首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following deglaciation, the long-term pattern of change in diatom communities and the inferred history of the aquatic environment are affected by a hierarchy of environmental controls. These include direct climate impacts on a lake’s thermal and hydrologic budgets, as well as the indirect affects of climate on catchment processes, such as weathering, soil development, microbial activity, fire, and vegetation composition and productivity, which affect the transfer of solutes and particulates from the terrestrial ecosystem into the lake. Some of these catchment influences on lacustrine systems operate as time-dependent patterns of primary succession that are set in motion by glacier retreat. This paper provides a conceptual model of some dominant pathways of catchment influence on long-term lake development in glaciated regions and uses a series of paleolimnological examples from arctic, boreal, and temperate regions to evaluate the relative role of direct climate influences and of catchment processes in affecting the trajectory of aquatic ecosystems during the Holocene in different environmental contexts.  相似文献   

2.
The roles of both landscape alteration and in-lake processes need to be considered in conservation strategies for shallow lakes in the prairie regions of North America. Here we focus on shallow lakes in west-central Minnesota, USA, highlighting the long-term ecological history and response to known landscape changes of a clear-water, macrophyte-dominated, shallow lake. Contemporary limnological data suggest the aquatic ecosystem has been very stable and fishless for the last ~15 years. Sediment proxies for primary production and ecological change confirm that a stable ecosystem likely prevailed for the last ~200 years. However, sedimentary indicators of catchment erosion detail a distinct response to land-use change during the conversion of native grassland to agricultural land, and following establishment of a protected waterfowl production area (WPA) around the lake. Post-WPA, the rate of sediment accrual decreased dramatically within 5–10 years and sources of organic matter were similar to those of the pre-settlement period. The aquatic ecosystem has been able to withstand nutrient enrichment and allochthonous inputs because stable trophic interactions have likely been in place for more than 200 years. We conclude that lack of hydrologic connectivity and isolated, small catchments are important factors in the promotion of clear-water shallow lake ecosystems, mainly because they prevent colonization by fish and associated ecological consequences. This study highlights the importance of managing both the landscape and in-lake processes to maintain stable, clear-water, shallow lakes.  相似文献   

3.
Pollen, geochemical and sedimentological data from Sidi Ali, a montane Moroccan lake, provide a 7000 yr record of changes in climate, catchment vegetation and soil erosion intensity. Diatoms, non-silicious algae, macrophyte fossils and ostracods from the same core record the dynamics of the lake ecosystem. Oxygen isotope and trace-element ratios of benthic ostracods appear to be relatively insensitive to climatic variation in this open lake with low water-residence time, but diatom plankton / periphyton (P/L) ratios show lake-level variations that are probably climate controlled. At least two superimposed processes are recorded, but at different timescales: catchment vegetation and soils show long-term changes due to climate and human impact, whereas P/L ratios suggest century-scale oscillations in lake depth. The timing of changes in algal and macrophyte productivity and carbon cycling within the lake broadly corresponds to changes in terrestrial vegetation, suggesting either that lake nutrient status is linked to catchment vegetation and soils, or that both were influenced by climate. The lack of a sensitive and independent (non-biological) climate proxy makes it more difficult to assess the lake's ecological response to short-term climate variation. Overall, the lake's evolution has been influenced both by catchment-mediated nutrient flux and by changes in water balance, thus having characteristics in common with both temperate and arid zone lakes.  相似文献   

4.
This paper synthesises the palaeoecological reconstructions, including palaeoclimatic inferences, based on the available fossil record of plants (pollen, macrofossils, mosses, diatoms) and animals (chironomids, Cladocera, Coleoptera, Trichoptera, oribatid mites) in the late-glacial and early-Holocene sediments of Kråkenes Lake, western Norway, with special emphasis on changes in the aquatic ecosystem. New percentage and influx pollen diagrams for selected taxa provide insights into the terrestrial setting. The information from all the proxies is collated in a stratigraphical chart, and the inferred changes in the lake and its catchment are discussed. The individual fossil sequences are summarised by detrended correspondence analysis (DCA), and sample scores on the first DCA axes are plotted against an estimated calendar-year timescale for comparison of the timing and magnitude of changes in assemblage composition. The DCA plots show that the large late-glacial biotic changes were synchronous, and were driven by the overriding forcing factor of temperature. During the early Holocene, however, the changes in different groups were more gradual and were independent of each other, showing that other factors were important and interactive, such as the inwash of dissolved and particulate material from the catchment, the base and nutrient status of the lake-water, and the internal processes of ecosystem succession and sediment accumulation. This multi-disciplinary study, with proxies for changes in the lake and in the catchment, highlights the dependence of lake biota and processes not only on regional climatic changes but also on changes in the lake catchment and on internal processes within the lake. Rates of change for each group are also estimated and compared. The reaction times to the sharp temperature changes at the start and end of the Younger Dryas were very rapid and occurred within a decade of the temperature change. Aquatic organisms tracked the temperature and environmental changes very closely, and are probably the best recorders of late-glacial climatic change in the fossil record.  相似文献   

5.
Paleorecords from multiple indicators of environmental change provide evidence for the interactions between climate, human alteration of watersheds and lake ecosystem processes at Lake Tanganyika, Africa, a lake renowned for its extraordinary biodiversity, endemism and fisheries. This paper synthesizes geochronology, sedimentology, paleoecology, geochemistry and hydrology studies comparing the history of deltaic deposits from watersheds of various sizes and deforestation disturbance levels along the eastern coast of the lake in Tanzania and Burundi. Intersite differences are related to climate change, differences in the histories of forested vs. deforested watersheds, differences related to regional patterns of deforestation, and differences related to interactions of deforestation and climate effects. Climate change is linked to variations in sediment accumulation rates, charcoal accumulation, lake level and water chemistry, especially during the arid-humid fluctuations of the latter part of the Little Ice Age. Differences between forested and deforested watersheds are manifested by major increases in sediment accumulation rates in the latter (outside the range of climatically driven variability and for the last 40 years unprecedented in comparison with other records from the lake in the late Holocene), differences in eroded sediment and watershed stream composition, and compositional or diversity trends in lake faunal communities related to sediment inundation. Variability in regional patterns of deforestation is illustrated by the timing of transitions from numerous sedimentologic, paleoecologic and geochemical indicators. These data suggest that extensive watershed deforestation occurred as early as the late-18th to the early-19th centuries in the northern part of the Lake Tanganyika catchment, in the late-19th to early-20th centuries in the northern parts of modern-day Tanzania, and in the mid-20th century in central Tanzania. Rapid increases in sediment and charcoal accumulation rates, palynological and lake faunal changes occurred in the early-1960s. We interpret this to be the result of greatly enhanced flushing of sediments in previously deforested watersheds triggered by extraordinary rainfall in 1961/62. Regional differences in deforestation histories can be understood in light of the very different cultural and demographic histories of the northern and central parts of the lake shoreline. Incursion of slaving and ivory caravans from the Indian Ocean to the central coast of Lake Tanganyika by the early-19th century, with their attendant diseases, reduced human and elephant populations and therefore maintained forest cover in this region through the late-19th to early-20th centuries. In contrast, the northeastern portion of the lakeshore did not experience the effects of the caravan trades and consequently experienced high human population densities and widespread deforestation much earlier. These studies demonstrate the importance of paleolimnological data for making informed risk assessments of the potential effects of watershed deforestation on long-term lake ecosystem response in the Lake Tanganyika catchment. Differences in sediment yield and lake floor distribution of that yield, linked to factors such as watershed size, slope, and sediment retention, must be accounted for in management plans for both human occupation of currently forested watersheds and the development of future underwater reserves.  相似文献   

6.
Lac Saint-Augustin is an urban lake located on the outskirts of Quebec City, one of North America’s oldest cities. Anthropogenic inputs from land clearing, agriculture, highway development and urbanization in the surrounding catchment have resulted in strong impacts on the limnology of the lake throughout the past three centuries. In recent years, this lake has experienced severe eutrophication, including persistent cyanobacterial blooms. In winter 2011, a sediment core was extracted from the deepest area of the lake. A detailed paleopigment analysis was used to assess eutrophication processes in the lake and to determine the timing and appearance of cyanobacterial blooms and their subsequent variability. Extracted chlorophyll a, its degradation products and 11 carotenoid pigments were identified and quantified via reverse-phase high performance liquid chromatography to examine relative changes in the phytoplankton. The results revealed large variations in the phytoplankton community structure of Lac Saint-Augustin over the past 356 years. Chlorophyll a concentrations per unit organic matter (OM) increased significantly from the base of the core to present day, rising more than 15-fold from 18.4 µg (g OM)?1 at the base of the core to 287 µg (g OM)?1 in the most recent strata. Biostratigraphical analysis revealed three major periods of enrichment, with episodes of cyanobacterial abundance from the 1890s onwards. The greatest changes occurred in the most recent period (from the 1960s to the present) relative to earlier periods, with pigment increases for all phytoplankton groups. The cyanobacterial pigments canthaxanthin, echinenone and zeaxanthin (also a marker for green algae) showed concentrations in the surface sediments that were significantly above values at the bottom of the core, and these differences were large, even giving consideration to the lesser pigment degradation near the surface. Overall, the results indicate that cyanobacterial blooms are not a recent feature of Lac Saint-Augustin but began to occur soon after catchment modification 150 years ago. The pigment records also imply that cyanobacterial and associated algal populations have risen to unprecedented levels over the last few decades of ongoing development of the Lac Saint-Augustin catchment. This study highlights the utility of multiple pigment analysis of lake sediments for identifying the timing and magnitude of anthropogenic impacts.  相似文献   

7.
湖泊最低生态水位计算方法研究   总被引:6,自引:0,他引:6  
对湖泊最低生态水位计算的年保证率法、湖泊形态分析法、天然水位资料法、功能法、曲线相关法和最低年平均水位法6种计算方法进行了论述,并选用其中的3种方法应用于博斯腾湖,计算结果表明,不同计算方法得到的结果并不相同,据此对不同计算方法的适用范围和优缺点进行了比较分析。  相似文献   

8.
Lake Uddelermeer (The Netherlands) is characterized by turbid conditions and annual blooms of toxic cyanobacteria, which are supposed to be the result of increased agricultural activity in the twentieth century AD. We applied a combination of classic palaeoecological proxies and novel geochemical proxies to the Holocene sediment record of Lake Uddelermeer (The Netherlands) in order to reconstruct the natural variability of the lake ecosystem and to identify the drivers of the change to the turbid conditions that currently characterize this lake. We show that the lake ecosystem was characterized by a mix of aquatic macrophytes and abundant phytoplankton between 11,500 and 6000 cal year BP. A transition to a lake ecosystem with clear-water conditions and relatively high abundances of ‘isoetids’ coincides with the first signs of human impact on the landscape around Lake Uddelermeer during the Early Neolithic (ca. 6000 cal year BP). An abrupt and dramatic ecosystem shift can be seen at ca. 1030 cal year BP when increases in the abundance of algal microfossils and concentrations of sedimentary pigments indicate a transition to a turbid phytoplankton-dominated state. Finally, a strong increase in concentrations of plant and faecal biomarkers is observed around 1950 AD. Canonical Correspondence Analysis suggests that reconstructed lake ecosystem changes are best explained by environmental drivers that show long-term gradual changes (sediment age, water depth). These combined results document the long-term anthropogenic impact on the ecosystem of Lake Uddelermeer and provide evidence for pre-Industrial Era signs of eutrophication.  相似文献   

9.
Environmental change in Lake Taihu and its catchment since the early to middle part of the twentieth century has left a clear geochemical record in the lake sediments. The human activities in the lake and its catchment responsible for the change include agriculture, fishery, urbanisation, sewage and industrial waster disposal. Sediment cores were collected from Meilian Bay of northern Lake Taihu to investigate the record of anthropogenic impacts on the lake’s ecosystem and to assess its natural, pre-eutrophication baseline state. Two marked stratigraphic sediment units were identified on the basis of total phosphorus concentration (TP), pigments, total organic carbon (TOC)/total nitrogen (TN), δ13C and δ15N corresponding to stages in the lake history dominated by phytoplankton, and by aquatic macrophytes. Results show that as TP loading increased from the early 1950s the lake produced sediments with increasing amounts of organic matter derived from phytoplankton. In the early 1950s, the first evidence for eutrophication at the Meilian Bay site is recorded by an increase in C/N values and in sediment accumulation rate, but there is little change in phosphorus concentrations, pigments, δ13C and δ15N at this time. After 1990 a more rapid increase in trophic status took place indicated by increased levels of phosphorus, pigments, δ15N and by decreased δ13C and TOC/TN values in the lake sediments. The first increase in trophic status of the early 1950s results mainly from agricultural development in the catchment. In contrast, the acceleration from ca. 1990 originates from the recent development of fisheries and the urbanisation and industrialisation of the catchment.  相似文献   

10.
We studied multiple variables in a sediment core from Lake Kipojärvi, northern Finland, to investigate Holocene ecosystem changes in relation to catchment characteristics and known climate variations. We focused on a forested catchment because previous paleolimnological studies conducted in Fennoscandia focused mainly on subarctic lakes within a range of shifting treeline(s). Data on aquatic macrophytes, diatoms, Cladocera, C:N ratio, organic matter (LOI) and regional vegetation (pollen), revealed a three-phase limnological development. The early Holocene, species-rich, mesotrophic lake was transformed into an oligotrophic, species-poor aquatic ecosystem by the early middle Holocene, ca. 7,500 cal years BP, earlier than has generally been reported. The transition involved considerable changes in aquatic macrophytes. Changes in the Cladocera and diatom communities appear to have been linked to aquatic macrophyte development, which in turn, was probably regulated by catchment development and hydrology, and a consequent decrease in nutrient input from the catchment. During the more humid late Holocene, surface flow from the catchment probably increased, but the lake??s nutrient status remained oligotrophic. Possible reasons for low nutrient concentration in the late Holocene include: 1) slower biogeochemical cycling due to cooler climate, 2) a new hydrologic outlet and associated shorter water-retention times, and 3) accelerated peatland development in the catchment that affected water flow patterns and nutrient cycling.  相似文献   

11.
This paper raises fundamental questions about the sole use of paleolimnological techniques to identify sediment sources and develop catchment management plans. The concept of an integrated lake: catchment framework was established 30 years ago, yet paleolimnologists occasionally fail to appreciate the dynamics of the contributing catchment. This is especially critical when the predominant source of sediment accumulating in a lake is allochthonous. In this paper we argue that a detailed appraisal of catchment sources and investigation of historical documentary evidence is needed to identify and evaluate the relative significance of sediment sources. We used such an approach at Aqualate Mere, Shropshire, UK. Mineral magnetic and radionculide signatures of potential catchment sources and accumulating lake sediments were compared in an attempt to match the sources to sediments deposited in the Mere. Dated lake sediments indicate there has been an increase in sedimentation rate and the relative amount of minerogenic material delivered to the Mere over the last 200 years. In contrast to a previous study at the same site, there is no evidence to attribute this increase to an overspill from a nearby canal. Other catchment disturbances include landscaping in parkland surrounding the Mere in the early nineteenth century and drainage systems installed to improve catchment agriculture over the last ca. 150 years. Both activities may explain the change in sedimentation rates and types, independent of the hypothesized canal origin. Although our results exclude the canal as a major sediment source, identifying the contribution of other potential catchment sources remains problematic. 137Cs inventories for the lake are similar to those recorded at a local reference site, suggesting little influx of 137Cs-bearing topsoil, yet 137Cs activities remain high in the upper 20–30 cm of the lake sediment profile, indicating a topsoil origin. Combined radionuclide and mineral magnetic signatures proved to be relatively poor discriminators of potential sources, and the high atmospheric pollution load from the West Midland conurbation has probably altered recent lake sediment signatures. Although further research is required to identify the origins of recent (last ca. 200 years) minerogenic sediment inputs to the Mere, we suggest that the combined lake: catchment approach offers a more rigorous method for understanding the impact of catchment disturbance than analysis of the paleolimnological record alone.  相似文献   

12.
在西北内陆河流域,地下水是维系人类生存、生态环境和社会经济发展的重要水源,但这些流域生态环境脆弱。为保护地下水资源和脆弱的生态环境,亟待开展地下水合理开发利用研究。本文在分析格尔木河流域水文地质条件、环境地质问题基础上,采用遥感解译、野外调查和地下水动态监测的方法,界定了地下水的生态功能及阈值,即维系植被生态地下水埋深为0.5~10 m、减轻盐渍化程度的地下水埋深应大于3 m、减轻城市内涝的地下库容应大于3.42×108 m3、维系达布逊湖面积的入湖流量应大于2.82×108 m3·a-1。基于格尔木河流域生态系统服务价值构成,得到减轻城市内涝及减缓盐渍化程度的环境正效益值分别为8 000×104元·km-2和163×104 元·km-2;地下水不合理开发利用导致植被退化、河湖面积萎缩的环境负效益值分别为191元·km-2和1 032元·km-2。本文研究成果可为流域内地下水资源开发利用和生态环境保护科学依据,同时也可为西北其他内陆河流域地下水合理开发利用借鉴。  相似文献   

13.
Aquatic macrophytes play a key role in providing habitat, refuge and food for a range of biota in shallow lakes. However, many shallow lakes have experienced declines in macrophyte vegetation in recent decades, principally due to eutrophication. As changes in macrophyte composition and abundance can affect overall ecological structure and function of a lake, an assessment of the timing and nature of such changes is crucial to our understanding of the wider lake ecosystem. In the typical absence of historical plant records, the macro-remains of macrophytes preserved in lake sediments can be used to assess long-term changes in aquatic vegetation. We generated recent (150–200 years) plant macrofossil records for six English lakes subject to conservation protection to define past macrophyte communities, assess trajectories of ecological change and consider the implications of our findings for conservation targets and strategies. The data for all six lakes reveal a diverse submerged macrophyte community, with charophytes as a key component, in the early part of the sedimentary records. The stratigraphies indicate considerable change to the aquatic vegetation over the last two centuries with a general shift towards species more typically associated with eutrophic conditions. A common feature is the decline in abundance of low-growing charophytes and an increase in tall canopy-forming angiosperms such as fine-leaved Potamogeton species, Zannichellia palustris and Callitriche species. We hypothesise, based on findings from long-term datasets and palaeoecological records from enriched shallow lakes where plants are now absent, that the observed shifts provide a warning to managers that the lakes are on a pathway to complete macrophyte loss such that nutrient load reduction is urgently needed. It is the sound understanding of present-day plant ecology that affords such reliable interpretation of the fossil data which, in turn, provide valuable context for current conservation decisions.  相似文献   

14.
Oxygen- and carbon-isotopic signatures of benthic ostracodes from lake sediments from climate sensitive regions in the Alpine region, Central Europe, the north-central USA, the Chilean Altiplano and Patagonia, Argentina, are used to characterize lake system processes and to reconstruct climate patterns of the past 16,000 years. The case studies provide examples that highlight different aspects of the broad application of isotope stratigraphies, and provide keys for the interpretation of complex lacustrine records.The integration of stable-isotope stratigraphy, sedimentology, and ecological information from ostracode assemblages is a new tool that acquires climate information from the indirect views of climate series provided by lake sediments. This tool (1) identifies lake system characteristics, (2) confines which isotopic signatures are controlled by which processes in the lake system and/or in the catchment, and (3) defines which signatures are ultimately controlled by climate change. If sudden shifts in the isotopic composition occur concomitantly with changes between sedimentological units, then the isotopes reflect first of all changes in catchment hydrology that may be ultimately controlled by climate. Also, if ostracode 18O and 13C values show the same timing and direction of shifts, then this indicates a major change in the hydrological budget of the lake.The case studies presented here show that coupled isotopic signatures may be used to track hydrological changes related to meltwater and deglaciation, shifting rivers and ground water sources, and changes in precipitation mechanisms and patterns. Values of 18O from large lakes with short water residence time, low evaporation rates and homothermic bottom waters provide records of past temperatures of precipitation. The 13C values reflect changes in the ratio of C3:C4 plants in the catchment. They indicate shifts in modes of organic decay in the surface sediments that can be linked to a change in hydrodynamics within a lake. The 13C values also allow detection of the input of volcanically charged ground waters providing large quantities of 14C-free CO2 that hinders accurate 14C chronology. General climate trends for the sites in the Americas indicate a dry mid-Holocene punctuated by moist spells, and show a general increase in moisture during the past approximately 4000 years, interrupted by recurring droughts. This hints at an interhemispheric connection and a common driving mechanism.Environmental isotopes from high-resolution lake sediments thus provide an ideal tool to identify and characterize the regional impact and magnitude of global climate change. This tool contributes to a better understanding of regional climate change and its driving mechanisms and thus provides the type of information needed to improve climate models. Environmental isotopes provide more information than just moisture balance and airmass history if they are integrated with the detailed sedimentological and ostracode ecological evidence, and understanding for the component system. Thus environmental isotopes serve to a better understanding of the climate signal archived in lake records and represent an essential contribution to Global Change research and Earth System Science.  相似文献   

15.
Ecosystem variability must be assessed over a range of timescales in order to fully understand natural ecosystem processes. Long-term climate change, at millennial and centennial scales, is a major driver of natural ecosystem variability, but identifying evidence of past climate change is frequently confounded by human-induced impacts on the ecosystem. Iceland is a location where it is possible to separate natural from anthropogenic change in environmental archives, as the date of settlement is accepted to be around AD 874, prior to which the island was free from proven human impacts. We used a lake sediment core from Breieavatn, near Reykholt, a major farm of the Norse period in western Iceland, to examine landscape development. A change in pollen concentration in the sediments, especially the decline in Betula, indicated initial landscape degradation immediately post-settlement, whereas the chironomid fauna and reconstructed temperatures were relatively complacent during this period. The pollen evidence is corroborated by 14C analyses, which indicate an increase in older carbon entering the lake, inferred to have been caused by increased erosion following settlement. Further decreases in Betula pollen occurred around AD 1300, pre-dating a drop in chironomid-inferred temperatures (CI-T) of ~1°C over 100–200 years. The CI-T reconstruction also shows a significant cooling after ~AD 1800, likely indicative of the coldest phase of the Little Ice Age. The evidence suggests that the chironomid record was relatively unaffected by the increased landscape degradation and hence reveals a temperature reconstruction independent of human impact.  相似文献   

16.
Subfossil chironomid analysis was applied to a sediment core from Sägistalsee, a small lake at present-day tree-line elevation in the Swiss Alps. During the whole 9000-year stratigraphy the chironomid fauna was dominated by taxa typical of alpine lakes. Major faunistic trends were caused by changes in accumulation rates of three taxa, namely Procladius, Stictochironomus, and Tanytarsus lugens-type. In the early Holocene Procladius was the dominant taxon. In younger samples, Stictochironomus tended to have as high or higher abundances and both taxa showed an increase in accumulation rates. A possible cause of this succession is the decrease of lake-water depth due to infilling of the lake basin and changes in associated limnological parameters. The immigration of Picea (spruce) at ca. 6500 cal. 14C yrs BP and the resulting denser woodlands in the lake's catchment may have promoted this trend. During three phases, from ca. 70–1450, 1900–2350, and 3500–3950 cal. BP, remains of Procladius, Stictochironomus, and Tanytarsus lugens-type are absent from the lake sediment, whereas other typical lake taxa and stream chironomids show no change in accumulation rate. Together with sediment chemistry data, this suggests that increased oxygen deficits in the lake's bottom water during these intervals caused the elimination of chironomids living in the deepest part of the lake. All three periods coincide with increased human activity in the catchment, as deduced from palaeobotanical evidence. Therefore, enhanced nutrient loading of the lake due to the presence of humans and their livestock in the catchment is the most likely cause of the increased anoxia. The chironomid fauna reacted the same way to intensive pasturing during the last ca. 1500 years as to Bronze Age clear-cutting and more moderate pasturing during the Bronze, Iron, and Roman Ages, suggesting that alpine lake ecosystems can be extremely sensitive to human activity in the catchment. On the other hand, the chironomid assemblages show a considerable amount of resilience to human disturbance, as the chironomid fauna reverted to the pre-impact stage after the first two periods of human activity. In recent years, even though pasturing decreased again, the chironomid fauna has only partly recovered. This is possibly due to other human-induced changes in the lake ecosystem, e.g., the stocking of the lake with fish. The chironomid stratigraphy is difficult to interpret climatologically as the strongest changes in chironomid-inferred temperatures coincide with periods of intensive human activity in the catchment.  相似文献   

17.
湖泊生态恢复的关键因子分析   总被引:2,自引:0,他引:2  
中国是一个多湖泊的国家。由于经济快速发展及湖泊资源不合理的开发利用,中国湖泊的污染问题和生态系统退化相当普遍。特别是由于氮、磷等营养元素的富集造成的水体富营养化,导致蓝藻水华频繁发生,甚至出现了饮用水危机事件。由于缺乏基础理论的指导,中国湖泊富营养化治理曾经走过弯路。在没有实现控源截污的条件下,片面强调生态恢复来净化湖泊水环境,一度成为富营养化湖泊治理的主流思想。实际上,湖泊生态恢复是有条件的,而对这些条件的诊断和分析是开展湖泊生态恢复的前提和基础。通过对太湖水生植物分布及其影响因子分析,确定沉水植物恢复的核心条件是水下光照条件。水下光照条件受富营养水平、悬浮物浓度与水深等因子的影响。只有当一个水域的真光层深度接近水深的情况(比值>0.8),恢复水生植物才有可能。改善水下光照条件,包括降低水深,提高透明度,消除风浪等措施,实际上,都是增加真光层深度与水深的比值。在上述生态恢复条件不具备的情况下,湖泊治理与恢复的工作更多地应该聚焦在控源截污方面。这对中国湖泊污染治理与生态恢复具有普遍的意义。  相似文献   

18.
从不同生态功能区分析生态系统服务价值有助于认识生态系统服务功能的异质性。以肃南裕固族自治县、甘州区和民勤县为例,分别计算了河西走廊南部山地、中部绿洲、北部荒漠区2002年和2009年的农田生态系统服务价值,并采用多元逐步回归模型分析了不同功能区人类活动对农田生态系统服务价值变化的影响。结果表明:河西走廊单位面积农田生态系统基本服务价值和农田生态系统服务总价值都呈北部荒漠>中部绿洲>南部山地的空间梯度分异;在研究期内,不同生态功能区农田生态系统服务总价值都呈增长趋势,其中北部荒漠区增加了1.83×108元、中部绿洲增加了0.70×108元、南部山地增加了0.13×108元;农田生态系统基本服务价值,北部荒漠区年均增加0.16×108元、中部绿洲年均增加0.11×108元、南部山地年均增加0.02×108元;使用化肥等导致农田环境污染损失的价值都表现出不同程度的增大趋势;农业耗水损失价值方面,下游荒漠区年均减少0.11×108元,而中部绿洲年均增加0.03×108元,南部山地变化较小;回归分析结果显示河西走廊农田生态系统服务价值的变化主要是由种植业结构调整引起的,不同生态功能区所受影响程度具有一定差异性。  相似文献   

19.
A 9000-year carbonate-rich sediment sequence from a small hard-water lake in northernmost Sweden was studied by means of multi-component stable carbon isotope analysis. Radiocarbon dating of different sediment fractions provides chronologic control and reveals a rather constant hard-water effect through time, suggesting that the lake has remained hydrologically open throughout the Holocene. Successive depletion of 13C in fine-grained calcite and carbonate shells during the early Holocene correlate with a change in catchment vegetation from pioneer herb communities to boreal forest. The vegetational change and associated soil development likely gave rise to an increased supply of 13C-depleted carbon dioxide in groundwater recharging the lake. This process is therefore believed to be the main cause of decreasing values of 13C in dissolved inorganic carbon of the lake and thereby in limnic carbonates. Strongly 13C-depleted sedimentary organic matter may be related to enhanced kinetic fractionation during photosynthetic assimilation by means of proton pumping in Characean algae. This interpretation is supported by a substantial offset between 13C of DIC as recorded by mollusc shells and 13C of fine-grained calcite.  相似文献   

20.
We present a study of two short sediment cores recovered from Lago Enol, in the Picos de Europa National Park, Cantabrian Mountains, northern Iberia. We inferred past climate conditions and anthropogenic impacts using geochemical and biological (pollen and diatoms) variables in the dated sequences, in conjunction with temperature and precipitation data collected since 1871 at meteorological stations in the region. The record provides evidence of environmental changes during the last 200 years. At the end of the Little Ice Age (~1800?C1875 AD) the region was characterized by an open landscape. Long-term use of the area for mixed livestock grazing in the mountains, and cultivation of rye during the nineteenth century, contributed to the expansion of grassland at the expense of forest. Warmer temperatures since the end of the nineteenth century are inferred from a change in diatom assemblages and development of the local forest. Socioeconomic transformation during the twentieth century, such as livestock changes related to dairy specialization, planting of non-native trees, mining activities, and management of the national park since its creation in 1918, caused profound changes in the catchment and in the lake ecology. The last several decades (~1970?C2007 AD) of the Lago Enol sediment record are strikingly different from previous periods, indicating lower runoff and increasing lake productivity, particularly since AD 2000. Today, the large number of tourists who visit the area cause substantial impacts on this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号