首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Using the Main Stellar Spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a polametric analyzer, we measured the longitudinal magnetic field component B for the T Tauri stars T Tau and AS 507 on January 16 and 18 and February 15, 2003. For both stars, we determined only the upper limits on B from photospheric lines: +15±30 G for T Tau and ?70±90 G for AS 507. The magnetic field of AS 507 was not measured previously, while B for T Tau is lower than its values that we obtained in 1996 and 2002 (B?150±50G), suggesting that the longitudinal magnetic field component in the photosphere of T Tau is variable. We also measured the longitudinal magnetic field component for T Tau in the formation region of the He I 5876 Å emission line. We found B in this region to be ?+650, ?+350, and ?+1100 G on January 16, 18, and February 15, 2003, respectively. Our observations on January 18 and February 15 correspond to virtually the same phase of the star's rotation period, but the profiles of the He I 5876 Å line differ markedly on these two nights. Therefore, we believe that the threefold difference between the B values on these nights does not result from observational errors. We discuss the possible causes of the B variability in the photosphere and the magnetosphere of T Tau.  相似文献   

2.
The Main Stellar Spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a polarimetric analyzer was used to measure the longitudinal magnetic-field component of FU Ori on January 24, 2002. The following (3σ) upper limits were obtained for the magnetic field B: B<350–400 G in the formation region of Fe I, Ni I, and Ca I absorption lines (disk + wind), and B<200 G in the formation region of the absorption component of the Hα line with a P Cyg profile. We conclude that the strength of a large-scale magnetic field capable of collimating the disk wind does not exceed 300 G. For the region where the emission component of the Hα line is formed, we found that B<100 G. Such a low value may have been obtained because the magnetic field lines in this region were almost perpendicular to the line of sight at the time of our observations.  相似文献   

3.
Based on observations with the 6-m SAO RAS telescope, we have found that chemically peculiar star with a large depression of the continuum at λ5200 Å and strengthened silicon lines in the spectrum has a strong magnetic field. The longitudinal field component Be has a negative polarity and varies from ?300 G to ?2000 G with a period of 1.756 days. Photometric variations of brightness take place with the same period. We determined the variability of the radial velocity at times of about tens of years pointing to a possible binarity of the object. We have built a magnetic model of this star, determined the inclination angles of the rotation axis to the line of sight i = 20° and of the dipole axis to the rotation axis β = 116°, and the field strength at the pole is Bp = 10 kG. We carried out a chemical composition analysis and found a lack of helium for almost an order of magnitude, some overabundance of silicon and metal elements for more than an order of magnitude, particularly, cobalt for three orders of magnitude.  相似文献   

4.
We describe the results of our magnetometric monitoring of two white dwarfs: 40 Eri B and WD 0009+501. We found periodic variations in the longitudinal magnetic field of 40 Eri B. The field variability with an amplitude of ~4 kG and a zero mean is discussed in terms of an oblique rotator model. The rotation period is ~5 h 17 min, but there is another period of 2 h 25 min that may be related to nondipolar field components. The published projected rotational velocities of 40 Eri B measured from a narrow non-LTE Hα peak V sin i?8 km s?1 are in good agreement with our measurements of the magnetic field and the rotation period. The combined effect of magnetic and rotational broadening of the central Hα component constrains the rotation period, P? 5.2 h. We discovered the rotation period (1.83 h) of the magnetic white dwarf WD 0009+501. The period was found from the periodically varying magnetic field of the star with a mean 〈Be〉 = ?42.3±5.4 kG and a half-amplitude of 32.0±6.8 kG.  相似文献   

5.
We present results of modeling of the sample of magnetic stars. We have obtained such important for magnetic star physics parameters as the mean surface magnetic field Bs, the magnetic field at magnetic poles—Bp, the dipole inclination to the rotation equatorial plane α, and the distance to monopoles from the center of the star Δa. We present some information onmagnetic star physics that helps to understand the derived results better.  相似文献   

6.
We present the results of magnetic field measurements of four chemically peculiar (CP) stars with helium abundance anomalies which are the members of the Orion stellar association OB1. The stars under study were classified as magnetic by other authors earlier. The present paper contains the results of the extensive study of the stars. Magnetic field measurements allowed us to conclude that HD36540 has a weak field and the longitudinal component B e does not exceed 500 G. The longitudinal field of HD36668 varies with the period P = 2. d 11884 and the amplitude from ?2 to +2 kG. The magnetic field of HD36916 has mainly negative polarity and varies within the range from 0 to ?1 kG with the period P = 1.d 565238. HD37058 is a magnetic star, the longitudinal field of which varies from ?1.2 to +0.8 kG with the period P = 14. d 659. The B e field variability pattern for the stars HD36916 and HD37058 is of a simple harmonic type. The longitudinal field of HD36668 is best described with two combined harmonic functions (“a doublewave”). The variability period of HD36540 is still undetermined. For all the stars from this paper, we measured radial velocities V r, axial rotation rates v e sin i, and determined basic parameters of atmospheres (effective temperatures T eff and gravity acceleration log g). We also estimated masses M, luminosities L, and radii R of the stars.  相似文献   

7.
We present our synchronous spectroscopy and photometry of DI Cep, a classical T Tauri star. The equivalent widths and radial velocities of the individual components and Hα, Hβ, D1 and D2 Na I, and HeI λ5876 Å emission line profiles exhibit variability. We have found a clear positive correlation between the brightness and equivalent width for the Hα and Hβ emission lines. The photometric and spectroscopic data are satisfactorily described in phases of a 9-day period. The expected magnetic field of the star has been estimated using existing magnetospheric models to be 655–1000 G. The star is suspected to be a binary.  相似文献   

8.
Observations with the 6-m telescope revealed eight new magnetic, chemically peculiar stars: HD 29925, HD 40711, HD 115606, HD 168796, HD 178892, HD 196691, HD 209051, and BD+32°2827. Zeeman observations of all these objects have been carried out for the first time. We selected candidates by analyzing the depression profile at a wavelength of λ5200 Å. This technique for selecting candidate magnetic stars was shown to be efficient: we found magnetic fields in 14 of the 15 objects that we selected for our observations with a Zeeman analyzer. A maximum longitudinal field strength B e exceeding 8 kG was found in HD 178892; in HD 209051 and HD196691, B e reaches 3.3 and 2.2 kG, respectively. For the remaining stars, we obtained lower limits of the longitudinal field (more than several hundred G).  相似文献   

9.
A simple energy model of a sunspot as a compact magnetic feature is described where the main energy contribution is provided by the coolest and most compressed part of the magnetic force tube of the spot at depths ranging from Wilson’s depression level (300–500 km) down to 2–3 thousand km. The equilibrium and stability conditions for such a system are analyzed using the variation principle, and oscillations of the system as a whole about the inferred equilibrium position are studied. The sunspot is shown to be stable in the magnetic field strength interval from 0.8–1 to 4–5 kG. The dependence of the eigenfrequency on magnetic field strength ω(B) is computed for the main oscillatory mode, where only the umbra of the sunspot takes part in oscillations, ω = ω 1 (B). Lower subharmonics may appear in the case where penumbra too becomes involved in the oscillatory process: ω 2 = ω 1/2, ω 3 = ω 1/3. Theoretical curves agree well with the observational data obtained in Pulkovo using various independent methods: from temporal variations of sunspot magnetic field and from line-of-sight-velocity measurements. The periods of oscillations found range from 40 to 200 minutes.  相似文献   

10.
The method of “virtual magnetic charges” is used to analyze the structure of the magnetic field of the CP star HD32633. The phase relation of its magnetic field differs strongly from a sine wave. The structure of the star’s field can be described fairly well by two dipoles located in the opposite regions of the star near its rotation equator. Each of these dipoles produces two pairs of magnetic spots of opposite polarity similar to sunspots. The dipoles are located at a distance of Δa=0.6 R from the center, where R is the radius of the star. The field strength at the poles is equal to ±42 and ±19 kG.  相似文献   

11.
Based on an analogy between stellar and solar flares, we investigate the ten-second oscillations detected in the U and B bands on the star EV Lac. The emission pulsations are associated with fast magnetoacoustic oscillations in coronal loops. We have estimated the magnetic field, B ≈ 320 G; the temperature, T ≈ 3.7 × 107 K; and the plasma density, n ≈ 1.6 × 1011 cm?3, in the region of energy release. We provide evidence suggesting that the optical emission source is localized at the loop footpoints.  相似文献   

12.
We present the results of measuring longitudinal magnetic fields (Be), rotation velocities (ve sin i), and radial velocities (Vr) of 44 stars observed with the Main Stellar Spectrograph (MSS) of the 6-m BTA telescope of the Special Astrophysical Observatory in 2009. For the first time, magnetic fields were detected for the stars HD5441, HD199180, HD225627, and BD+00° 4535. We show that for the same stars, the longitudinal fields Be measured from the Hβ hydrogen line core and from metal lines can differ by 10% and up to a factor of 2–3. Except in rare cases, magnetic fields measured from the metal lines are stronger. We believe that this phenomenon is of a physical nature and depends on the magnetic field topology and the physical conditions inside a specific star. Observations of standard stars without magnetic fields confirm the absence of systematic errors capable of introducing distortions into the longitudinal-field measurement results. In this work we comment on the results for each of the stars.  相似文献   

13.
We present an analysis of new photometric and spectropolarimetric observations of a chromospherically active star FKCom. Based on this observational data and the data from the literature sources, applying a common technique, we performed an analysis of a complete set of the available photometric data, which were divided into 218 individual light curves. For each of them a reverse problem of restoring largescale temperature irregularities on the surface of the star from its light curve was solved. We analyzed the time series for the brightness of the star in the U-, B-, and V-bands, the brightness variability amplitudes, the total area of the spots on the surface of the star, and the average brightness of each set considered. The analysis of determination results of the positions of active longitudes leads to the conclusion about the existence of two systems of active regions on the FKCom surface. It was determined that the positions of each of these systems undergo cyclic changes. This confirms the conclusion on the likely absence of a strongly pronounced regularity of the flip-flops in FKCom, earlier suggested by other researchers. The results of the new polarimetric observations FKCom in 2014–2015 are presented. These measurements evidence the legitimacy of the proposed interpretation the behavior of the longitudinal magnetic field strength 〈Bz〉, indicating the settling-in of a more symmetric distribution of magnetic region on the FKCom surface. An increasing activity of the star over the recent years, registered from the photometric observations is also consistent with the probable onset of growth in the 〈Bz〉 parameter starting from 2014.  相似文献   

14.
The presence of hot spots on the surface of T Tau attributable to mass accretion from the protoplanetary disk is shown to have virtually no effect on the accuracy of estimating the magnetic field strength for this star. By comparing the magnetic field strengths for T Tau at the photospheric level measured by various methods, we found that if the angle i at which we see T Tau does not exceed 10°, then the magnetic field of the star could be dipolar with the angle between the dipole axis and the rotation axis of the star ?85°. If, however, it later emerges that i > 10°, its magnetic field is essentially nondipolar and/or nonstationary.  相似文献   

15.
The possibility of investigating the vertical structure of the magnetic field in chemically peculiar main-sequence stars is discussed. The nonuniform distribution of chemical elements over the surface complicates the problem substantially. The most efficient measurements are shown to be those of the longitudinal field components based on spectral lines with wavelengths longer and shorter than 3646 Å (shortward and longward of the Balmer jump), which form at different optical depths in the atmosphere. Various methodological problems are addressed that must be overcome in order to accomplish the task. The brightest magnetic star α 2 CVn is observed with the echelle spectrometer equipped with an Uppsala CCD chip. New observations corroborate our previous result: the longitudinal component of the magnetic field B e of the α 2 CVn star increases with depth by about 30% over the atmosphere thickness scale.  相似文献   

16.
We present our long-term photometric and spectroscopic observations of a high-latitude B supergiant with an infrared excess—the protoplanetary nebula IRAS 18062+2410. OurU BV observations in 2000–2006 have confirmed the rapid irregular photometric variability of the star with a maximum amplitude as high as 0 . m 4 in V that we found previously. The BV and UB color indices vary with amplitudes as high as 0 . m 10 and 0 . m 25, respectively, and show no clear correlation with the brightness. Our V-band CCD observations on 11 nights in 2006 have revealed brightness trends during the night. The variability of IRAS18062+2410 is similar in pattern to the light variations in other hot post-AGB objects and some of the nuclei of young planetary nebulae. We assume that pulsations and a variable stellar wind can be responsible for the variability of these stars. In addition to the rapid variability, our 12-year-long observations have revealed a systematic decline in the mean brightness of IRAS 18062+2410. This may be related to a rise in the temperature of the star at constant luminosity as a result of its evolution. Low-resolution spectroscopic observations have shown a systematic increase in the equivalent widths of the Hα, Hβ, [NII]λ6584 Å, OI λ8446 Å, and [OII] λ7320–7330 Å emission lines. The changes in the star’s emission line spectrum are probably caused by an increase in the degree of ionization of the gas shell due to a rise in the temperature of the ionizing star. Our photometric and spectroscopic observations of IRAS 18062+2410 confirm the previously made assumptions that the star evolves very rapidly to the region of planetary nebulae.  相似文献   

17.
We analyzed the chemical composition of the chemically peculiar (CP) star HD 0221=43 Cas using spectra taken with the NES spectrograph of the 6-m telescope with a spectral resolution of 45 000. The Hβ line profile corresponds most closely to Teff = 11 900 K and log g = 3.9. The rotational velocity is ve sin i = 27 ± 2 km s?1, and the microturbulence is ξt = 1 km s?1. The results of our abundance determination by the method of synthetic spectra show that the star has chemical anomalies typical of SrCrEu stars, although its effective magnetic field is weak, Be < 100 G. For silicon, we obtained an abundance distribution in atmospheric depth with a sharp jump of 1.5 dex at an optical depth of log τ5000 = ?0.3 and with silicon concentration in deep atmospheric layers. Similar distributions were found in the atmospheres of cooler stars with strong and weak magnetic fields. A comparison of the chemical peculiarities in HD 10221 with known CP stars with magnetic fields of various strengths leads us to conclude that a low rotational velocity rather than amagnetic field is the determining factor in the formation mechanism of chemical anomalies in the atmospheres of CP stars.  相似文献   

18.
The wind interaction with the dusty environment of the classical T Tauri star RY Tau has been investigated. During two seasons from 2013 to 2015, we carried out a spectroscopicmonitoring of this star with simultaneous BV R photometry. A correlation between the stellar brightness and the radial velocity of the wind determined from the Hα and Na D line profiles has been found. The irregular stellar brightness variations are shown to be caused by extinction in a dusty disk wind at a distance of about 0.2 AU from the star. We hypothesize that the circumstellar extinction variations result from a cyclic rearrangement of the magnetosphere and coronal mass ejections, which affect the dusty disk wind near the inner boundary of the circumstellar disk.  相似文献   

19.
The results of longitudinal magnetic field measurements B z in the hot accretion spot in three classical T Tauri stars (CTTS) are reported. In all three stars the magnetic field is detected at a level above 2σ in the formation region of the narrow component of the He I 5876 Å emission line. In the case of DS Tau the longitudinal field B z in the hot spot was also measured from the narrow emission components of the Na I D lines, implying +0.8 ± 0.3 kG, which is equal to the B z field component measured from the He I 5876 Å line. Our results suggest that the 6-m telescope of the Special Astrophysical Observatory can be used to study magnetic fields in the hot spots of CTTS with magnitudes down to 13m, making it possible to double the number of stars of this type with measured B z values in the accretion zone.  相似文献   

20.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号