首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Precambrian terranes of southern Peninsular India have been central to discussions on the history of formation and breakup of supercontinents. Of particular interest are the Proterozoic high grade metamorphic orogens at the southern and eastern margins of the Indian shield, skirting the 3.4 Ga Dharwar craton which not only preserve important records of lower crustal processes and lithospheric geodynamics, but also carry imprints of the tectonic framework related to the assembly of the major Neoproterozoic supercontinents – Rodinia and Gondwana. These Proterozoic orogens are described as Southern Granulite Terrane (SGT) in the southern tip and the Eastern Ghats Mobile Belt (EGMB) in the eastern domains of the peninsula. The contiguity of these orogens is broken for a distance of ∼400 km and disappears in the Bay of Bengal. These orogens expose windows of middle to lower crust with well-preserved rock records displaying multiple tectonothermal events and multiphase exhumation paths.Recent studies in these orogens have led to the recognition of discrete crustal blocks or terranes separated by major shear zone systems, some of which represent collisional sutures. The SGT and EGMB carry several important features such as fold-thrust tectonics, regional granulite facies metamorphism of up to ultrahigh-temperature conditions in some cases, multiple P–T paths, development of lithospheric shear zones, emplacement of ophiolites, presence of alkaline and anorthositic complexes, development of crustal-scale “flower structures”, transpressional strains, and reactivation tectonics. A heterogeneous distribution of different metamorphic and magmatic assemblages with distinct spatial and temporal strain variations in shaping the fabric elements in different blocks is identified. Both EGMB and SGT share a common transpressional deformation history during the latest Neoproterozoic characterized by the steepening of the initial low angle crustal scale structures leading to a subvertical grain conducive to reactivation tectonics. Our synthesis of the spatial distribution, geometry, kinematics and the transpressional strain of the shear zone systems provides insights into the tectono-metamorphic history of the Proterozoic orogens of southern India and their contiguity and complexities. Recent understanding of subduction, accretion and collisional history along these zones together with a long lived transpressional tectonic regime imply that these orogens witnessed identical tectonic regimes at different times in Earth history, although the major and common structural architecture was built during the final assembly of the Gondwana supercontinent.  相似文献   

2.
The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3–F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.  相似文献   

3.
我国前寒武纪变质岩的构造特征   总被引:3,自引:0,他引:3  
我国前寒武纪变质岩系的主要构造变形特征是:线型韧性剪切带及逆冲推覆构造发育,一般都遭受了多期变形、变质和强烈的构造置换作用,显生宙再造作用强烈,发育各种类型的穹隆构造。这些特征反映了前寒武纪地壳结构的不均一性和水平运动为主的构造体制.据构造置换、构造组合样式等划分出五种变质岩系构造类型,并对它们的制图原则和研究方法,作了相应的讨论。  相似文献   

4.
Recent works suggest Proterozoic plate convergence along the southeastern margin of India which led to amalgamation of the high grade Eastern Ghats belt (EGB) and adjoining fold-and-thrust belts to the East Dhrawar craton. Two major thrusts namely the Vellikonda thrust at the western margin of the Nellore Schist belt (NSB) and the Maidukuru thrust at the western margin of the Nallamalai fold belt (NFB) accommodate significant upper crustal shortening, which is indicated by juxtaposition of geological terranes with distinct tectonostratigraphy, varying deformation intensity, structural styles and metamorphic grade. Kinematic analysis of structures and fabric of the fault zone rocks in these intracontinental thrust zones and the hanging wall and footwall rocks suggest spatially heterogeneous partitioning of strain into various combinations of E-W shortening, top-to-west shear on stratum parallel subhorizontal detachments or on easterly dipping thrusts, and a strike slip component. Although relatively less prominent than the other two components of the strain triangle, non-orthogonal slickenfibres associated with flexural slip folds and mylonitic foliation-stretching lineation orientation geometry within the arcuate NSB and NFB indicate left lateral strike slip subparallel to the overall N-S trend. On the whole an inclined transpression is inferred to have controlled the spatially heterogeneous development of thrust related fabric in the terrane between the Eastern Ghats belt south of the Godavari graben and the East Dharwar craton.  相似文献   

5.
Three fold generations have been recognized in Svecofennian rocks (±1,800 Ma) from West Uusimaa, SW Finland. The first one (F1) might be related to thrusting and imbrication tectonics at plate collision contacts. The main generation (F2) is due to a N-S horizontal crustal shortening, which created at first E-W trending upright folds in the whole region and later tightened these F2 folds in the western part of the belt, whereas conjugate shear zones and tectonic lenses of competent rock bodies developed in the eastern part. Simultaneously the metamorphic conditions rose from amphibolite- to granulite-facies in this eastern part, which is known as the West Uusimaa Complex. The amphibolite- to granulite-facies transition zone along the western boundary of the granulite-facies complex is studied in detail. A number of prograde mineral reactions are telescoped in this transition zone: the breakdown of biotite and amphibole to ortho- ±clino-pyroxene in metaigneous rocks, the appearance of garnet in cordierite-bearing metapelites and the appearance of scapolite in calcareous rocks. Distinct mineralogical changes also occur in this zone which cross cuts all major structures and rock units and are only affected by late-F3 folding (open, disharmonic folds with approximately N-S trending axial planes) and young shear zones, associated with pseudotachylite generation. The absence of any evidence of block faulting and tilting of the crust that could be associated with the granulite complex suggests that the whole region represents one crustal level. A fluid-inclusion study indicates similar pressures for the amphibolite facies and the granulite facies domains. Application of various independent geothermobarometric methods suggest a low pressure (3–5 K bar) and a temperature increase from 550–650° C to 700–825° C, associated with a decreasing water activity (0.12O<0.4) and a general increasing CO2 activity. Fluid inclusions strongly suggest an isobaric amphibolite/granulite transition. There-fore the granulite-facies complex is designated a thermal dome. Whole rock chemical data show that granulite-facies metamorphism is isochemical. Constraints for the Svecokarelian crustal evolution are discussed.  相似文献   

6.
Wang  Neubauer  Genser  & Yang 《地学学报》1998,10(5):260-267
Petrological, geochronological and structural data show that the eastern Dabie metamorphic complex resulted from two orogenic stages. Precursor rocks of the ultrahigh-pressure (UHP) and high-pressure (HP) units in the present hanging wall tectonic position were buried, penetratively deformed and subsequently exhumed by distributed, ESE-directed shearing during Triassic time. In contrast, rocks of the Dabie orthogneiss domes, now in a footwall tectonic position, were penetratively deformed during temperature-dominated, Early Cretaceous tectonic events, that are likely related to magmatic underplating. The Dabie orthogneiss domes and the UHP/HP units were juxtaposed during Early Cretaceous exhumation of Dabie orthogneiss domes by the formation of an ESE-directed low-angle ductile normal shear zone. Consequently, the UHP/HP units now represent an extensional allochthon in the hanging wall of the younger normal shear zone. The Cretaceous extensional structures are limited by boundary strike-slip faults. Consistent with the South China regional tectonic framework, ESE-directed lateral extrusion is considered to be the driving mechanism for extension and the present-day structure of the Dabie metamorphic complex.  相似文献   

7.
太行山南段自立庄韧性剪切带变形特征   总被引:1,自引:0,他引:1  
张祥信 《地质与勘探》2021,57(1):166-174
太行山南段临城自立庄地区古元古界甘陶河群中低级变质岩中发育一条左行逆冲型韧性剪切带。自立庄韧性剪切带出露长约10 km,宽约1 km,走向NNE,往西缓倾,在EW方向上由若干条强变形带与其间的弱变形域或岩块组成,平面上呈现平行式的组合特征。该韧性剪切带内发育糜棱岩、拉伸线理和皱纹线理、不对称褶皱、石香肠构造和构造透镜体、S-C面理和旋转碎斑等宏观和微观构造。S-C面理、旋转碎斑、不对称褶皱等宏微观变形特征一致表明自立庄韧性剪切带上盘由西往东逆冲的运动学性质。在对韧性剪切带宏观、微观构造特征研究基础上,结合区域资料,认为自立庄韧性剪切带的形成与华北克拉通古元古代末期西部陆块与东部陆块的EW向碰撞拼合有关,是18.5 Ga吕梁运动的产物。自立庄韧性剪切带的厘定为太行山南段古元古代构造演化提供了基础资料。  相似文献   

8.
<正>The Ailaoshan-Red River(ASRR) shear zone is one of the major Southeast Asian tectonic discontinuities that have figured the present tectonic framework of the eastern Tibet.Several metamorphic massifs are distributed linearly along the shear zone,e.g.Xuelongshan,Diancangshan, Ailaoshan and Day Nui Con Voi from north to south.They bear a lot of lines of evidence for the tectonic evolution of the eastern Tibetan at different crustal levels in different tectonic stages.Controversy still exists on the deformation structures,microstructures and their relationship with metamorphisms along the ASRR.In this paper detailed microstructural and EBSD(Electron Backscattered Diffraction) fabric analysis of some highly sheared granitic rocks from different massifs along the ASRR are conducted.High temperature structures and microstructures are preserved in unsheared gneisses,in weakly sheared xenoliths or in some parts of the highly sheared rocks(mylonites).Several types of high temperature quartz c-axis fabrics show symmetrical patterns or transitions from symmetrical to asymmetrical patterns.The former are attributed to coaxial deformation during regional shortening in an early stage of the Indian-Eurasian tectonic interaction and the latter are related to the transitions from coaxial compression to noncoaxial shearing during the post-collisional ASRR left lateral shearing.  相似文献   

9.
关于太古宙早期地壳演化构造机制的争论已经持续了数十年,其焦点主要集中于水平构造还是垂向构造两大经典构造模式的探讨.对于早期地壳构造演化方面的研究,将会有助于我们更好地理解早前寒武纪的地球动力学机制.本文对华北克拉通东北部鞍山地区花岗-绿岩带内齐大山韧性剪切带的构造变形特征进行了详细的解析,揭示了该区新太古代垂向构造作用样式.研究结果表明,齐大山韧性剪切带内花岗质岩石长英质矿物塑性拉长特征明显,条带状构造发育,面理向NWW方向陡倾,不对称组构特征和矿物拉伸线理产状指示向NWW的陡倾正滑移剪切作用.变形岩石中的长英质矿物均发育中低温显微变形特征,石英C轴电子背散射衍射(EBSD)组构分析揭示石英以菱面<a>和底面<a>滑移系为主,岩石经历了中低温非共轴变形.根据矿物的变形行为以及石英的结晶优选方位推测变形温度约为400~500℃,岩石变形特征以位错蠕变为主.有限应变分析结果表明,靠近铁矿带方向,构造岩类型由L=S构造岩过渡为LS构造岩,岩石应变强度呈明显增强趋势.运动学涡度测量结果显示齐大山韧性剪切带内大多数岩石样品的Wk值大于0.75,岩石形成于以简单剪切作用为主的一般剪切作用.对比花岗-绿岩带西侧的白家坟韧性剪切带,显示二者均具有相向的陡倾正滑移运动学特征,表明新太古代时期鞍山地区地壳构造演化模式以垂向构造作用为主.   相似文献   

10.
Amphibolite-grade quartzofeldspathic gneiss domes surrounded by greenschist-grade island arc and ophiolitic assemblages is a characteristic feature of the Arabian–Nubian Shield in the Eastern Desert of Egypt. The mode of formation of these domes, including the Meatiq Gneiss Dome, is controversial, as is the protolith age of these gneisses. Reinvestigation of selected segments of the Eastern Desert Shear Zone (EDSZ), a high-strain zone separating the eugeoclinal units from the underlying quartzofeldspathic gneisses show it to be a top-to-the NW shear zone which was later folded about a NW–SE trending fold axis (long axis of the gneiss dome). Kinematic indicators (shear bands, duplex structures, etc.) along the north-eastern and south-western flanks of the dome therefore show apparent left-lateral and right-lateral strike-slip displacement across the EDSZ. These observations are in conflict with most previous tectonic models which link formation of the dome to extension in a NW–SE oriented corridor bordered by two sub-parallel left-lateral NW–SE oriented strike-slip faults. Emplacement of upper crustal, low-grade, eugeoclinal rocks tectonically on top of middle crustal amphibolite-grade quartzofeldspathic gneisses indicates that the EDSZ may represents an extensional fault with a possible break-away zone in the southern part of the Eastern Desert. Alternatively it can be explained as the result of two (or more) tectonometamorphic events with an intervening episode of erosion and exhumation of high grade rocks prior to emplacement of the eugeoclinal thrust complex. Recent U–Pb TIMS ages on syntectonic orthogneisses and post-tectonic granites in the area show that shearing and subsequent doming must be younger than 630 Ma, possibly as young as 600 Ma.  相似文献   

11.
On the axial zone of the Southern Apennines the major tectonic boundary between the inner platform (Western platform unit) and the pelagic (Lagonegro units) domains is represented by a thick level of highly deformed rock‐assemblage. Structural analysis reveals that this tectonic unit represents an intracontinental melange complex characterized by a block‐in‐matrix fabric that contains blocks from both hangingwall platform and footwall basin units. This unit comprises different sets of structures that, caused by shearing processes, developed at depths ranging from about 8–9 km to the surface. These tectonites represent the product of a crustal shear zone developed at the major boundary between platform‐basin domains of Adria during the thick‐skinned tectonic processes controlling the Southern Apennines mountain building.  相似文献   

12.
The AravallieDelhi and Satpura Mobile Belts(ADMB and SMB)and the Eastern Ghat Mobile Belt(EGMB)in India form major Proterozoic mobile belts with adjoining cratons and contemporary basins.The most convincing features of the ADMB and the SMB have been the crustal layers dipping from both sides in opposite directions,crustal thickening(w45 km)and high density and high conductivity rocks in upper/lower crust associated with faults/thrusts.These observations indicate convergence while domal type refectors in the lower crust suggest an extensional rifting phase.In case of the SMB,even the remnant of the subducting slab characterized by high conductive and low density slab in lithospheric mantle up to w120 km across the PurnaeGodavari river faults has been traced which may be caused by fuids due to metamorphism.Subduction related intrusives of the SMB south of it and the ADMB west of it suggest NeS and EeW directed convergence and subduction during MesoeNeoproterozoic convergence.The simultaneous EeW convergence between the Bundelkhand craton and Marwar craton(Western Rajasthan)across the ADMB and the NeS convergence between the Bundelkhand craton and the Bhandara and Dharwar cratons across the SMB suggest that the forces of convergence might have been in a NEeSW direction with EeW and NeS components in the two cases,respectively.This explains the arcuate shaped collision zone of the ADMB and the SMB which are connected in their western part.The Eastern Ghat Mobile Belt(EGMB)also shows signatures of E eW directed MesoeNeoproterozoic convergence with East Antarctica similar to ADMB in north India.Foreland basins such as Vindhyan(ADMBeSMB),and Kurnool(EGMB)Supergroups of rocks were formed during this convergence.Older rocks such as Aravalli(ADMB),MahakoshaleBijawar(SMB),and Cuddapah(EGMB)Supergroups of rocks with several basic/ultrabasic intrusives along these mobile belts,plausibly formed during an earlier episode of rifting during PaleoeMesoproterozoic period.They are highly disturbed and deformed due to subsequent MesoeNeoproterozoic convergence.As these Paleoproterozoic basins are characterized by large scale basic/ultrabasic intrusives that are considerably wide spread,it is suggested that a plume/superplume might have existed under the Indian cratons at that time which was responsible for the breakup of these cratons.Further,the presence of older intrusives in these mobile belts suggests that there might have been some form of convergence also during Paleoproterozoic period.  相似文献   

13.
大别变质地体的构造样式及变形序列   总被引:1,自引:1,他引:1  
大别山区晚太古代大别群变质岩系,经历了复杂的变形过程。在大别变质地块内部识别出两套大型剪切带,它们在该区构造格架形成过程中起着重要的作用。本文还分析了变质的上壳岩、片麻岩和剪切带内的变形特点。实际资料说明,剪切带内的褶皱是由于剪切的不稳定性及平行面理局部缩短形成的,这些大型地壳剪切作用多伴随有挤压流动或伸展流动。根据褶皱叠加关系以及剪切带、新成体交切关系建立了大别群总体构造序列。该区提供了一个研究中下地壳作用的窗口。  相似文献   

14.
The Proterozoic basins of India adjoining the Eastern Ghats Granulite Belt (EGGB) in eastern and southern India contain both Mesproterozoic and Neoproterozoic successions. The intracratonic set-up and contractional deformation fo the Neoproterozoc successions in the Paland sub-basin in the northeastern part of Cuddapah basin and similar crustal shortening in contemporaneous successions lying west of the EGGB and Nellore Schist Belt (NSB) are considered in relation to the proposed geodynamic evolution of the the Rodinia and Gondwana supercontinents. Tectonic shortening in the Palnad sub-basin (northeast Cuddapah), partitioned into top-to-westnorthwest thrust shear, flexural folds and cleavage development under overall E-W contraction, suggests foreland style continental shortening within an intracratonic set-up. A thrust sheet containing the Nallamalai rocks and overlying the Kurnool rocks in the northeastern part of Palnad sub-basin exhibits early tight to isoclinal folds and slaty (phylllitic) cleavage, which can be correlated with early Mesoproterozoic deformation structures in the nothern Nallamalai Fold Belt (NFB). NNE-SSW trending folds and cleavage affect the Kurnool Group and overprint earlier structures in the thrust sheet. Thrusting of the Nallamalai rocks and the later structures may have been related to convergence of the Eastern Ghats terrane and the East-Dharwar-Bastar craton during Early Neoproterozoic (Greenvillian) and/or later rejuvenation related to Pan-African amalgamation of East and West Gondwana.  相似文献   

15.
造山带中残存有许多前寒武纪地质体,其中一些被当作前寒武纪基底用于探讨所在微陆块的大地构造属性。由于微陆块属性对于造山带结构和演化具有重要意义,以及所讨论的前寒武纪地质体蕴含地球早期历史演化信息,对微陆块属性的厘定成为造山带研究的重点和难点问题之一。笔者等以中亚造山带南缘中段的微陆块为例,总结梳理了微陆块厘定的相关依据:岩石组合和变质变形特征,碎屑锆石谱峰显示的源区时代特征,地质事件序列,前寒武纪地壳演化信息,继承锆石、捕获锆石和古生代侵入体同位素显示的深源地壳信息,以及地球物理等方面的特征。由于不同学者采用的厘定依据不同,对微陆块属性认识争论不断,即使相同依据也有一定的差异,从而影响对造山带结构和演化的认识。基于以上原因,笔者等认为前寒武纪基底的亲缘性探讨不仅要注重岩石组合和形成时代,还要在精细野外解剖和高精度年代学工作基础上,注意其变质—变形特征、接触关系、源区时代特征、岩石成因和构造环境、地壳增生信息和深源地壳信息等的综合对比分析,以得到较全面依据,探讨其构造属性。当获得一组前寒武纪地质体信息时,可先进行同构造单元内对比,再与其他构造单元对比。当特征相异时则需进行构造单元拆分或考虑构造就位的可能(包括但不限于推覆体、走滑外来体、俯冲刮削的构造岩片);当特征相似时,可能指示了相同微陆块的裂解或破坏或者不同的微陆块共同经历了相似的前寒武纪演化历程。  相似文献   

16.
《Geodinamica Acta》2013,26(5):267-282
The interaction of distinct geologic processes involved during late orogenic extensional exhumation history of the metamorphic units in the Eastern Rhodope is refined by new and reviewing 40Ar/39Ar geochronological and structural data. Minerals with different closure temperatures from metamorphic rocks investigated in this study are combined with those from magmatic and ore-forming hydrothermal rocks in two late stage metamorphic domes – the Kesebir-Kardamos and the Biala reka-Kehros domes. The 38-37 Ma muscovite and biotite cooling ages below 350°-300°C characterize basement metamorphic rocks that typified core of the Kesebir-Kardamos dome, constraining their exhumation at shallow crustal levels in the footwall of detachment. These ages are interpreted as reflecting last stage of ductile activity on shear zone below detachment, which continued to operate under low-temperature conditions within the semi-ductile to brittle field. They are close to and overlap with existing cooling ages in southern Bulgaria and northern Greece, indicating supportively that the basement rocks regionally cooled between 42-36 Ma below temperatures 350°-300°C. The spatial distribution of ages shows a southward gradual increase up structural section, suggesting an asymmetrical mode of extension, cooling and exhumation from south to the north at latitude of the Kesebir-Kardamos dome. The slightly younger 36.5-35 Ma crystallization ages of adularia in altered rocks from the ore deposits in the immediate hanging-wall of detachments are attributed to brittle deformation on high-angle normal faults, which further contributed to upper crustal extension, and thus constraining the time when alteration took place and deformation continued at brittle crustal levels. Silicic dykes yielded ages between 32-33 Ma, typically coinciding with the main phase of Palaeogene magmatic activity, which started in Eastern Rhodope region in Late Eocene (Priabonian) times. The 40Ar/39Ar plateau ages from the above distinct rock types span time interval lasting approximately ca. 6 Ma. Consequently, our geochronologic results consistently indicate that extensional tectonics and related exhumation and doming, epithermal mineralizations and volcanic activity are closely spaced in time. These new 40Ar/39Ar age results further contribute to temporal constraints on the timing of tectonic, relative to ore-forming and magmatic events, suggesting in addition that all above mentioned processes interfered during the late orogenic extensional collapse in the Eastern Rhodope region.  相似文献   

17.
新的资料揭示,青海赛什塘铜矿区是褶皱叠加变形区。为矿山勘探工作提供基础地质支撑,采用露头构造解析基础上的构造综合分析方法,在露头条件欠佳的矿区中下三叠统中首次厘定出4期褶皱组合样式,形成露头和区域尺度上的各类叠加构造。第二期褶皱(F2)叠加在第一期褶皱(F1)之上,主要形成Ramsy(Ramsay et al.,1987)的第三类叠加,表明二者可能是同一构造事件中连续的2阶段变形作用的结果,代表了从分层剪切到横向缩短的地壳变形机制转换过程,其间同时发生了印支期岩浆杂岩的侵入就位,推测是对区域上印支期西秦岭地块与柴达木地块之间从俯冲向碰撞转换的远程效应的响应。褶皱构造对赛什塘铜多金属矿的形成、改造和保存都起了重要作用。  相似文献   

18.
刘正宏  潘博文  李鹏川  朱凯  董晓杰 《地球科学》2017,42(12):2105-2116
大青山高级变质岩不仅记录华北克拉通早期大陆形成演化历史,也保留了中下部地壳岩石流变信息,它们经历了下部地壳构造层次高角闪岩相-麻粒岩相条件变质变形、深熔作用改造,形成了复杂构造样式和构造要素组合.韧性剪切带是高级变质岩中主要构造形迹,控制着早前寒武纪高级变质岩主体构造格架.依据野外地质产状、变形特征与构造要素叠加改造关系,韧性剪切带划分为早期近水平顺层伸展型和晚期陡倾韧性剪切带.近水平顺层伸展韧性剪切带呈残留状保留在后期变形改造较弱部位上,主要沿着不同地质单元或者岩性层界面上发育,是在伸展变形体制下形成的.晚期陡倾韧性剪切带呈近东西方向展布,规模较大,叠加和改造早期构造形迹,形成于晚期造山挤压构造环境中,以左行滑移为主.这两种韧性剪切带都形成于地壳中深部构造层次高角闪岩相-麻粒岩相条件下,变形机制主要为熔体增强颗粒边界扩散和颗粒流动,使岩石发生大规模的塑性流动.在宏观上形成了不对称流动组构、条纹条带构造、熔融线理、层内流动褶皱等构造形迹,在微观上矿物晶体没有发生明显塑性变形,均匀消光,晶体为三边平衡结构,与静态变质结构相似,形成了地壳深部构造层次上变质构造岩-构造片麻岩.   相似文献   

19.
伊宁吐拉苏火山盆地构造与金矿成矿关系   总被引:10,自引:4,他引:6  
伊宁吐拉苏火山盆地发育在前寒武纪和加里东基底上,盖层主要由早石炭世陆相火山岩组成。基底与盖层中的断裂、褶皱构造特征有显著差异。火山构造单元划有火山喷发带、火山构造带、火山机体三级。构造演化经历了基底和火山盆地形成及剥蚀三个阶段。金矿产于大哈拉军山组。认为三级控矿构造与三级火山构造相对应,分别控制着金矿带、金矿田、金矿床(点)的展布和产出。  相似文献   

20.
Structural analysis carried out in the Tuscan Nappe (TN) in the southeastern sector of the Apuan Alps highlights a structural evolution much more complex than that proposed so far. The TN has been deformed by structures developed during four deformation phases. The three early phases resulted from a compressive tectonic regime linked to the construction of the Apenninic fold‐and‐thrust‐belt. The fourth phase, instead, is connected with the extensional tectonics, probably related to the collapse of the belt and/or to the opening of the Tyrrhenian Sea. Our structural and field data suggest the following. (1) The first phase is linked to the main crustal shortening and deformation of the Tuscan Nappe in the internal sectors of the belt. (2) The second deformation phase is responsible for the prominent NW–SE‐trending folds recognized in the study area (Mt. Pescaglino and Pescaglia antiforms and Mt. Piglione and Mt. Prana synforms). (3) The direction of shortening related to the third phase is parallel to the main structural trend of the belt. (4) The interference between the third folding phase and the earlier two tectonic phases could be related to the development of the metamorphic domes. The two directions of horizontal shortening induced buckling and vertical growth of the metamorphic domes, enhancing the process of exhumation of the metamorphic rocks. (5) The exhumation of the Tuscan Nappe occurred mostly in a compressive tectonic setting. A new model for the exhumation of the metamorphic dome of the Apuan Alps is proposed. Its tectonic evolution does not fit with the previously suggested core complex model, but is due to compressive tectonics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号