首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Muons from the “prompt” decays of charmed mesons in cosmic ray air showers start to show abundance on the atmospheric muon spectrum from few tens of TeV. Study of these prompt muons have broader interest in particle and astroparticle physics. The measurement of prompt muon in air showers is challenging because of their low production rate and the large amount of conventional muons produced in company with them. This paper describes the simulation study of a method that identifies prompt muon signatures based on the pattern of stochastic energy losses by muon bundles in deep under ice. The systematics associated with different hadronic interaction models and cosmic ray primary composition assumptions were estimated. Using IceCube as an example, we briefly discussed the challenge of using this method in experimental data analysis.  相似文献   

2.
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. One of the main topics today focuses on the high energy end of the spectrum and the potential for the production of high-energy neutrinos. Above about 1020 eV cosmic rays from extragalactic sources are expected to be severely attenuated by pion photoproduction interactions with photons of the cosmic microwave background. Investigating the shape of the cosmic ray spectrum near this predicted cut-off will be very important. In addition, a significant high-energy neutrino background is naturally expected as part of the pion decay chain which also contains much information.Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off.  相似文献   

3.
The events following the impact of intergalactic suprathermal grains with atmosphere are examined, and some similarity is found between the expected air shower and observations of largest cosmic ray showers. It is concluded that the largest air showers are, in any case, initiated by primaries of intergalactic origin. Whether the primaries are suprathermal dust grains or single nuclei is inconclusive.  相似文献   

4.
Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.  相似文献   

5.
Two wide-angle photomultiplier systems were simultaneously operated over a baseline of nearly 30 km in a search for cosmic optical bursts of fractional microsecond time-scale. In 74 hours of overlapping observation, one event was recorded coincident to 1 ms as against the corresponding accidental coincidence value of 0.14 from erenkov light pulses from unrelated cosmic ray showers. The possible cosmic origin of this event, including that from primordial black-hole explosions, is discussed and the corresponding upper limits derived.  相似文献   

6.
《Astroparticle Physics》2009,32(1):53-60
The High Resolution Fly’s Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen–Zatsepin–Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details.  相似文献   

7.
Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons.In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions.The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.  相似文献   

8.
CODALEMA is one of the pioneer experiments dedicated to the radio detection of ultra high energy cosmic rays (UHECR), located at the radio observatory of Nançay (France). The CODALEMA experiment uses both a particle detector array and a radio antenna array. Data from both detection systems have been used to determine the ground coordinates of the core of extensive air showers (EAS). We discuss the observed systematic shift of the core positions determined with these two detection techniques. We show that this shift is due to the charge-excess contribution to the total radio emission of air showers, using the simulation code SELFAS. The dependences of the radio core shift to the primary cosmic ray characteristics are studied in details. The observation of this systematic shift can be considered as an experimental signature of the charge excess contribution.  相似文献   

9.
The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ∼1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.  相似文献   

10.
《Astroparticle Physics》2004,21(6):565-581
The mass composition of high-energy cosmic rays at energies above 1015 eV can provide crucial information for the understanding of their origin. Air showers were measured simultaneously with the SPASE-2 air shower array and the AMANDA-B10 Cherenkov telescope at the South Pole. This combination has the advantage to sample almost all high-energy shower muons and is thus a new approach to the determination of the cosmic ray composition. The change in the cosmic ray mass composition was measured versus existing data from direct measurements at low energies. Our data show an increase of the mean log atomic mass lnA by about 0.8 between 500 TeV and 5 PeV. This trend of an increasing mass through the “knee” region is robust against a variety of systematic effects.  相似文献   

11.
Detection of cosmic sources of very high energy gamma rays based on the atmospheric Cerenkov technique is discussed. Very high energy gamma-rays initiate, on entering the terrestrial atmosphere, electron-photon cascade showers with in turn produce Cerenkov photons in the air. Parabolic reflectors are used to focus these photons onto fast photomultipliers. Two methods of deployment of parabolic reflectors are in vogue: one in which all the reflectors are located close to each other in a compact array and the other in which the reflectors are spread out farther apart forming a distributed array. In the latter mode, the arrival direction of individual showers can be determined accurately by using the measured relative arrival times between different detectors. Detailed studies with the distributed array helped us to understand the various parameters in the two designs and evaluate their relative merits in reaching the ultimate goals of lowering the energy threshold and improving the signal to background ratio for the detection of gamma-ray sources. It is found that the relative superiority among the two types of arrays is a function of the exponent assumed for the differential power law energy spectrum for the gamma ray source. It is also seen that with the type of reflectors commonly used in atmospheric Cerenkov work, lower energy thresholds can be achieved with use of larger aperture.  相似文献   

12.
In models with TeV-scale gravity, ultrahigh energy cosmic rays can generate microscopic black holes in the collision with atmospheric and terrestrial nuclei. It has been proposed that stringent bounds on TeV-scale gravity can be obtained from the absence of neutrino cosmic ray showers mediated by black holes. However, uncertainties in the cross section of black hole formation and, most importantly, large uncertainties in the neutrino flux affects these bounds. As long as the cosmic neutrino flux remains unknown, the non-observation of neutrino induced showers implies less stringent limits than present collider limits.  相似文献   

13.
Recent reports of superhigh energy cosmic rays beyond the expected spectral cutoff have intensified interest in the unknown origin of the highest energy cosmic rays. There is a need for a much larger data base of more precisely measured air showers. This requires new sensitive detectors of enormous aperture. Combining a ground array of particle counters with an optical detector of atmospheric fluorescence yields a detector of outstanding capability. Such a hybrid detector provides far more accurate measurements of energies, arrival directions, and primary particle atomic masses than can be achieved by either type of detector separately.  相似文献   

14.
The extragalactic flux of protons is predicted to be suppressed above the famous Greisen–Zatsepin–Kuzmin cut-off at about EGZK  50 EeV due to the resonant photo-pion production with the cosmic microwave background. Current cosmic ray data do not give a conclusive confirmation of the GZK cut-off and the quest about the origin and the chemical composition of the highest energy cosmic rays is still open. Amongst other particles neutrinos are expected to add to the composition of the cosmic radiation at highest energies. We present an approach to simulate neutrino induced air showers by a full Monte Carlo simulation chain. Starting with neutrinos at the top of the atmosphere, the performed simulations take into account the details of the neutrino propagation inside the Earth and atmosphere as well as inside the surrounding mountains. The products of the interactions are input for air shower simulations. The mountains are modelled by means of a digital elevation map. To exemplify the potential and features of the developed tools we study the possibility to detect neutrino induced extensive air showers with the fluorescence detector set-up of the Pierre Auger Observatory. Both, down-going neutrinos and up-going neutrinos are simulated and their rates are determined. To evaluate the sensitivity, as a function of the incoming direction, the aperture, the acceptance and the total observable event rates are calculated for the Waxman–Bahcall (WB) bound.  相似文献   

15.
Extensive air showers detected by the GREX array have been sampled by means of highly segmented 8 m2 bakelite RPC in the GREX/COVER_PLASTEX experiment. Delay distributions of particles with respect to the first arriving particle in the EAS front at PeV energies have been analysed for individual events in the core distance range of 0–100 m. It is shown that both mean arrival time and EAS front thickness in individual showers fluctuate strongly and cannot be a good measure of the distance from the EAS axis in a 0–100 m core distance interval.

Individual distributions have been compared with integrated inclusive distributions measured in the same experiment. Results indicate that the width of the individual distribution is systematically less than that of the inclusive distribution. It means that the bulk of particles in individual showers arrive as a relatively compact group delayed by different time intervals from the first arriving particle. Such fluctuations of the arrival time for most of the shower particles may be the consequence of large fluctuations in the shower longitudinal development.

Comparison with CORSIKA Monte Carlo simulations confirmed the difference between the mean width of inclusive and individual arrival time distribution. It revealed also the presence in the experiment of the excessive train of delayed particles near the shower core. This train is obviously due to the non-relativistic low energy hadrons most abundant in the shower core region.  相似文献   


16.
Lofar     
H01 A first glance at LOFAR: Experience with the Initial Test Station H02 The Square Kilometer Array (SKA) – Status and Prospects H03 LOFAR calibration: confrontation with real WSRT data H04 Simulations of magnetic fields in the cosmos H05 RM structure in the polarized synchrotron emission from our Galaxy and the Perseus cluster of Galaxies H06 Mapping the Reionization Era through the 21 cm Emission Line H07 Spiral galaxies seen with LOFAR H08 Software Infrastructure for Distributed Data Processing H09 The Low Frequency Array (LOFAR) – Status and Prospects H10 Coincident cosmic ray measurements with LOPES and KASCADE‐Grande H11 Radio relics in a cosmological cluster merger simulation H12 Detection of radio pulses from cosmic ray air showers with LOPES H13 Geosynchrotron radio emission from extensive air showers H14 Imaging capabilities of future radio telescopes H15 Digital signal processing system of Multi‐Beam Meter Wavelengths Array. H16 The Multi‐Beam Meter Wavelengths Array H17 Monitoring of the Solar Activity by LOFAR H18 Calibration of LOPES30 H19 An Outreach Project for LOFAR and Cosmic Ray Detection H20 Galactic tomography based on observations with LOFAR and Effelsberg H21 150 MHz observations with the Westerbork and GMRT radio telescopes of Abell 2256 and the Bootes field: Ultra‐steep spectrum radio sources as probes of cluster and galaxy evolution H22 Experience of simultaneous observations with two independent multi‐beams of the Large Phased Array H23 GRID Computing at Forschungszentrum Karlsruhe suitable for LOFAR  相似文献   

17.
The possibility that a series of explosions of the galactic nuclei every 5×106 yr can cause a substantial flux of cosmic ray particles at the vicinity of the Earth is investigated. The steady flux of cosmic radiation forces the conclusion that there have been explosions back to 109 yr if this is a dominant source of cosmic rays.  相似文献   

18.
《Astroparticle Physics》2009,30(6):393-411
We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from Monte Carlo simulations of air showers in a realistic geo-magnetic field. We can clearly relate the time signal to the time dependence of the currents. We find that the most important contribution to the pulse is related to the time variation of the currents. For showers forming a sufficiently large angle with the magnetic field, the contribution due to the currents induced by the geo-magnetic field is dominant, but neither the charge excess nor the dipole contribution can be neglected. We find a characteristic bipolar signal. In our calculations, we take into account a realistic index of refraction, whose importance depends on the impact parameter and the inclination. Also very important is the role of the positive ions.  相似文献   

19.
《Astroparticle Physics》2012,35(9):591-607
Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.  相似文献   

20.
《Astroparticle Physics》2006,24(6):467-483
Lateral distributions for electrons and muons in extensive air showers measured with the array of the KASCADE experiment are compared to results of simulations based on the high-energy hadronic interaction models QGSJet and SIBYLL. It is shown, that the muon distributions are well described by both models. Deviations are found for the electromagnetic component, where both models predict a steeper lateral shape than observed in the data. For both models the observed lateral shapes of the electron component indicate a transition from a light to a more heavy composition of the cosmic ray spectrum above the knee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号