首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The stability of sublittoral, fine-grained sediments in a subarctic estuary   总被引:1,自引:0,他引:1  
The erodibility of natural estuarine sediments was measured in sit along a longitudinal transect of Manitounuk Sound, Hudson Bay, using the benthic flume Sea Carousel. Sedimentation processes along the transect varied from continuous, rapid, post-glacial sedimentation in the inner Sound, to glacial outcrops and seabed reworking of the outer Sound. The grain size and physical bulk properties reflect changes in depositional environment and correlate with sediment erosion threshold stress (τc), erosion rate (E), erosion type and still-water mass settling rate. There was a steady increase in τc (0·8–2·0 Pa) with distance down the Sound in parallel with the decreasing sedimentation rate (0·003–0·001 m yr?1) and increasing sediment bulk density (1650–2010 kg m?3). The near-surface friction coefficient varied up to 68° in proportion to the clay content of post-glacial material. Glacial sediments were characterized by variable results and generally higher friction coefficients. Seabed erosion in Sea Carousel began with surface creep of loose aggregates, pellets and organic debris. This was followed by Type I bed erosion at rates that varied between 0·0002 and 0·0032 kg m?2 s?1 (mean 0·0015). Type I peak erosion rate was inversely related to applied bed shear stress (τo). Type II erosion succeeded Type I, often after a broad transitional period. Simulations of suspended sediment concentration in Sea Carousel were made using four commonly used erosion (E) algorithms. The best results were obtained using Krone's dimensionless ratio relationship: E=Moc-1). Simulations were highly sensitive to the definition of erosion threshold with sediment depth [τc(z)]. Small errors in definition of τc(z) caused large errors in the prediction of suspended sediment concentration which far exceeded differences between the methods tested.  相似文献   

2.
The nature of flow, sediment transport and bed texture and topography was studied in a laboratory flume using a mixed size-density sediment under equilibrium and non-equilibrium (aggradational, degradational) conditions and compared with theoretical models. During each experiment, water depth, bed and water surface elevation, flow velocity, bed shear stress, bedload transport and bed state were continuously monitored. Equilibrium, uniform flow was established with a discharge of about 0.05 m3 s?1, a flow depth of about 0.01 m, a flow velocity of about 0.81–0.88 m s?1, a spatially averaged bed shear stress of about 1.7–2.2 Pa and a sediment transport rate of about 0.005–0.013 kg m?1 s?1 (i.e. close to the threshold of sediment transport). Such equilibrium flow conditions were established prior to and at the end of each aggradation or degradation experiment. Pebble clusters, bedload sheets and low-lying bars were ubiquitous in the experiments. Heavy minerals were relatively immobile and occurred locally in high concentrations on the bed surface as lag deposits. Aggradation was induced by (1) increasing the downstream flow depth (flume tilting) and (2) sediment overloading. Tilt-induced aggradation resulted in rapid deposition in the downstream half of the flume of a cross-stratified deposit with downstream dipping pebbles (pseudo-imbricated). and caused a slight decrease in the equilibrium mean water surface slope and total bedload transport rate. These differences between pre- and post-aggradation equilibrium flow conditions are due to a decrease in the local grain roughness of the bed. Sediment overloading produced a downstream fining and thinning wedge of sediment with upstream dipping pebbles (imbricated), whereas the equilibrium flow and sediment transport conditions remained relatively unchanged. Degradation was induced by (1) decreasing the downstream flow depth (flume tilting) and (2) cutting off the sediment feed. Tilt-induced degradation produced rapid downstream erosion and upstream deposition due to flow convergence with little change to the equilibrium flow and sediment transport conditions. The cessation of sediment feed produced degradation and armour development, a reduction in the mean water surface slope and flow velocity, an increase in flow depth, and an exponential decrease in bedload transport rate as erosion proceeded. A bedload transport model predicted total and fractional transport rates extremely well when the coarse-grained (or bedform trough) areas of the bed are used to define the sediment available to be transported. A sediment routing model, MIDAS, also reproduced the equilibrium and non-equilibrium flow conditions, total and fractional bedload transport rates and changes in bed topography and texture very well.  相似文献   

3.
Geomorphic features such as drifts, sediment waves and channels have been documented in the Upper Cretaceous of north‐west Europe. These features are interpreted to result from bottom currents and have been used to refine chalk depositional models and quantify palaeocirculation patterns. Chalk was first deposited as calcareous nannofossil ooze and geomorphic features are the result of sediment reworking after deposition. There is limited knowledge on the processes that govern nannofossil ooze mobility, thus forcing uncertainty onto numerical models based on sedimentological observations. This article provides an extensive view of the erosional and depositional behaviour of calcareous nannofossil ooze based on experimental work using annular flumes. A fundamental observation of this study is the significant decrease of nannofossil ooze mobility with decreasing bed porosity. Erosion characteristics, labelled as erosion types, vary with total bed porosity (φ) and applied shear stress (τ0). High‐porosity ooze (φ >80%) is characterized by constant erosion rates (Em). At φ <77%, however, erosion characteristics showed greater variance. Surface erosion was typically followed by transitional erosion (with asymptotically decreasing Em), and stages of erosion with constant, and exponential erosion rates. The estimated erosion thresholds (τc) vary from ca 0·05 to 0·08 Pa for the onset of surface erosion and up to ca 0·19 Pa for the onset of constant erosion (φ of 60 to 85%). Variability of deposition thresholds (τcd) from ca 0·04 to 0·13 Pa reflects the influence of variable suspended sediment concentration and τ0 on settling particle size due to the identified potential for chalk ooze aggregation and flocculation. Additionally, deposition thresholds seem to be affected by the size of eroded aggregates whose size correlates with bed porosity. Lastly, slow sediment transport without resuspension occurred in high‐porosity ooze as surface creep, forming low‐relief sedimentary features resembling ripples. This process represents a previously undescribed mode of fine‐grained nannofossil ooze transport.  相似文献   

4.
Evolution and mechanics of a Miocene tidal sandwave   总被引:3,自引:0,他引:3  
A remarkable exposure of Miocene marine molasse in western Switzerland records the evolution of a tidal sandwave over a period of approximately 2 1/2 months. The sandwave is composed of tidal ‘bundles’ in which a sandwave reactivation stage and full vortex stage can be recognized for the dominant flow (ebb tide) and a rippled flood apron overlain by high water drape for the reversed flow. Bundle thicknesses vary systematically through neap–spring cycles, with a periodicity of 27 demonstrating the semi-diurnal lunar control of sedimentation. Waves were an additional component, especially when superimposed on flood tides, producing near-symmetrical combined-flow ripple marks in the flood apron. Tidal current velocities are estimated using critical shear velocities for entrainment, the ripple-dune transition and the dune-plane bed transition. Using appropriate estimates of roughness lengths and a logarithmic velocity law, maximum tidal speeds at 1 m above the bed were approximately 0·6 m sec?1 for ebbs and up to 0·5 m sec?1 for floods. The enhancement by waves of bed shear stress (τwc/τ of approximately 2 for 1 m high waves) under flood currents implies flood tidal velocities closer to 0·2–0·3 m sec?1. Peak instantaneous bedload sediment transport rates using a modified Bagnold equation are nearly 5 times greater under ebb tides than floods. The average net sediment transport rate at springs (0·04 kg m?1 sec?1) is over 10 times greater than at neaps (0·002 kg m?1 sec?1). Comparison with transport rates in modern tidal environments suggests that the marine molasse of Switzerland was deposited under spatially confined and relatively swift tidal flows not dissimilar to those of the present Dutch tidal estuaries.  相似文献   

5.
The ability of mud aggregates to form depositional bedforms is of considerable sedimentological importance for explaining the geomorphology of the Channel Country of central Australia as well as for understanding the depositional environment of certain argillaceous fluvial sequences in the rock record. The sediment transport and bedform development of mud aggregates from the floodplain of Cooper Creek, central Australia, was examined in a laboratory flume over a range of flow conditions. The aggregates were found to be clay-rich (>60% clay), nonsaline (<0·02%), fine sand-sized (mean d50=0·13 mm), low density (2300 kg m?3) and water-stable. Three wetting rates were applied to the sediment in the laboratory prior to wet sieving to replicate various field conditions and results in three mean aggregate sizes. Immersion wetting (no tension) represents inundation of the sediment by overland flow and results in aggregates of 0·13 mm. Tension wetting at 20 and 50 mm corresponds to high- and low-intensity rainfall and results in mean d50 sizes of 0·75 and 0·70 mm, respectively. Immersion wetting is the most applicable wetting mode for hydraulic transport of aggregated sediment on the Cooper Creek floodplain. Considerable variability in sediment transport rates in the field could result from differences in pre-wetting of the aggregated sediment. The dominance of smectite in the clay mineralogy of the sediment is an important factor in the development of the aggregates; disaggregated sediment reaggregated in a laboratory after 2–3 wetting/drying cycles. In flume experiments, bedforms of aggregated mud ranging from lower-regime plane beds to upper-regime antidunes were observed. The aggregates moved predominantly as bedload with measured peak bedload concentrations being high compared with other flume studies. The highly mobile nature of this sediment in the field is due to the ready entrainment of low-density aggregates in the form of self-mulching vertisols across extensive floodplains. The occurrence of low-sinuosity braid-like channels on this extensive low-gradient semi-arid floodplain can be attributed to: (a) the passage of floodwaters across a floodplain with steeper gradients than adjacent more sinuous anastomosing channels; (b) the highly mobile nature of the low-density sediment aggregates; (c) the ability of the aggregates to be transported as bedload; and (d) their durable nature during transport.  相似文献   

6.
Interactions between catchment variables and sediment transport processes in rivers are complex, and sediment transport behaviour during high‐flow events is not well documented. This paper presents an investigation into sediment transport processes in a short‐duration, high‐discharge event in the Burdekin River, a large sand‐ and gravel‐bed river in the monsoon‐ and cyclone‐influenced, semi‐arid tropics of north Queensland. The Burdekin's discharge is highly variable and strongly seasonal, with a recorded maximum of 40 400 m3 s?1. Sediment was sampled systematically across an 800 m wide, 12 m deep and straight reach using Helley‐Smith bedload and US P‐61 suspended sediment samplers over 16 days of a 29‐day discharge event in February and March 2000 (peak 11 155 m3 s?1). About 3·7 × 106 tonnes of suspended sediment and 3 × 105 tonnes of bedload are estimated to have been transported past the sample site during the flow event. The sediment load was predominantly supply limited. Wash load included clay, silt and very fine sand. The concentration of suspended bed material (including very coarse sand) varied with bedload transport rate, discharge and height above the bed. Bedload transport rate and changes in channel shape were greatest several days after peak discharge. Comparison between these data and sparse published data from other events on this river shows that the control on sediment load varies between supply limited and hydraulically limited transport, and that antecedent weather is an important control on suspended sediment concentration. Neither the empirical relationships widely used to estimate suspended sediment concentrations and bedload (e.g. Ackers & White, 1973) nor observations of sediment transport characteristics in ephemeral streams (e.g. Reid & Frostick, 1987) are directly applicable to this river.  相似文献   

7.
Besides particle size, density and shape, the erodibility of a sediment bed depends also upon the exposure to prethreshold velocities in the overlying flow. Such flow effectively rearranges the grains (at and below the bed surface), causing them to become more resistant to subsequent erosion. The effects of the ‘stress history’, leading up to the critical condition for sediment movement, are investigated for unidirectional flows generated in a recirculating laboratory flume. The sediment beds investigated consisted of cohesionless quartz sand grains, with mean grain diameters of 0·194 mm (fine sand), 0·387 mm (medium sand) and 0·774 mm (coarse sand), with narrow particle-size distributions. The critical (threshold) shear velocity (target value) for the three beds was established, within 2·5 min of increasing the flow from zero velocity. The subsequent experiments were performed under prethreshold velocities at 70% (for 5, 10, 20, 40 and 80 min exposure duration), 80% (for 5, 10, 20, 40 and 80 min exposure duration), 90 and 95% (for 5, 10, 20, 40, 80 and 120 min exposure duration) of the target value. Following exposure to these different prethreshold conditions, the flow was increased then to reach actual critical conditions, within a period of 2·5 min. The critical condition for the initiation of sediment movement was established using visual observation (supplemented by video recordings), according to the Yalin criterion. The results show that if the exposure duration to prethreshold velocities remains constant, then the critical shear velocity increases with increasing prethreshold velocity. Likewise, if the prethreshold velocity remains constant, then the critical shear velocity increases with increasing exposure duration. In some circumstances, the critical shear velocity was found to increase by as much as 27%. An empirical formula is proposed to account for the exposure correction to be applied to the critical shear velocities of sand-sized sediment beds; this is prior to their inclusion into bedload transport formulae, for an improved prediction of the magnitude and nature of transport.  相似文献   

8.
Hydrodynamics and sediment dynamics of The Wash embayment, eastern England   总被引:6,自引:0,他引:6  
Water and sediment movement in The Wash embayment has been determined from an extensive set of data, consisting of tidal current readings and suspended sediment concentration measurements. Instantaneous and residual currents in the embayment show a distinct lateral inhomogeneity, whereas vertically the water column is almost homogenous. The central deep water area (30–40 m) of the embayment is dominated by a residual landward water movement, whilst on the margins, the residual movement is seaward. Sediment is supplied predominantly in suspension from the north, through the northern extremity of Boston Deep. Suspended sediment pathways are coincident with the spring tide water movements and the subtidal channels act as the main conduits. Approximately 6·8 × 106 tonnes yr?1 of suspended sediments are supplied to the embayment from offshore areas. Bedload sediment supply is of lesser importance, ~ 1·4 × 104 tonnes yr?1. Whereas suspended sediment movement appears to be the dominant mode of transport throughout the embayment, bedload transport is important in reforming the sea bed into a variety of bedforms which are particularly well developed on the margins of channels and shoals.  相似文献   

9.
Sediments contained in the river bed do not necessarily contribute to morphological change. The finest part of the sediment mixture often fills the pores between the larger grains and can be removed without causing a drop in bed level. The discrimination between pore‐filling load and bed‐structure load, therefore, is of practical importance for morphological predictions. In this study, a new method is proposed to estimate the cut‐off grain size that forms the boundary between pore‐filling load and bed‐structure load. The method evaluates the pore structure of the river bed geometrically. Only detailed grain‐size distributions of the river bed are required as input to the method. A preliminary validation shows that the calculated porosity and cut‐off size values agree well with experimental data. Application of the new cut‐off size method to the river Rhine demonstrates that the estimated cut‐off size decreases in a downstream direction from about 2 to 0·05 mm, covariant with the downstream fining of bed sediments. Grain size fractions that are pore‐filling load in the upstream part of the river thus gradually become bed‐structure load in the downstream part. The estimated (mass) percentage of pore‐filling load in the river bed ranges from 0% in areas with a unimodal river bed, to about 22% in reaches with a bimodal sand‐gravel bed. The estimated bed porosity varies between 0·15 and 0·35, which is considerably less than the often‐used standard value of 0·40. The predicted cut‐off size between pore‐filling load and bed‐structure load (Dc,p) is fundamentally different from the cut‐off size between wash‐load and bed‐material load (Dc,w), irrespective of the method used to determine Dc,p or Dc,w. Dc,w values are in the order of 10?1 mm and mainly dependent on the flow characteristics, whereas Dc,p values are generally much larger (about 100 mm in gravel‐bed rivers) and dependent on the bed composition. Knowledge of Dc,w is important for the prediction of the total sediment transport in a river (including suspended fines that do not interact with the bed), whereas knowledge of Dc,p helps to improve morphological predictions, especially if spatial variations in Dc,p are taken into account. An alternative to using a spatially variable value of Dc,p in morphological models is to use a spatially variable bed porosity, which can also be predicted with the new method. In addition to the morphological benefits, the new method also has sedimentological applications. The possibility to determine quickly whether a sediment mixture is clast‐supported or matrix‐supported may help to better understand downstream fining trends, sediment entrainment thresholds and variations in hydraulic conductivity.  相似文献   

10.
Abstract Reliable predictions of wind erosion depend on the accuracy of determining whether erosion occurs or not. Among the several factors that govern the initiation of soil movement by wind, surface moisture is one of the most significant. Some widely used models that predict the threshold shear velocity for particle detachment of wet soils by wind were critically reviewed and evaluated. Wind‐tunnel experiments were conducted on pre‐wetted dune sand with moisture contents ranging from 0·00 to 0·04 kg kg?1. Sand samples were exposed to different wind speeds for 2 min. Moisture content was determined gravimetrically before and after each experiment, and the saltation of sand particles was recorded electronically with a saltiphone. Shear velocities were deduced from the wind speed profiles. For each moisture content, the experiments were repeated at different shear velocities, with the threshold shear velocity being determined by least‐squares analysis of the relationships between particle number rates and shear velocity. Within the 2‐min test runs, temporal changes in particle number rates and moisture contents were detected. A steep increase in the threshold shear velocity with moisture content was observed. When comparing the models, large differences between the predicted results became apparent. At a moisture content of 0·007 kg kg?1, which is half the moisture content retained to the soil matrix at a water tension (or matric potential) of ?1·5 MPa, the increase in ‘wet’ threshold shear velocity predicted with the different models relative to the dry threshold shear velocity ranged from 117% to 171%. The highest care should therefore be taken when using current models to predict the threshold shear velocity of wet sediment. Nevertheless, the models of Chepil (1956; Proc. Soil Sci. Soc. Am., 20, 288–292) and Saleh & Fryrear (1995; Soil Sci., 160, 304–309) are the best alternatives available.  相似文献   

11.
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (? c ; N m?2), erosion rate (ER; g m?2 s?1), and change in erosion rate with increasing bed shear stress (m e ; g N?1 s?1). Collectively, these measures characterized surface (? c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in ? c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.  相似文献   

12.
Sedimentation on the Newfoundland rise is strongly influenced by the Western Boundary Undercurrent (WBU). The upper rise (2600-2800 m) is swept by a rapid (ū= 8·5 cm sec?1), south-flowing core of the WBU which has generated a sandy contourite facies characterized by coarse gravelly, sandy sediments; current-induced bedforms such as scour moats, lineations and lee drifts; ferro-manganese-stained gravel clasts; a high proportion of broken foraminiferal tests and a diagnostic benthic foraminiferal assemblage. The overlying nepheloid layer, when compared to adjacent waters, is thickest (800 m), most sediment laden (80 μg 1?1), contains the highest proportion of terrigenous sediment and exhibits the best developed bottom mixed layer (~ 15 m thick). Comparisons with earlier data from the same area imply the dimensions and sediment load of the nepheloid layer vary with time. Empirical considerations, based on near-bottom current meter records from Labrador and Newfoundland, suggest the WBU is capable of transporting bedload with threshold friction velocities (u*) of around 0·87-1·14 cm sec?1 for between 1 and 15% of the time. The prevailing transport direction is southwards along the rise, but this may be punctuated periodically by brief incursions to the north. The erosional regime of the upper rise is bordered by a regime of fine-grained deposition typified by muddy contourites. Both the lower slope and lower rise are mantled by bioturbated muds, the former zone having terrigenous mud and the latter, biogenic calcareous mud. The accompanying nepheloid layer is thin, biogenic-rich and devoid of an identifiable mixed layer.  相似文献   

13.
Experiments are described in which the threshold conditions for sediment entrainment are measured for uniform and mixed sand beds beneath both steady and combined steady/oscillatory flows. Derived critical shear stresses are compared with the mixed bed entrainment model of Wiberg & Smith (1987). As predicted by the model, coarser grains within a sand mixture are entrained at lower bed shear stresses than progressively finer grains. Entrainment occurs generally at lower shear stresses than predicted by the model, especially under unidirectional flows. This may be the result of grains resting in unusually unstable positions during the experiments because the beds are ‘unworked’ at the start of the experiments. The model of Wiberg and Smith predicts threshold conditions more accurately for the mixed beds if the bed pivoting angle is correctly defined. The pivoting angles of the beds used here are measured using a new technique designed specifically for comparison with the threshold data. The measured angles repeat the finding that the coarse grains are more mobile than the finer fractions of a mixture. The results are poorly described by the pivoting angle model presented by Wiberg & Smith (1987) and are better represented by a model of the form Φ = αDγ(Di/D50)β (after 21 ), where α, γ and β are empirical constants. The threshold model is found to be more effective using the improved pivoting relationship. The entrainment of grains is found to be easier beneath unidirectional flows than combined flows, in accordance with previous authors’ findings. A suggestion that this result is caused by a change in the erosion mechanism beneath wave flows is made. Wave boundary layers may act as an extended laminar sublayer over bed grains and reduce the erosive efficiency of the overlying current flow. The results of the experiment have implications for the natural sorting mechanisms of sediment beds being deposited in near-threshold flows.  相似文献   

14.
Creep and saltation are the primary modes of surface transport involved in the fluid‐like movement of aeolian sands. Although numerous studies have focused on saltation, few studies have focused on creep, primarily because of the experimental difficulty and the limited amount of theoretical information available on this process. Grain size and its distribution characteristics are key controls on the modes of sand movement and their transport masses. Based on a series of wind tunnel experiments, this paper presents new data regarding the saltation flux, obtained using a flat sampler, and on the creeping mass, obtained using a specifically designed bed trap, associated with four friction velocities (0·41, 0·47, 0·55 and 0·61 m sec?1). These data yielded information regarding creeping and saltating sand grains and their particle size characteristics at various heights, which led to the following conclusions: (i) the creeping masses increased as a power function (q = ?1·02 + 14·19u*3) of friction wind velocities, with a correlation (R2) of 0·95; (ii) the flux of aeolian sand flow decreases exponentially with increasing height (q = a exp(–z/b)) and increases as a power function (q = ?26·30 + 428·40 u*3) of the friction wind velocity; (iii) the particle size of creeping sand grains is ca 1·15 times of the mean diameter of salting sand grains at a height of 0 to 2 cm, which is 1·14 times of the mean diameter of sand grains in a bed; and (iv) the mean diameter of saltating sand grains decreases rapidly with increasing height whereas, while at a given height, the mean diameter of saltating sand grains is positively correlated with the friction wind velocity. Although these results require additional experimental validation, they provide new information for modelling of aeolian sand transport processes.  相似文献   

15.
The settling behaviour of particulate suspensions and their deposits has been documented using a series of settling tube experiments. Suspensions comprised saline solution and noncohesive glass‐ballotini sand of particle size 35·5 μm < d < 250 μm and volume fractions, φs, up to 0·6 and cohesive kaolinite clay of particle size d < 35·5 μm and volume fractions, φm, up to 0·15. Five texturally distinct deposits were found, associated with different settling regimes: (I) clean, graded sand beds produced by incremental deposition under unhindered or hindered settling conditions; (II) partially graded, clean sand beds with an ungraded base and a graded top, produced by incremental deposition under hindered settling conditions; (III) graded muddy sands produced by compaction with significant particle sorting by elutriation; (IV) ungraded clean sand produced by compaction and (V) ungraded muddy sand produced by compaction. A transition from particle size segregation (regime I) to suppressed size segregation (regime II or III) to virtually no size segregation (IV or V) occurred as sediment concentration was increased. In noncohesive particulate suspensions, segregation was initially suppressed at φs ~ 0·2 and entirely inhibited at φs ≥ 0·6. In noncohesive and cohesive mixtures with low sand concentrations (φs < 0·2), particle segregation was initially suppressed at φm ~ 0·07 and entirely suppressed at φm ≥ 0·13. The experimental results have a number of implications for the depositional dynamics of submarine sediment gravity flows and other particulate flows that carry sand and mud; because the influence of moving flow is ignored in these experiments, the results will only be applicable to flows in which settling processes, in the depositional boundary, dominate over shear‐flow processes, as might be the case for rapidly decelerating currents with high suspended load fallout rates. The ‘abrupt’ change in settling regimes between regime I and V, over a relatively small change in mud concentration (<5% by volume), favours the development of either mud‐poor, graded sandy deposits or mud‐rich, ungraded sandy deposits. This may explain the bimodality in sediment texture (clean ‘turbidite’ or muddy ‘debrite’ sand or sandstone) found in some turbidite systems. Furthermore, it supports the notion that distal ‘linked’ debrites could form because of a relatively small increase in the mud concentration of turbidity currents, perhaps associated with erosion of a muddy sea floor. Ungraded, clean sand deposits were formed by noncohesive suspensions with concentrations 0·2 ≤ φs ≤ 0·4. Hydrodynamic sorting is interpreted as being suppressed in this case by relatively high bed aggradation rates which could also occur in association with sustained, stratified turbidity currents or noncohesive debris flows with relatively high near‐bed sediment concentrations.  相似文献   

16.
Aeolian sand and dust in polar regions are transported offshore over sea ice and released to the ocean during summer melt. This process has long been considered an important contributor to polar sea floor sedimentation and as a source of bioavailable iron that triggers vast phytoplankton blooms. Reported here are aeolian sediment dispersal patterns and accumulation rates varying between 0·2 g m?2 yr?1 and 55 g m?2 yr?1 over 3000 km2 of sea ice in McMurdo Sound, south‐west Ross Sea, adjacent to the largest ice free area in Antarctica. Sediment distribution and the abundance of southern McMurdo Volcanic Group‐derived glass, show that most sediment originates from the McMurdo Ice Shelf and nearby coastal outcrops. Almost no sediment is derived from the extensive ice free areas of the McMurdo Dry Valleys due to winnowed surficial layers shielding sand‐sized and silt‐sized material from wind erosion and because of the imposing topographic barrier of the north‐south aligned piedmont glaciers. Southerly winds of intermediate strength (ca 20 m sec?1) are primarily responsible for transporting sediment northwards and offshore. The results presented here indicate that sand‐sized sediment does not travel more than ca 5 km offshore, but very‐fine sand and silt grains can travel >100 km from source. For sites >10 km from the coast, the mass accumulation rate is relatively uniform (1·14 ± 0·57 g m?2 yr?1), three orders of magnitude above estimated global atmospheric dust values for the region. This uniformity represents a sea floor sedimentation rate of only 0·2 cm kyr?1, well below the rates of >9 cm kyr?1 reported for biogenic‐dominated sedimentation measured over much of the Ross Sea. These results show that, even for this region of high‐windblown sediment flux, aeolian processes are only a minor contributor to sea floor sedimentation, excepting areas proximal to coastal sources.  相似文献   

17.
ZAI-JIN YOU    BAOSHU YIN† 《Sedimentology》2006,53(5):1181-1190
A unified criterion is developed for initiation of non‐cohesive sediment motion and inception of sheet flow under water waves over a horizontal bed of sediment based on presently available experimental data. The unified threshold criterion is of the single form, Uo = 2πC[1 + 5(TR/T)2]?1/4, where Uo is the onset velocity of sediment motion or sheet flow, T is wave period, and C and TR are the coefficients. It is found that for a given sediment, Uo initially increases sharply with wave period, then gradually approaches the maximum onset velocity Uo = 2πC and becomes independent of T when T is larger. The unified criterion can also be extended to define sediment initial motion and sheet flow under irregular waves provided the significant wave orbital velocity and period of irregular waves are introduced in this unified criterion.  相似文献   

18.
This study presents a detailed reconstruction of the sedimentary effects of Holocene sea‐level rise on a modern coastal barrier system. Increasing concern over the evolution of coastal barrier systems due to future accelerated rates of sea‐level rise calls for a better understanding of coastal barrier response to sea‐level changes. The complex evolution and sequence stratigraphic framework of the investigated coastal barrier system is reconstructed using facies analysis, high‐resolution optically stimulated luminescence and radiocarbon dating. During the formation of the coastal barrier system starting 8 to 7 ka rapid relative sea‐level rise outpaced sediment accumulation. Not before rates of relative sea‐level rise had decreased to ca 2 mm yr?1 did sediment accumulation outpace sea‐level rise. From ca 5·5 ka, rates of regionally averaged sediment accumulation increased to 4·3 mm yr?1 and the back‐barrier basin was filled in. This increase in sediment accumulation resulted from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the coastal barrier system before the barrier shoreline stabilized between 5·0 ka and 4·5 ka. Back‐barrier shoreline erosion due to sediment starvation in the back‐barrier basin was pronounced from 4·5 to 2·5 ka but, in the last 2·5 kyr, barrier sedimentation has kept up with and outpaced sea‐level. In the last 0·4 kyr the coastal barrier system has been prograding episodically. Sediment accumulation shows considerable variation, with periods of rapid sediment deposition and periods of non‐deposition or erosion resulting in a highly punctuated sediment record. The study demonstrates how core‐based facies interpretations supported by a high‐resolution chronology and a well‐documented sea‐level history allow identification of depositional environments, erosion surfaces and hiatuses within a very homogeneous stratigraphy, and allow a detailed temporal reconstruction of a coastal barrier system in relation to sea‐level rise and sediment supply.  相似文献   

19.
Simulations of the erosion, transport and deposition of fine-grained sediment, such as that of Greenberg & Amos and the Hydraulics Research Station, have illustrated a general lack of reliable field data. Consequently, some standard equations and constants used in modelling the sedimentation character of fine-grained cohesive sediment were evaluated based on data from two field studies and a flume experiment with undisturbed sediment from the Bay of Fundy. Initial results showed that the resistance to erosion of intertidal fine-grained sediment is controlled largely by the degree of subaerial exposure and the consequent dehydration and compaction. The sediment shear strength was high (4 kPa), but generally decreased seawards across the intertidal zone. The resistance of intertidal mud to erosion can be 80 times greater than sub-tidal counterparts. The rate of sediment erosion varied as a complex function of the applied bottom shear stress. At stresses immediately above the critical, the erosion rate decreased asymptotically with time. At higher excess stresses, the erosion rate was linear with respect to time. Thus sediment erosion cannot be represented by a single coefficient. The Krone method of computing sedimentation rates of suspended material was shown, by comparisons with direct measurement, to overpredict by 29%. All variables used in his method were measured in the evaluation with the exception of the critical deposition stress (τd). The closest comparisons were obtained when τd was assigned a value of 0.1 N m?2 following Creutzberg & Postma. The in situ still-water particle settling rate (Vo) was constant with respect to time (2.1 × 10?3 m s?1). However, the settling tube measures of settling rate, compared to in situ results, underpredicted particle settling by an order of magnitude (2.7 × 10?4 m s?1). The reason for this discrepancy is not apparent from our results.  相似文献   

20.
Climbing‐ripple cross‐lamination is most commonly deposited by turbidity currents when suspended load fallout and bedload transport occur contemporaneously. The angle of ripple climb reflects the ratio of suspended load fallout and bedload sedimentation rates, allowing for the calculation of the flow properties and durations of turbidity currents. Three areas exhibiting thick (>50 m) sections of deep‐water climbing‐ripple cross‐lamination deposits are the focus of this study: (i) the Miocene upper Mount Messenger Formation in the Taranaki Basin, New Zealand; (ii) the Permian Skoorsteenberg Formation in the Tanqua depocentre of the Karoo Basin, South Africa; and (iii) the lower Pleistocene Magnolia Field in the Titan Basin, Gulf of Mexico. Facies distributions and local contextual information indicate that climbing‐ripple cross‐lamination in each area was deposited in an ‘off‐axis’ setting where flows were expanding due to loss of confinement or a decrease in slope gradient. The resultant reduction in flow thickness, Reynolds number, shear stress and capacity promoted suspension fallout and thus climbing‐ripple cross‐lamination formation. Climbing‐ripple cross‐lamination in the New Zealand study area was deposited both outside of and within channels at an inferred break in slope, where flows were decelerating and expanding. In the South Africa study area, climbing‐ripple cross‐lamination was deposited due to a loss of flow confinement. In the Magnolia study area, an abrupt decrease in gradient near a basin sill caused flow deceleration and climbing‐ripple cross‐lamination deposition in off‐axis settings. Sedimentation rate and accumulation time were calculated for 44 climbing‐ripple cross‐lamination sedimentation units from the three areas using TDURE, a mathematical model developed by Baas et al. (2000) . For Tc divisions and Tbc beds averaging 26 cm and 37 cm thick, respectively, average climbing‐ripple cross‐lamination and whole bed sedimentation rates were 0·15 mm sec?1 and 0·26 mm sec?1 and average accumulation times were 27 min and 35 min, respectively. In some instances, distinct stratigraphic trends of sedimentation rate give insight into the evolution of the depositional environment. Climbing‐ripple cross‐lamination in the three study areas is developed in very fine‐grained to fine‐grained sand, suggesting a grain size dependence on turbidite climbing‐ripple cross‐lamination formation. Indeed, the calculated sedimentation rates correlate well with the rate of sedimentation due to hindered settling of very fine‐grained and fine‐grained sand–water suspensions at concentrations of up to 20% and 2·5%, respectively. For coarser grains, hindered settling rates at all concentrations are much too high to form climbing‐ripple cross‐lamination, resulting in the formation of massive/structureless S3 or Ta divisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号