首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lacustrine sediments have been widely used to investigate past climatic and environmental changes on millennial to seasonal time scales. Sedimentary archives of lakes in mountainous regions may also record non-climatic events such as earthquakes. We argue herein that a set of 64 annual laminae couplets reconciles a stratigraphically inconsistent accelerator mass spectrometry (AMS) 14C chronology in a ~4-m-long sediment core from Lake Mengda, in the north-eastern Tibetan Plateau. The laminations suggest the lake was formed by a large landslide, triggered by the 1927 Gulang earthquake (M = 8.0). The lake sediment sequence can be separated into three units based on lithologic, sedimentary, and isotopic characteristics. Starting from the bottom of the sequence, these are: (1) unweathered, coarse, sandy valley-floor deposits or landslide debris that pre-date the lake, (2) landslide-induced, fine-grained soil or reworked landslide debris with a high organic content, and (3) lacustrine sediments with low organic content and laminations. These annual laminations provide a high-resolution record of anthropogenic and environmental changes during the twentieth century, recording enhanced sediment input associated with two phases of construction activities. The high mean sedimentation rates of up to 4.8 mm year?1 underscore the potential for reconstructing such distinct sediment pulses in remote, forested, and seemingly undisturbed mountain catchments.  相似文献   

2.
Diatoms, organic matter and magnetic susceptibility in a 10-m-long sediment sequence from coastal Lake Lilaste, Latvia, were analysed to evaluate Holocene environmental changes related to past sea-water intrusions. Lake Lilaste is located ~1 km from the present sea coast in an area with a low uplift rate and a threshold altitude of 0.5 m a.s.l. It was thus considered to be an appropriate site to study the influence of past sea level fluctuations on the lake and its sediments. Variations in diatom community composition, along with sediment lithostratigraphy, show that a shallow, nutrient-rich freshwater lake existed there during the early Holocene. The first brackish-water diatoms appeared concurrent with a sea level rise ca. 8700 ± 50 cal a BP, but long-term, intermittent inputs of brackish water were observed between 6700 ± 40 and 4200 ± 80 cal a BP. During those time spans, diatoms indicate increased nutrient concentrations and high conductivity, a consequence of occasional mixing of brackish and freshwater that promoted biological productivity. Lilaste was isolated from the sea at 4200 ± 80 cal a BP, after which a stable freshwater environment, dominated by planktonic diatoms such as Aulacoseira ambigua, A. granulata, A. islandica and A. subarctica, was established. At 400 ± 50 cal a BP, planktonic diatoms were gradually replaced by Fragilaria spp., indicating the beginning of anthropogenic impact. The reconstructed relative water-level curve from the lake coincides with the eustatic sea level curve from 6800 ± 40 cal a BP onwards. There was a distinct increase in abundance of brackish-water diatoms when the sea level reached the threshold of Lilaste, which at that time was probably about 3 m lower than the present sea level. According to radiocarbon-dated shifts in the diatom community composition, the Litorina Sea transgression was a long-lasting event (ca. 2200 years) in the southern part of the Gulf of Riga, where the land uplift rate was near zero. It culminated more than 1000 years later than at other sites with higher uplift, in the northern part of the Baltic Sea.  相似文献   

3.
During the Holocene the Aral Sea underwent various transgressive and regressive phases of different magnitudes. However, previous work has not yet fully clarified the evolution and chronology of the individual phases. Research presented here throws light on the evolution of the Aral Sea during the past  2000 years. It includes field surveys, tachymetric and DGPS-derived altitude measurements, analysis of sediments from two areas of the northern and southern Aral Basin (Tastubek Bay and Karaumbet Bay), and their correlation with GIS-based lake area models. Geomorphological and sedimentological evidence from the study areas shows a transgression of the Aral Sea around 200 AD, ending at a lake level maximum of 54 to 55 m. After a medieval regression, the lake reached this level again between the late 16th and early 19th century AD. The digital elevation model SRTM-3 was used to estimate a lake size of 72,400 km2 for the lake level maximum.Elevated palaeoshorelines, specifically at 72–73 m, are completely absent in the study areas. Local remains of escarpments at elevations of 66 m and 73 m are due to resistant Miocene caprock and are therefore not interpretable as shoreline features.  相似文献   

4.
Due to methodological challenges there are only a few studies that focus on macrophyte dynamics in large lakes despite their notable role in a lake’s ecosystem functioning. This study investigates composition and productivity changes of the submerged vegetation of Lake Karakul, Pamir Mountains (Tajikistan), using sedimentary ancient DNA metabarcoding and elemental (C/N) and isotopic (δ13C, δ15N) measurements of Stuckenia cf. pamirica (Baagøe) Z. Kaplan (Potamogetonaceae) leaf remains. No Stuckenia cf. pamirica leaf remains were found for 28.7–26.1 cal ka BP, when both Potamogetonaceae and Chara (L.) DNA sequences were recorded, suggesting sparse submerged vegetation at the coring site. This agrees with the inference of a deep lake reached using geochemical proxies. From 26.1 to 17.5 cal ka BP a few macrophyte remains and high numbers of Potamogetonaceae sequences were recovered: lake level was probably low, as suggested by other studies on the lake. Another phase of increased numbers of Chara sequences and the absence of Stuckenia cf. pamirica leaf remains was found between 17.5 and 12.2 cal ka BP, which coincides with a lake-level transgression at Lake Karakul as indicated by paleo-shoreline investigations. Analyses of macrophyte remains reveal intermediate paleo-productivity from 6.9 cal ka BP and high paleo-productivity from 2.2 cal ka BP onwards. From comparisons with other studies, we suggest that lake-level changes are the main driver for the submerged vegetation composition and productivity at the coring site in Lake Karakul and underline our conclusions by depicting the present-day distribution of Stuckenia cf. pamirica and Chara within the lake.  相似文献   

5.
The paleohydrological evolution of several high altitude, saline lakes located in the southernmost Altiplano (El Peinado and San Francisco basins, Catamarca province, NW Argentina) was reconstructed applying sedimentological, geochemical and isotopic techniques. Several playa lakes from the San Francisco basin (26° 56 S; 68° 08 W, 3800-3900 m a.s.l.) show evidence of a recent raise in the watertable that led to modern deposition of carbonate and diatomaceous muds. A 2 m - long core from El Peinado Lake (26° 29 59 S, 68°05 32 W, 3820 m a.s.l.) consists of calcitic crusts (unit 3), overlaid by an alternation of macrophyte-rich and travertine clast- rich, laminated muds (unit 2), and topped by travertine facies (unit 1). This sedimentary sequence illustrates a paleohydrological evolution from a subaerial exposure (unit 3) to a high lake stand (unit 2), and a subsequent smaller decrease in lake level (unit 1). The 13Corganic matterrecord also reflects the lake transgression between units 3 and 2. Although there is a general positive correlation between 18Ocarbonate and salinity proxies (Na, Li and B content), the large data dispersion indicates that other factors besides evaporation effects control chemical and isotopic composition of lakewater. Consequently, the oxygen isotopic composition cannot be interpreted exclusively as an indicator of salinity or evaporation ratio. The degassing of CO2 during groundwater discharge can explain the enriched 13C values for primary carbonates precipitated. The carbon budget in these high altitude, saline lakes seems to be controlled by physical rather than biological processes.The Altiplano saline lakes contain records of environmental and climatic change, although accurate 14C dating of these lacustrine sediments is hindered by the scarcity of terrestrial organic material, and the large reservoir effects. Sedimentologic evidence, a 210Pb-based chronology, and a preliminary U/Th chronology indicate a very large reservoir effect in El Peinado, likely as a result of old groundwaters and large contributions of volcanic and geothermal 14C-free CO2 to the lake system. Alternative chronologies are needed to place these paleorecords in a reliable chronological framework. A period of increased water balance in the San Francisco basin ended at about 1660 ± 82 yr B.P. (calendar yr U/Th age), and would correlates with the humid phase between 3000 and 1800 yr B.P detected in other sites of the southern Altiplano. Both, 210Pb and preliminary U/Th dating favor a younger age for the paleohydrological changes in El Peinado. The arid period reflected by subaerial exposure and low lake levels in unit 3 would have ended with a large increase in effective moisture during the late 17th century. The increased lake level during deposition of unit 2 would represent the period between AD1650 - 1900, synchronous to the Little Ice Age. This chronological framework is coherent with other regional records that show an abrupt transition from more arid to more humid conditions in the early 17th century, and a change to modern conditions in the late 19th century. Although there are local differences, the Little Ice Age stands as a significant climatic event in the Andean Altiplano.  相似文献   

6.
A new diatom series with 1–6 year resolution from Lake Victoria, East Africa, shows that lake level minima occurred ca. 820–760, 680–660, 640–620, 370–340, and 220–150 calendar years BP. Inferred lake levels were exceptionally high during most of the Little Ice Age (ca. 600–200 calendar years BP). Synchrony between East African high lake levels and prolonged sunspot minima during much of the last millenium may reflect solar variabilitys effects on tropical rainfall, but those relationships reversed sign ca. 200 years ago. Historical records also show that Victoria lake levels rose during every peak of the ca. 11-year sunspot cycle since the late 19th century. These findings suggest that, if these apparent tropical sun–climate associations during the last millenium were real, then they were subject to abrupt sign reversals.Electronic Supplementary Material to this article is available at .  相似文献   

7.
A coarse-resolution, absolutely dated isotope record spanning the last 180 ka was constructed from aragonite-rich fecal pellets in a sediment core from Lake Urmia, Iran. The isotope record is not continuous as a consequence of detrital calcite that contaminates the pellets at certain depths. An isotopic correction was applied to samples > 50% aragonite, using the δ18O values of calcite-only pellets. Absolute dates were derived from U-Th analyses on pellets > 80% aragonite. The resultant δ18O record and sediment lithofacies confirm that the Penultimate Glacial was cold and dry, with pronounced interstadials at ca. 150 and >175 ka. Deglaciation began at ca. 130 ka, but climate was unstable and supported a probable no-analog vegetation assemblage. The onset of true interglacial conditions occurred at ca. 126 ka. Peak moisture conditions lasted for 5–6 ka before the climate became drier, with the loss of some tree taxa towards the end of the Last Interglacial. A period of greater moisture occurred between 116 and 108 ka, overlapping in timing with interstadial conditions recorded in the Soreq Cave speleothem record. In general, stadial to interstadial transitions (OIS 5d-5c, 5b-5a) are marked by decreasing δ18O values and rising lake levels. The nature of the OIS 5 to OIS 4 transition cannot be resolved in this study because of the loss of 5 m of core and imprecise dates. According to the present chronology, δ18O values, and inferred lake levels, arid conditions began at 60 ka and persisted until Termination I. Episodic increases in moisture, characterized by layers of aragonite-rich pellets, ostracodes, and the pollen of trees and/or aquatic plants, occurred during the Last Glacial. Deglaciation associated with the Late-glacial Interstadial began at 14 ka but was interrupted by a marked Younger Dryas event that resulted in renewed aridity. The Holocene began at approximately 10 ka. Despite large errors in the chronology, the overall timing and pattern of effective moisture matches the record from Soreq Cave, Israel, suggesting that the two regions were climatically in-phase.  相似文献   

8.
Sponge spicules are siliceous microfossils that are especially useful for analysis of sandy fluvio-lacustrine sediments. Sponge spicules in a long sediment core (~550 cm below surface), consisting of fine sand, sandy silt, and organic-rich mud, recovered from the floodplain of the Nabileque River, southern Pantanal, Brazil (S20°16′38.3″/W57°33′00.0″), form the basis of a novel paleoenvironmental interpretation for this region. Optically stimulated luminescence dates constrain the timing of deposition to the middle-late Holocene and all spicules identified are typical of the Brazilian cerrado biome. The base of the section is dominated by Oncosclera navicella Carter 1881, Metania spinata Carter 1881, and Corvospongilla seckti Bonetto and Ezcurra de Drago 1966, which indicate a lotic to semi-lotic environment strongly influenced by an actively meandering river channel at ~6.7–5.7 ka BP. The appearance of Heterorotula fistula Volkmer-Ribeiro and Motta 1995, Dosilia pydanieli Volkmer-Ribeiro 1992 and Radiospongilla amazonensis Volkmer-Ribeiro and Maciel 1983 at ~340 cm downcore suggests a reduction in flowing water and a more stable lentic environment, consistent with deposition in an oxbow lake. This oxbow lake environment existed during an interval of regional aridity between ~4.5 and 3.9 ka BP. Spicules, as well as phytoliths and diatoms, are highly variable moving up-section, with species from both lotic and lentic ecosystems present. Above ~193 cm, the total abundance of spicules declines, consistent with wetter climate conditions and development of an underfit river similar to the modern floodplain. Results support hypotheses related to migration of the Paraguay River inferred from geomorphological studies and add a key southern-region dataset to the emerging Holocene database of paleoenvironmental records from the Pantanal wetlands.  相似文献   

9.
In North America, land use practices of the last two centuries have strongly influenced aquatic communities and freshwater quality, but the impacts of prehistoric land use on freshwater resources remain poorly documented. Here we investigate the influence of prehistoric and historical land use on Horseshoe Lake, Illinois, USA, an oxbow lake in a floodplain of the Mississippi River that is adjacent to Cahokia, the largest prehistoric indigenous population center north of Mexico. Diatom assemblages from Horseshoe Lake’s sedimentary record track shifts in aquatic environmental conditions over the last ca. 1600 years. During the period of prehistoric population growth and agricultural intensification associated with Cahokia’s emergence (ca. 600–1200 CE), the relative abundance of Aulacoseira granulata—a planktonic diatom associated with shallow eutrophic lakes—increased. Following the abandonment of Cahokia in the 14th century CE, the diatom flora of the lake shifted from planktonic Aulacoseira taxa to the epiphytic taxa Cocconeis and Gomphonema. This shift in diatom assemblages is consistent with a reduction of nutrient inputs to the lake and/or reduced fishing pressure as prehistoric populations abandoned the area. Following the intensification of historic settlement after 1800 CE, diatom assemblages shift to epipelic species of small Staurosira and Fragilaria, indicating a reduction in aquatic macrophytes and increased turbidity. Our results document prehistoric indigenous impacts on a freshwater system beginning nearly 1000 years before European colonization of the Americas and demonstrate the antiquity of human impacts on freshwater resources in North America.  相似文献   

10.
Lake Qarun has been profoundly affected by a combination of human activities and climatic changes during the past 5000 years. Instrumental records available for the 20th century show that during most of this period both lake water level and salinity increased and that by the late 1980s lake water salinity was approximately that of seawater. Sediment cores (c. 1 m long) were collected from this shallow (Zmax 8.4 m) saline lake in 1998 and the master core (QARU1) was used to examine the potential of paleolimnology for reconstructing the recent environmental history of the site. According to 137Cs and 210Pb radio-assay, the recent sediment accumulation rate in QARU1 was around 5 mm year−1 during the latter half of the 20th century but radionuclide levels were low. Spheroidal carbonaceous particles (SCPs) were present in the upper c. 30 cm of QARU1 and indicates contamination by low level particulate pollution, probably beginning around 1950. The record of exotic pollen (Casuarina) indicated that sediment at 51–52 cm depth dated to around 1930. Otherwise the pollen spectra indicated a strongly disturbed landscape with high ruderals and increased tree planting particularly since c. 1950. Diatom records were strongly affected by taphonomic processes including reworking and differential preservation but typical marine diatoms increased after the 1920s. Instrumental records show that the lake became more saline at this time. Freshwater taxa were present at approximately similar abundances throughout the core. This distribution probably reflected a combination of processes. Reworking of ancient freshwater diatomites is one likely source for freshwater diatoms in QARU1 but some taxa must also be contributed via the freshwater inflows. Overall, the diatom stratigraphy indicated increasingly salinity since the 1920s but provided no firm evidence of lake eutrophication. Diatom inferred salinity reconstructions were in only partial agreement with instrumental records but inferred for the lower section of the core (pre 20th century to the 1960s) accord with measured water salinity values. Surficial sediments of Lake Qarun contain environmental change records for the 20th century period but high sediment accumulation rate and pollen reflect the high degree of human disturbance in the region. Because of poor preservation and evidence of reworking, the relationships between diatom records and past water quality changes require careful interpretation, especially in the upper section of the core. Nevertheless, early to mid 20th century measurements of increasing lake water salinity are well supported by sediment records, a change that is probably linked to ingress of saline ground water  相似文献   

11.
The Tasman Glacier is the largest glacier in New Zealand. Although 20th century warming caused down-wastage, it remained at its Little Ice Age terminus until the late 20th century. Since then, rapid calving retreat (Ur) has occurred, allowing a large (5.96 × 106 m2) proglacial lake to form (maximum depth ∼240 m). From sequential satellite image analysis and echo sounding of Tasman Lake, we document (Ur) from 2000 to 2008. Ur varies temporally, with mean Ur of 54 m/a from 2000 to 2006 and a mean Ur of 144 m/a from 2007 to 2008. Consistent with global data sets, calving rate appears closely associated with lake depth at the calving terminus.  相似文献   

12.
Monitoring during three meteorologically different spring seasons in 2012, 2013, and 2014 revealed that temperature increase in spring, which influences spring lake mixing duration, markedly affected nutrient availability and diatom deposition in a sediment trap close to the bottom of deep Tiefer See, NE Germany. Deposition of Stephanodiscus taxa and small Cyclotella taxa was much higher after late ice out and a deep, short lake mixing period in spring 2013, compared to that after gradual warming and lengthy lake mixing periods in spring 2012 and 2014, when only brief or marginal ice cover occurred. Availability of dissolved Si and P was 33 and 20 % higher, respectively, in 2013 compared to 2014. The observed relation between high (low) diatom deposition and short (lengthy) mixing duration in spring was applied to varved sediments deposited between AD 1924 and 2008. Low detrital Si content in trapped material and a sediment core enabled use of µXRF-counts of Si as a proxy for diatom silica. The spring mixing duration for 1951–2008 was derived from FLake-model calculations. The spring warming duration related to lake mixing was approximated from air temperatures for 1924–2008 using the dates when daily mean air temperature exceeded 5 °C (start) and 10 °C (end). Diatom silica deposition showed a significant (p < 0.0001) inverse linear relationship with the modeled spring mixing duration (R2 = 0.36) and the spring warming duration (R2 = 0.28). In both cases, the relationship is strengthened when data from the period of low diatom production (1987–2005) is excluded (R2 = 0.59 and R2 = 0.35). Part of this low diatom production is related to external nutrient supply that favored growth of cyanobacteria at the expense of diatoms. This approach shows that diatom Si deposition was strongly influenced by the availability of light and nutrients, related to the duration of lake mixing and warming in spring, during most of the studied period. The remaining unexplained variability, however, indicates that additional factors influence Si deposition. Further tests in other deep, temperate lakes are necessary to verify if this relation is a common feature and consequently, if diatom Si can be used as a proxy for spring mixing duration in such lakes.  相似文献   

13.
Eutrophication, prompted by anthropogenic activities and climate change has led to multiple adverse effects in freshwater systems across the world. As instrumental measurements are typically short, lake sediment proxies of aquatic primary productivity (PP) are often used to extend the observational record of eutrophication back in time. Sedimentary pigments provide specific information on PP and major algal communities, but the records are often limited in the temporal resolution. Hyperspectral imaging (HSI) data, in contrast, provide very high seasonal (sub-varve-scale) resolution, but the pigment speciation is limited. Here, we explore a combined approach on varved sediments from the Ponte Tresa basin, southern Switzerland, taking the advantages of both methods (HSI and high performance liquid chromatography, HPLC) with the goal to reconstruct the recent eutrophication history at seasonal to interannual resolution. We propose a modified scheme for the calibration of HSI data (here: Relative Absorption Band Depth between 590 and 730 nm RABD590–730) and HPLC-inferred pigment concentrations (here: ‘green pigments’ {chlorophyll a and pheophytin a}) and present a calibration model (R2?=?0.82; RMSEP?~?12%). The calibration range covers >?98% of the spectral index values of all individual pixels (68 µm?×?68 µm) in the sediment core. This allows us to identify and quantify extreme pigment concentrations related to individual major algal blooms, to identify multiple algal blooms within one season, and to assess interannual variability of PP. Prior to the 1930s, ‘green pigment’ concentrations and fluxes (~?50 µg g?1;?~?2 µg cm?2a?1, chlorophyll a and pheophytin a) and interannual variability was very low. From the 1930s to 1964, chlorophyll a and pheophytin a increased by a factor of ~?4, and ββ-carotene appeared in substantial amounts (~?0.4 µg cm?2a?1). Interannual variability increased markedly and a first strong algal bloom with ‘green pigment’ concentrations as high as 700 µg g?1 is observed in 1958. Peak eutrophication (~?12 µg cm?2a?1 chlorophyll a and pheophytin a) and very high interannual variability with extreme algal blooms (‘green pigment’ concentrations up to 1400 µg g?1) is observed until ca. 1990, when eutrophication decreases slightly. Maximum PP values after 2009 are likely the result of internal nutrient cycling related to repeated deep mixing of the lake.  相似文献   

14.
Instrumental climate records from the central Canadian treeline zone display a pattern of variation similar to general Northern Hemisphere temperature trends. To examine whether this general correspondence extends back beyond the instrumental record, we obtained a sediment core from Lake S41, a small lake in the Northwest Territories of Canada at 63°43.11′ N, 109°19.07′ W. A radiocarbon-based chronology was developed for the core. The sediments were analyzed for organic-matter content by loss-on-ignition (LOI), biogenic-silica content (BSi), and chironomid community composition to reconstruct July air temperature and summer water temperature. The paleolimnological records were compared with records of atmospheric CO2 concentration, solar variability, and hemispheric temperature variations over the past 2000 years. The results of the analyses suggest that widely-documented long-term variations in Northern Hemisphere temperature associated with radiative forcing, namely the cooling following the medieval period during the Little Ice Age (LIA), and twentieth century warming, are represented in the central Canadian treeline zone. There is also evidence of a brief episode of warming during the eighteenth century. As evidenced by LOI and BSi, the twentieth century warming is typified by increased lake productivity relative to the LIA. Depending upon the measure, the increased productivity of the twentieth century nearly equals or exceeds that of any other period in the past 2000 years. In contrast, the rate of chironomid head capsule accumulation decreased and remained low during the twentieth century. Although the chironomid-inferred temperature reconstructions indicate cooling during the LIA, they present no evidence of greatly increased temperatures during the twentieth century. Warming during the twentieth century might have enhanced lake stratification, and the response of the chironomid fauna to warming was attenuated by decreased oxygen and lower temperatures in the hypolimnion of the more stratification-prone lake.
Glen M. MacDonaldEmail:
  相似文献   

15.
We used ostracod species assemblages and their δ18O values in a 32-m sediment core from Lake Qinghai, China, along with information from cores collected at other sites in the lake, to infer lake evolution and hydroclimate changes since the last glacial. Dominant ostracod species Ilyocypris bradyi and its low δ18O values showed that Lake Qinghai was small in size or even consisted of several playa lakes, and the 1F core site could have even been in a wetland setting, under cold and dry climate conditions before 15.0 ka. Presence of Limnocythere inopinata with low δ18O values, and absence of I. bradyi after 15.0 ka, indicate the lake area increased or that the playas merged. The decrease or disappearance of ostracods with high δ18O values showed that the lake shrunk under dry climate from 12.0 to 11.6 ka. After 11.6 ka, hydroclimate shifts inferred from ostracod species changes (Eucypris mareotica and L. inopinata) and their δ18O values were as follows: (1) 11.6–7.4 ka—larger, but still small lake area with greater moisture availability under primarily dry climate conditions, (2) 7.4 to 3.2 ka—increasing lake level under a warmer and wetter climate, and (3) 3.2 ka to present—stable, large, brackish lake. The low ratio of lake water volume to runoff, and close proximity of the core site to freshwater input from the river mouth would have resulted in relatively lower ostracod δ18O values when Lake Qinghai was small in area during the interval from 32.0 to 15.0 ka. Lower ostracod δ18O values during interstadials and throughout the entire Last Glacial Maximum and early deglacial (ca. 24.0–16.0 ka) were caused by a greater contribution of seasonal meltwater from ice or snow and low incoming precipitation δ18O values related to cold climate conditions in the region at that time.  相似文献   

16.
Elemental and isotopic compositions of organic matter in surficial sediments from five transects across Lagoa do Caçó (Brazil) were analyzed to identify the depth-related processes that affect the production and deposition of sedimentary organic matter in this shallow tropical lake. Each of four transverse transects began at a margin dominated by aquatic macrophytes (Eleocharis), crossed the central deep part of the lake, and terminated in the opposite, macrophyte-dominated margin. In each transect, TOC concentrations, C/N ratios, and δ13C values decreased between 0 and 4 m, whereas δ15N values increased. The variables remained stable in sediment from 4 m water depth to the center of the lake at 10 m. The depth-related patterns reflect differences in both the delivery and the deposition of organic matter in the lake. Organic matter is produced in abundance in the marginal area by emersed and submerged macrophyte vegetation that diminishes with depth and disappears at 4 meters. After the disappearance of macrophytes, organic matter is produced at low rates principally by open-lake phytoplankton. Drawdown of dissolved oxygen is high in the lake margins, but it is low in the oligotrophic open waters of the lake. Preservation of organic matter is consequently better in sediments of the lake margins than in deep waters. The depth-related pattern of organic matter delivery and deposition in the sediments of Lagoa do Caçó, in which water levels are sensitive to groundwater fluctuations, shows that the elemental and isotopic compositions of sediment organic matter can provide a record of changes in the paleohydrology of this and other similar shallow lake systems.  相似文献   

17.
Hypoxia in freshwater systems is currently spreading globally and putting water quality, biodiversity and other ecosystem services at risk. Such adverse effects are of particular concern in permanently stratified meromictic lakes. Yet little is known about when and how meromixis and hypoxia became established (or vanished) prior to anthropogenic impacts, or how human activities such as deforestation, erosion and nutrient cycling affected the mixing regimes of lakes. We used calibrated hyperspectral imaging (HSI) data in the visible and near infrared range from a fresh, varved sediment core taken in Lake Jaczno, NE Poland, to map sedimentary pigments at very high resolution (sub-varve scale) over the past 1700 years. HSI-inferred bacteriopheophytin a (bphe a, produced by anoxygenic phototrophic bacteria) serves as a proxy for meromixis, whereas HSI-inferred green pigments (chlorophyll a and diagenetic products) can be used as estimators of aquatic productivity. Meromixis was established and vanished long before significant human disturbance in the catchment was observed in the late eleventh century AD. Under pre-anthropogenic conditions, however, meromixis was interrupted frequently, and the lake mixing regime flickered between dimixis and meromixis. During two periods with intense deforestation and soil erosion in the catchment, characterised by sedimentary facies rich in clay and charcoal (AD 1070–1255 and AD 1670–1710), the lake was mostly dimictic and better oxygenated than in periods with relative stability and a presumably closed forest around the lake, i.e. without human disturbances. After ca. AD 1960, meromixis became established quasi-permanently as a result of eutrophication. The persistent meromixis of the last ~60 years is unusual with respect to the record of the last 1700 years.  相似文献   

18.
The multidisciplinary study of sediment cores from Laguna Zoñar (37°29′00′′ N, 4°41′22′′ W, 300 m a.s.l., Andalucía, Spain) provides a detailed record of environmental, climatic and anthropogenic changes in a Mediterranean watershed since Medieval times, and an opportunity to evaluate the lake restoration policies during the last decades. The paleohydrological reconstructions show fluctuating lake levels since the end of the Medieval Warm Period (ca. AD 1300) till the late 19th century and a more acute dry period during the late 19th century – early 20th century, after the end of the Little Ice Age. Human activities have played a significant role in Laguna Zoñar hydrological changes since the late 19th century, when the outlet was drained, and particularly in the mid-20th century (till 1982) when the spring waters feeding the lake were diverted for human use. Two main periods of increased human activities in the watershed are recorded in the sediments. The first started with the Christian conquest and colonization of the Guadalquivir River Valley (13th century) particularly after the fall of the Granada Kingdom (15th century). The second one corresponds to the late 19th century when more land was dedicated to olive cultivation. Intensification of soil erosion occurred in the mid-20th century, after the introduction of farm machinery. The lake was declared a protected area in the early 1980s, when some agricultural practices were restricted, and conservation measures implemented. As a consequence, the lake level increased, and some littoral zones were submerged. Pollen indicators reflect this limnological change during the last few decades. Geochemical indicators show a relative decrease in soil erosion, but not changes in the amount of chemical fertilizers reaching the lake. This study provides an opportunity to evaluate the relative significance of human vs. climatic factors in lake hydrology and watershed changes during historical times. Paleolimnological reconstructions should be taken into account by natural resources agencies to better define lake management policies, and to assess the results of restoration policies.  相似文献   

19.
This study represents a step towards developing seasonal climate inferences by using high-resolution modern data sets. The importance of seasonal climate changes is highlighted by the instrumental record of a meteorological station close to our study site (lac du Sommet in the Laurentian Mountains, Québec, Canada): Between 1966 and 2001, May temperatures increased significantly by 3.1°C (r = 0.41, n = 35, p < 0.01) but annual mean temperatures only by 0.6°C (r = 0.21, n = 35, p > 0.05). Comparison of this instrumental record with fossil diatom assemblages in a sediment core from lac du Sommet showed that axis one of a principal component analysis (PCA) of the fossil diatoms was best correlated with wind velocity in June (r = 0.62, n = 19, p < 0.005) and that past diatom production was significantly enhanced in periods with colder July temperatures (r =  ?0.77, n = 19, p < 0.0005) and higher wind velocity in June (r = 77, n = 19, p < 0.0005). The strong impact of the spring and summer conditions on overall diatom composition and productivity suggests that seasonal lake responses to climate are more important than annual mean temperatures. However, the seasonal dynamics of diatom communities are not well understood, and seasonality is rarely inferred effectively from lake sediment studies. Our research presents a pilot study to answer a twofold question: Is it possible to identify diatom communities which are typical for warmer or colder seasonal climate using sediment traps, and if it is, can this knowledge be used to infer seasonal climate conditions from fossil diatom assemblages? To address these questions, the seasonal dynamics of diatom communities and water chemistry were studied using sediment traps and water samples at biweekly intervals in four lakes distributed along an altitudinal gradient in the Laurentian Mountains from May through October 2002. Date of ice break-up was significantly related to the diatom assemblages taken in spring and uncorrelated to other significant environmental variables. Summer water temperature, circulation of the water column and pH explained a significant part of the biological variance in summer, and total nitrogen (TN) explained most of the biological variance in autumn. To infer these variables, weighted averaging partial least squares models were applied to the seasonal data sets. Inferred ice break-up dates were significantly correlated with number of days below 0°C in April (r = 0.52, n = 19, p < 0.025), inferred circulation of the water column was significantly related to measured wind velocity in June (r = 0.64, n = 19, p < 0.005), inferred summer water temperature and inferred pH was significantly related to measured July air temperature (r = 0.50, r =  ?53, n = 19, p < 0.025) and inferred TN autumn concentrations had an inverse relationship to August temperatures (r =  ?0.53, n = 19, p < 0.01). This comparison of the historical record with diatom-inferred seasonal climate signals, based on the comparison of fossil diatom assemblages with modern sediment trap data of high temporal resolution, provides a promising new approach for the reconstruction of seasonal climate aspects in paleolimnological studies.  相似文献   

20.
Laguna Chichój (Lake Chichój) is the only deep permanent lake in the central highlands of Guatemala. The lake is located in the boundary zone between the North American and Caribbean plates. The lake has been struck by devastating earthquakes and tropical cyclones in historical times. We investigated the imprint of twentieth century extreme events on the sedimentary record of this tropical lake using a bathymetric survey of the lake, coring the lake floor, and providing a chronology of sediment accumulation. The lake occupies a series of circular depressions likely formed by the rapid dissolution of a buried body of gypsum. 210Pb and 137Cs inventories and varve counting indicate high rates of sedimentation (1–2 cm year?1). The annually layered sediment is interrupted by turbidites of two types: a darker-colored turbidite, enriched in lake-derived biogenic constituents, and interpreted as a seismite, and a lighter-colored type, enriched in catchment-derived constituents, interpreted as a flood layer. Comparison of our 137Cs-determined layer ages with a catalog of twentieth century earthquakes shows that an earthquake on the Motagua fault in 1976 generated a conspicuous darker-colored turbidite and slumped deposits in separate parts of the lake. The entire earthquake inventory further reveals that mass movements in the lake are triggered at Modified Mercalli Intensities higher than V. Tropical cyclonic depressions known to have affected the lake area had limited effect on the lake, including Hurricane Mitch in 1998. One storm however produced a significantly thicker flood layer in the 1940s. This storm is reportedly the only event to have generated widespread slope failures in the lake catchment. It is thus inferred that abundant landsliding provided large amounts of concentrated sediment to the lake, through hyperpycnal flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号