Barents Shelf remains to be evaluated.  相似文献   

5.
The western Barents Sea continental margin, between 74° and 77°N, comprises 7–8 km post-Paleocene sediments. The margin sediments have been divided into four seismic sequences dated by seismic correlation to adjacent areas. This chronostratigraphy shows that the uppermost three sequences are of glacial origin, deposited during the last 2.3 m.y. A huge sedimentary wedge, the Storfjorden Fan, was deposited in front of the Storfjorden Trough between 2.3 and 0.44 Ma, whereas during the last 0.44 m.y. a more evenly distribution pattern is observed. The outbuilding of the fan is related to the onset of the northern hemisphere glaciations causing intense glacial erosion of predominantly consolidated rocks. Seismic facies interpretations indicates that the fan outbuilding was connected to large-scale mass movements. Within the uppermost part of the glacial sequence parallel and continuous reflectors and locally disturbed pattern on the upper slope are associated with downslope change in facies. Volumetric calculations, based on velocity studies and isopach maps, have been used to quantify Cenozoic erosion, sediment yield, sedimentation and erosion rates. Approximately 3300 m of post-Paleocene erosion is calculated within the drainage area of the Storfjorden Fan, of which about 1700 m was eroded in late Pliocene-Pleistocene times giving an average denudation rate of 0.63 mm/yr.  相似文献   

6.
7.
Ice-rafted debris (IRD) (>2 mm), input in eight sediment cores along the Eurasian continental margin (Arctic Ocean), have been studied over the last two glacial/interglacial cycles. Together with the revised chronologies and new micropaleontological data of two cores from the northern Barents Sea (PS2138) and northeastern Kara Sea (PS2741) spanning Marine Isotope Stages (MIS) 6 to 1, the IRD data give new insights into the glacial history of northern Eurasian ice-sheets over the last 150 ka. The chronologies of the cores are based on stable isotope records, AMS 14C datings, paleomagnetic and biostratigraphic data.Extensive episodes of northern Barents Sea ice-sheet growth, probably to the shelf edge, occurred during the late Weichselian (MIS 2) and the Saalian (MIS 6). Major IRD discharge at the MIS 4/3-transition hints to another severe glaciation, probably onto the outer shelf, during MIS 4. IRD-based instabilities of the marine-based ice margin along the northern Barents Sea between MIS 4 and 2 are similar in timing with North Atlantic Heinrich events and Nordic Seas IRD events, suggesting similar atmospheric cooling over a broad region or linkage of ice-sheet fluctuations through small sea-level events.In the relatively low-precipitation areas of eastern Eurasia, IRD peak values during Termination II and MIS 4/3-transition suggest a Kara Sea ice-sheet advance onto the outer shelf, probably to the shelf edge, during glacial MIS 6 and 4. This suggests that during the initial cooling following the interglacials MIS 5, and possibly MIS 7, the combined effect of sustained inflow of Atlantic water into the Arctic Ocean and penetration of moisture-bearing cyclones into easterly direction supported major ice build-up during Saalian (MIS 6) and Mid-Weichselian (MIS 4) glaciation. IRD peak values in MIS 5 indicate at least two advances of the Severnaya Semlya ice-sheet to the coast line during the Early Weichselian. In contrast, a distinct Kara Sea ice advance during the Late Weichselian (MIS 2) is not documented by the IRD records along the northeastern Kara Sea margin.  相似文献   

8.
The evolution of a submarine fan, the Bear Island Trough Mouth Fan, is outlined using high-resolution seismic data. Eight seismic units are identified. The identified units comprise sediments of Middle and Late Pleistocene age. They were probably deposited during eight glacial advances of the Barents Sea Ice Sheet to the shelf break. The units are dominated by a chaotic seismic signature on the upper fan and a mounded seismic facies further downslope. The mounded signature is inferred to reflect large submarine debris flow deposits, probably generated by oversteepening of the upper slope. Unlike many other passive margin fans, glacigenic sediments derived from an ice sheet at the shelf break were the primary sediment input. During interstadials and interglacials the sedimentation rate was reduced markedly. Three large sliding events also influenced the Middle and Late Pleistocene fan growth.  相似文献   

9.
A complex history of Cenozoic vertical movements in the Faroe region has been revealed from interpretation of geophysical and geological data, mainly offshore reflection seismic data, side-scan images, shallow cores, and onshore mapping. The history comprises several phases of tectonic disturbances observed at different scales. On the eastern margin of the Faroe Platform a late Eocene–early Oligocene phase of doming of the Faroe Platform has caused a postdepositional tilting of Eocene strata along the southern margin of the platform; a mid-Miocene phase of compressional tectonics is evidenced on seismic transects as gentle anticlines and associated reverse faults; and possible Pliocene uplift of the Faroe Islands is indicated by a progradational wedge of sediments deposited on the eastern Faroe Platform. At the continental margin/slope north of the Faroe Platform, reflection seismic data imaging the postbasalt sedimentary strata indicate three distinct tectonic events phases in the Eocene–Oligocene, Miocene and Pliocene, respectively. In contrast to the Faroe Platform the Faroe–Shetland Channel was characterised by more or less continuous subsidence dominated throughout the Cenozoic. During the Eocene, sediments deposited in the Faroe–Shetland Channel was mostly derived from a source area on the British shelf.  相似文献   

10.
Glaciations had a profound impact on the global sea-level and particularly on the Arctic environments. One of the key questions related to this topic is, how did the discharge of the Siberian Ob and Yenisei rivers interact with a proximal ice sheet? In order to answer this question high-resolution (1–12 kHz), shallow-penetration seismic profiles were collected on the passive continental margin of the Kara Sea Shelf to study the paleo-drainage pattern of the Ob and Yenisei rivers. Both rivers incised into the recent shelf, leaving filled and unfilled river channels and river canyons/valleys connecting to a complex paleo-drainage network.These channels have been subaerially formed during a regressive phase of the global sea-level during the Last Glacial Maximum. Beyond recent shelf depths of 120 m particle transport is manifested in submarine channel–levee complexes acting as conveyor for fluvial-derived fines. In the NE area, uniform draping sediments are observed. Major morphology determining factors are (1) sea-level fluctuations and (2) LGM ice sheet influence. Most individual channels show geometries typical for meandering rivers and appear to be an order of magnitude larger than recent channel profiles of gauge stations on land.The Yenisei paleo-channels have larger dimensions than the Ob examples and could be originated by additional water release during the melt of LGM Putoran ice masses.Asymmetrical submarine channel–levee complexes with channel depths of 60 m and more developed, in some places bordered by glacially dominated morphology, implying deflection by the LGM ice masses. A total of more than 12,000 km of acoustic profiles reveal no evidence for an ice-dammed lake of greater areal extent postulated by several workers. Furthermore, the existence of the channel–levee complexes is indicative of unhindered sediment flow to the north. Channels situated on the shelf above 120-m water depth exhibit no phases of ponding and or infill during sea-level lowstand. These findings denote the non-existence of an ice sheet on large areas of the Kara Sea shelf.  相似文献   

11.
Studies of the mid-Norwegian margin reveal that the Fennoscandian continental uplift represents a flexural intraplate deformation event separated in time and space from the regional syn-rift uplift associated with crustal breakup at the Plaeocene-Eocene transition. In the area 64–68°N, the uplift occurred from late Oligocene through Pliocene. During Late Pliocene and Pleistocene times the tectonic uplift was amplified by isostatic rebound in response to the Northern Hemisphere glaciation. The tectonic uplift component reaches 1 km in the northern part of the study area decreasing to the south. The shelf stratigraphy and sediment composition record the combined effects of tectonic uplift, eustatic sea level changes and Neogene climatic deterioration. The coeval uplift and climatic change may suggest causal relations. The resulting depositional model has three stages: (1) late Miocene ( 10.5-5.5 m.y.) increased continental erosion and deposition of prograding wedges most of which were later removed; (2) early-middle Pliocene (5.5-2.6 m.y.) development of extensive local ice-sheets reaching the coastline and deposition of the prominent, oldest Pliocene wedges; (3) Northern Hemisphere glaciation (2.6-0.01 m.y.) resulting in the younger wedges farther west covered by Quaternary deposits. The model is consistent with the development of landforms on the adjacent mainland. Both the tectonic and isostatic components of the Fennoscandian uplift appear to vary in magnitude along the uplift axis, however separation of the syn-rift plate boundary related uplift and the intraplate event support the Neogene age of the main Fennoscandian uplift. We document a correspondence between structural and physiographic margin segmentation and uplift magnitude and suggest that the intraplate deformation has a thermal origin. A hot-cold asthenosphere boundary beneath the Caledonide-Baltic Shield transition combined with pre-Tertiary relief at the base of the lithosphere might induce small-scale convection and preferential volume expansion beneath the observed elongate uplift.  相似文献   

12.
Paleoceanographic changes since the Late Weichselian have been studied in three sediment cores raised from shelf depressions along a north–south transect across the central Barents Sea. AMS radiocarbon dating offers a resolution of several hundred years for the Holocene. The results of lithological and micropaleontological study reveal the response of the Barents Sea to global climatic changes and Atlantic water inflow. Four evolutionary stages were distinguished. The older sediments are moraine deposits. The destruction of the Barents Sea ice sheet during the beginning of the deglaciation in response to climate warming and sea level rise resulted in proximal glaciomarine sedimentation. Then, the retreat of the glacier front to archipelagoes during the main phase of deglaciation caused meltwater discharge and restricted iceberg calving. Fine-grained distal glaciomarine sediments were deposited from periodic near-bottom nepheloid flows and the area was almost permanently covered with sea ice. The dramatic change in paleoenvironment occurred near the Pleistocene/Holocene boundary when normal marine conditions ultimately established resulting in a sharp increase of biological productivity. This event was diachronous and started prior to 10 14C ka BP in the southern and about 9.2 14C ka in the northern Barents Sea. Variations in sediment supply, paleoproductivity, sea-ice conditions, and Atlantic water inflow controlled paleoenvironmental changes during the Holocene.  相似文献   

13.
The Jameson Land basin in East Greenland comprises a well exposed succession of Upper Paleozoic–Mesozoic sediments. During Middle Devonian–Early Permian rifting, 13 km of continental clastics were deposited. In latest Paleozoic to Mesozoic times, 4 km of sediments accumulated during regional subsidence. In the Early Paleocene, during North Atlantic break-up, the basin was covered by a thick volcanic pile. Subsequently, uplift and erosion took place over the whole region. The volcanic cover was completely removed from Jameson Land and erosion cut deeply into the underlying sediments. To assess the exploration potential of Jameson Land, a basin modelling study with 21 1D pseudo-wells was carried out based on all seismic and surface data available. In addition to the calculation of hydrocarbon generation in space and time, the basin modelling provided an opportunity to study the magnitude and timing of uplift and erosion. Basin modelling constrained by apatite fission track data has made it possible to determine a consistent uplift and erosion history of the area. Tectonic backstripping based on a simple Airy type isostatic model has been used to separate the tectonic uplift from the actual uplift. The combined basin modelling and backstripping study has led to the following conclusions: (1) the thickness of the Cretaceous succession varied from 1.3 km in the south to 0.3 km in the north; (2) the volcanic rocks formed a wedge with a thickness of >2 km in the south thinning to <0.1 km in the north; (3) the subsequent erosion of 2–3 km is in response to tectonic uplift with a magnitude of 1 km, and the calculated tectonic uplift shows increasing values to the north. The erosion rate generally accelerated from Late Paleocene up to the present time.  相似文献   

14.
The land surface of what is now the Barents Sea region may have been eroded to a sub-aerial platform prior to the Quaternary, due to both tectonic uplift-induced and sea-level lowering-induced erosion processes. The Barents Sea was then further eroded into its present form by the subsequent action of ice sheets. Two bedrock configurations, representing the pre-Quaternary sub-aerial Barents Shelf topography and the largely submarine morphology of the present day, were used as input to a glaciological ice sheet model so that the dynamic evolution of the maximum-sized ice sheets, caused solely by a change in bedrock elevation, could be identified. The ice-sheet model was run under constant glacial environmental conditions, until mass balance stability was reached, over both bedrock configurations. The simple parabolic ice sheet surface, which formed on a flat sub-aerial bedrock platform, was found to be significantly different in dynamic character compared with an ice sheet developed on the present submarine bedrock topography. In this latter situation, the central ice dome is drained by ice streams in Bjørnøyrenna, Storfjordrenna and smaller outlet glaciers in the north of the ice sheet.  相似文献   

15.
Abstract— The 40 km diameter Mjølnir Crater is located on the central Barents Sea shelf, north of Norway. It was formed about 142 ± 2.6 Myr ago by the impact of a 1–2 km asteroid into the shallow shelf clays of the Hekkingen Formation and the underlying Triassic to Jurassic sedimentary strata. A core recovered from the central high within the crater contains slump and avalanche deposits from the collapse of the transient crater and central high. These beds are overlain by gravity flow conglomerates, with laminated shales and marls on top. Here, impact and post‐impact deposits in this core are studied with focus on clay mineralogy obtained from XRD decomposition and simulation analysis methods. The clay‐sized fractions are dominated by kaolinite, illite, mixed‐layered clay minerals and quartz. Detailed analyses showed rather similar composition throughout the core, but some noticeable differences were detected, including varying crystal size of kaolinite and different types of illites and illite/smectite. These minerals may have been formed by diagenetic changes in the more porous/fractured beds in the crater compared to time‐equivalent beds outside the crater rim. Long‐term post‐impact changes in clay mineralogy are assumed to have been minor, due to the shallow burial depth and minor thermal influence from impact‐heated target rocks. Instead, the clay mineral assemblages, especially the abundance of chlorite, reflect the impact and post‐impact reworking of older material. Previously, an ejecta layer (the Sindre Bed) was recognized in a nearby well outside the crater, represented by an increase in smectite‐rich clay minerals, genetically equivalent to the smectite occurring in proximal ejecta deposits of the Chicxulub crater. Such alteration products from impact glasses were not detected in this study, indicating that little, if any, impact glass was deposited within the upper part of the crater fill. Crater‐fill deposits inherited their mineral composition from Triassic and Jurassic sediments underlying the impact site.  相似文献   

16.
The Plio-Pleistocene wedge off mid Norway is characterized by a pronounced increase in sonic velocities versus depth. At its base, a velocity inversion of 0.55 km s−1 exists with respect to the underlying unit. We propose that the inversion may be a result of the stage margin evolution, in which both the pre-depositional physiography of the margin and the depositional history of the wedge itself have been key elements. The glaciation of the uplifted mainland and the cyclic advancement of glaciers over the shelf led to the formation of the Plio-Pleistocene prograding megasequence. Underlying sequences may have been overpressured due to the rapid deposition of the wedge and because shales at the base of the wedge, deposited in a distal deltaic environment, represented a seal for water drainage. Overpressure provides sediment instability, and is an attractive mechanism to explain intra-sequence deformation and partly lateral mass movements.  相似文献   

17.
18.
Abstract— The western flank of the Haughton impact structure was imaged with a reflection profile generating 9.8 km of subsurface information. Ten reflecting horizons were recognized and have been correlated via a sonic log with the Paleozoic limestone/dolomite rock sequences. The seismic section is dominated by a dense and complex compound fault system with variable attitudes. These steeply dipping faults penetrated the sedimentary rocks but showed no recognizable extension into the crystalline basement. According to the seismically recognized fracture zones of the western margin, the structure is significantly larger than previously estimated. Reconstruction of the crater on the basis of the seismic information and existing scaling relationships reveals a structure with an apparent diameter of 23.9 km, and an excavated cavity of 10.3 km width and 1.97 km depth. The estimated diameters of the transient crater and the central uplift are 12 km and 11 km respectively. The morphologically distinct ring zones do not have seismically recognizable subsurface signatures. The underlying crystalline basement rocks did not exhibit seismically mappable impact-related zones of disturbance. In the central interior region, coherent reflection signals are virtually absent. Valuable information for this area was provided by a 10.26 km long refraction profile that indicated nearly uniform velocities (~5000 m/s) to a considerable depth. Major lateral variations in the velocity field across the structure were not detected.  相似文献   

19.
The last post-glacial transgression and present highstand of sea level were accompanied by a reduction in the terrigenous flux to the deep ocean bordering the active convergent margin off the eastern North Island of New Zealand. Although in accord with long-established models of highstand shelf deposition, new data from giant piston core MD97 2121 (2314 m depth) reveal that the flux also varied with terrigenous supply and palaeocirculation. Between 15 and 9.5 ka, the flux reduced from 33 to 20 g/cm2/ka as supply declined with an expanding vegetation cover, and mud depocentres became established on the continental shelf. An increase from 20 to 27 g/cm2/ka during 9.5–3.5 ka coincided with a strengthened East Cape Current which probably introduced sediment from fluvial and shelf sources in the north. The flux profile shows no immediate response to the establishment of modern sea level 7 ka. However, accumulation decreased from 3.5 to 1 ka as more sediments were retained on the shelf, possibly under wind-strengthened, along-shelf currents. Over the last 1 ka, the flux decline halted under increased terrigenous supply during anthropogenic development of the land.Despite the proximity of the North Island's Central Volcanic Region, major eruptions caused only brief increases (centuries duration) in the terrigenous flux through direct deposition of airfall and possibly fluvial redistribution of onshore volcanic deposits. Frequent earthquakes also had little short-term effect on accumulation although such events, along with volcanism, probably contribute to the long-term high flux of the region.The other measured flux component, biogenic carbonate, reached maxima of 6 g/cm2/ka between 11 and 8.5 ka when nutrient-bearing waters of the East Cape Current dominated the palaeoceanography. After these peaks, carbonate accumulation declined gradually to modern levels of 3 g/cm2/ka.  相似文献   

20.
Abstract— In the late Jurassic period, about 142 million years ago, an asteroid hit the shallow paleo‐Barents Sea, north of present‐day Norway. The geological structure resulting from the impact is today known as the Mjølnir crater. The present work attempts to model the generation and the propagation of the tsunami from the Mjølnir impact. A multi‐material hydrocode SOVA is used to model the impact and the early stages of tsunami generation, while models based on shallow‐water theories are used to study the subsequent wave propagation in the paleo‐Barents Sea. We apply several wave models of varying computational complexity. This includes both three‐dimensional and radially symmetric weakly dispersive and nonlinear Boussinesq equations, as well as equations based on nonlinear ray theory. These tsunami models require a reconstruction of the bathymetry of the paleo‐Barents Sea. The Mjølnir tsunami is characteristic of large bolides impacting in shallow sea; in this case the asteroid was about 1.6 km in diameter and the water depth was around 400 m. Contrary to earthquake‐ and slide‐generated tsunamis, this tsunami featured crucial dispersive and nonlinear effects: a few minutes after the impact, the ocean surface was formed into an undular bore, which developed further into a train of solitary waves. Our simulations indicate wave amplitudes above 200 m, and during shoaling the waves break far from the coastlines in rather deep water. The tsunami induced strong bottom currents, in the range of 30–90 km/h, which presumably caused a strong reworking of bottom sediments with dramatic consequences for the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号