首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Komatiitic and Iron-rich Tholeiitic Lavas of Munro Township, Northeast Ontario   总被引:12,自引:6,他引:12  
Munro Township, in the Archean Abitibi greenstone belt of northeastOntario, contains volcanic and hypabyssal rocks of two magmaseries: (1) an Fe-rich tholeiitic series of basaltic to daciticlava flows (3–10 m thick), layered peridotite-pyroxenite-gabbroflows (120 m thick), and layered sills (700 m thick); (2) anultramafic-mafic komatiitic series, comprising discrete lavaflows of peridotitic to andesitic composition (1–17 mthick), layered peridotite-gabbro flows (120 m thick), and layeredsills (500 m thick). The komatiitie lavas form a successionabout 1000 m thick that is both underlain and overlain by thickersuccessions of tholeiitic volcanic rocks. Three types of komatiite are recognized: peridotitic, pyroxenitic,and basaltic komatiites. The most ultramafic are peridotiticcumulates rich in forsteritic olivine (Fo89–94), at thebases of flows and sills. Many less mafic peridotitic komatiites(MgO: 20–30 per cent), which typically form the upperparts of flows and the marginal parts of small intrusions, exhibitspinifex textures indicative of their formation from ultrabasicliquids. Pyroxenitic komatiites (MgO: 12–20 per cent)also may contain olivine, but are dominated by clinopyroxene,usually in spinifex textures. Basaltic komatiites (MgO <12per cent) are composed mainly of clino-pyroxene and plagioclaseor devitrified glass, rarely in spinifex texture and more commonlyin equigranular textures. Peridotitic komatiite with roughly30 per cent MgO appears to represent a parental liquid fromwhich the more ultramafic komatiites formed by accumulationof olivine, and the less mafic types were derived by fractionationof olivine, joined and finally succeeded in later stages byclinopyroxene and plagioclase. Komatiites of Munro Township share many of the characteristicsof the komatiites from the Barberton Mountain Land, South Africa(Voljoen & Viljoen, 1969a and b), but lack the high CaO/Al2O3ratios that distinguish the Barberton rocks. The Munro komatiitesare identical in this respect to ultramafic volcanic rocks inAustralia, Canada, Rhodesia, and India. It is proposed thatthe definition of the term komatiite be broadened so that itincludes all members of this ultramafic-mafic rock series, notonly those from Barberton Mountain Land. The proposed criteriaare: (1) highly ultramafic compositions in noncumulate lavas;(2) unusual volcanic structures such as spinifex texture andpolyhedral jointing; (3) low Fe/Mg ratios at given Al2O3 valuesor high CaO/Al2O3 ratios; low TiO2 at given SiO2; and high MgO,NiO, and Cr2O3.  相似文献   

2.
Spinifex-textured komatiites at Honeymoon Well, Western Australia, show evidence of partial melting and recrystallization of original igneous textures. Their textures and mineral compositions differ markedly from those typical of komatiites. Spinifex olivine plates are bent and broken, while interstitial space between spinifex and cumulus olivine is occupied by polygonal aggregates of clinopyroxene, orthopyroxene, minor olivine and plagioclase. Similar granular pyroxene-plagioclase aggregates occur as diffuse veins cutting spinifex zones and cumulate zones of the flows and, in places, form the matrix to a breccia containing corroded fragments of spinifex rock. Thermometry based on the two pyroxene assemblages yields temperatures of 1055° to 1141° C, just below the low-pressure komatiite solidus. Mineral compositions are different from those of typical komatiites: clinopyroxenes are Al-poor and Cr-rich, olivines are unusually iron-rich and depleted in Cr and Ca, and the low-Ca pyroxene is bronzite rather than the more typical pigeonite. We interpret these observations as the results of thermal metamorphism, partial remelting and subsequent slow crystallization of originally normal spinifex-textured komatiite flows. The rocks in question occupy a 40–70 m interval sandwiched between two olivine-rich units: an underlying 90 m-thick olivine adcumulate layer, forming part of the cumulate zone of a basal 160 m-thick flow, and an overlying 1 km-thick extrusive body composed mostly of olivine mesocumulate and adcumulate and capped in turn by spinifex-textured flows. Thermal modelling shows that a sinusoidal temperature profile of cool flow tops and hot flow centres would exist within this sequence shortly after eruption. Conductive thermal relaxation of this profile could reheat spinifex zones to the extent of inducing partial melting and textural reconstitution. Such reheating is largely dependent on the time interval between the emplacement of successive flows. Calculations suggest that at Honeymoon Well the emplacement interval must have been of the order of 10 years or less. Textural reconstitution may have contributed to the development of the thick orthocumulate sequences characteristic of komatiites in the Agnew-Wiluna belt. Present address: Geochemex Australia, P.O. Box 281, West Perth, 6005, Western Australia  相似文献   

3.
Differentiation of Komatiite Flows   总被引:2,自引:6,他引:2  
Although layered komatiite flows with spinifex-textured upperparts and olivine-enriched lower parts are commonly thoughtto provide firm evidence of magmatic differentiation by olivinesettling, there are reasons to suspect that this may not betrue. Komatiite flows almost certainly convect vigorously asthey cool, with convective velocities that greatly exceed thesettling velocities of olivine grains. Other explanations forthe differentiation of komatiite flows into layers with differentolivine contents need to be investigated. One such explanation is provided by a detailed study of a komatiiteflow from Alexo, Ontario, Canada. This flow is about 16 m thickand has a spinifex-textured upper layer, and a lower layer,called the B-layer, which is composed of closely-packed, equantolivine phenocrysts. The composition of the initial liquid inthe flow is given by an upper chill sample, which has 28 percent MgO. In underlying spinifex lavas, MgO contents range from20 to 35 per cent MgO, and the B-layer has about 42 per centMgO. Olivines are most Fo-rich in the chill margin (Fo94.1)and in the B-layer (Fo93.8). In spinifex lavas, olivines aregenerally less magnesian, ranging from a high of Fo93.8 in unusuallyMgO-rich chevron spinifex lavas, down to Fo89 in the lower platespinifex lavas. It is believed that solidification of the upper part of theflow started only after it had become ponded, and that crystallizationproceeded with growth of spinifex olivines downwards from theroof of the flow. The manner in which the composition of silicateliquid within the flow changed during growth of the spinifexlayer can be calculated using the compositions of olivines inspinifex lavas. These calculations show that all the spinifexlavas are more magnesian than the liquids from which they formed:i.e. they all contain a component of excess olivine. Furthercalculations indicate, however, that liquid compositions inthe lower part of the flow changed more rapidly than can beexplained by accumulation of olivine in the spinifex lavas.This additional olivine must have crystallized in the lowerpart of the flow, and remained there as phenocrysts suspendedin the convecting liquid. As the spinifex-textured upper partcontinued to grow and thicken, olivine continued to crystallizewithin the flow, and the growing phenocrysts became more andmore concentrated in an ever-decreasing volume of liquid. Whenthe concentration exceeded about 50 vol. per cent, the viscosityof the lava became high enough to inhibit convection. The flowthen solidified completely, maintaining its olivine distributionwith a spinifextextured upper layer and an olivine-enrichedlower layer.  相似文献   

4.
《International Geology Review》2012,54(13):1569-1595
ABSTRACT

Palaeoarchaean (3.38–3.35 Ga) komatiites from the Jayachamaraja Pura (J.C. Pura) and Banasandra greenstone belts of the western Dharwar craton, southern India were erupted as submarine lava flows. These high-temperature (1450–1550°C), low-viscosity lavas produced thick, massive, polygonal jointed sheet flows with sporadic flow top breccias. Thick olivine cumulate zones within differentiated komatiites suggest channel/conduit facies. Compound, undifferentiated flow fields developed marginal-lobate thin flows with several spinifex-textured lobes. Individual lobes experienced two distinct vesiculation episodes and grew by inflation. Occasionally komatiite flows form pillows and quench fragmented hyaloclastites. J.C. Pura komatiite lavas represent massive coherent facies with minor channel facies, whilst the Bansandra komatiites correspond to compound flow fields interspersed with pillow facies. The komatiites are metamorphosed to greenschist facies and consist of serpentine-talc ± carbonate, actinolite–tremolite with remnants of primary olivine, chromite, and pyroxene. The majority of the studied samples are komatiites (22.46–42.41 wt.% MgO) whilst a few are komatiitic basalts (12.94–16.18 wt.% MgO) extending into basaltic (7.71 – 10.80 wt.% MgO) composition. The studied komatiites are Al-depleted Barberton type whilst komatiite basalts belong to the Al-undepleted Munro type. Trace element data suggest variable fractionation of garnet, olivine, pyroxene, and chromite. Incompatible element ratios (Nb/Th, Nb/U, Zr/Y Nb/Y) show that the komatiites were derived from heterogeneous sources ranging from depleted to primitive mantle. CaO/Al2O3 and (Gd/Yb)N ratios show that the Al-depleted komatiite magmas were generated at great depth (350–400 km) by 40–50% partial melting of deep mantle with or without garnet (majorite?) in residue whilst komatiite basalts and basalts were generated at shallow depth in an ascending plume. The widespread Palaeoarchaean deep depleted mantle-derived komatiite volcanism and sub-contemporaneous TTG accretion implies a major earlier episode of mantle differentiation and crustal growth during ca. 3.6–3.8 Ga.  相似文献   

5.
Many volcanic centers in the Aleutian Islands have erupted lavas that range in composition from high-Mg basalt (MgO>9 wt%) to more fractionated and voluminous high-Al basalts and basaltic andesites. The petrogenetic relationships between these rock types and the composition of primary magmas has been vigorously debated. The phase relations of a typical high-Mg basalt from the Makushin volcanic field on Unalaska Island provide important constraints on petrogenetic models. Results of one-atmosphere and moderate-to high-pressure (5–20 kb) anhydrous experiments are similar to results obtained from primitive MORB. At low pressures olivine is the liquidus phase joined by plagioclase and clinopyroxene at progressively lower temperatures. Clinopyroxene is the second phase to crystallize at pressures greater than 5 kb and replaces olivine on the liquidus at approximately 10 kb. Above 10 kb the liquidus pyroxene is aluminous augite and orthopyroxene is the second phase to crystallize. Glasses in equilibrium with olivine and clinopyroxene at intermediate-pressure (5 to 10 kb) are similar in composition to high-Al basalt. Plagioclase is not involved and most likely does not become a liquidus phase until the liquid has evolved significantly. Although our studies do not confirm the primary nature of high-Mg basalts they do support a model in which high-Al basalts are generated by moderate amounts of crystal fractionation from more primitive (high Mg/Mg+Fe, lower Al2O3) basaltic magmas near the arc crust-mantle boundary.Abbreviations Ol olivine - Cpx Clinopyroxene - Pl plagioclase - L liquid - Sp spinel - Pig pigeonite - Opx Orthopyroxene  相似文献   

6.
The Medicine Lake shield volcano is part of the Oregon high alumina plateau basalt petrologic province, as defined by Waters (1962) and Higgins (1973). The early eruptions are basaltic andesites and they constitute a significant portion of the shield-forming lavas. These lavas are characterized by a mild iron enrichment trend produced by fractionation of plagioclase and olivine, together with lesser amounts of clinopyroxene. Siliceous andesites of less areal extent form the shield-capping lavas. Their formation is initiated by the appearance of titanomagnetite as a liquidus phase which prevents further iron enrichment. Additional fractionation of plagioclase, clinopyroxene, orthopyroxene, and minor olivine continued during this interval.An origin for the basaltic andesites which involves the derivation of a liquid by partial melting of lithosphere composed of low Sr87/Sr86 material previously subducted along the continental margin is favored. This magma subsequently fractionated under low pressure conditions, a conclusion supported by least squares mixing calculations.  相似文献   

7.
A well exposed succession of spinifex-textured komatiite flows is reported from the Archaean Nondweni greenstone belt located near the southern margin of the Kaapvaal Craton. The flows are relatively thin (1–5 m) compared to similar occurrences in other greenstone belts. They are characterised by well developed cone structures of highly elongate amphibole crystals (after augite) which fan downwards from the tops of the flows. Extreme development of coned spinifex has not been reported from other greenstone belts and points to specific thermal conditions prevailing in the Nondweni environment. The zones of bladed spinifex are contained between layers of random spinifex and overlie a lower cumulus layer originally of augite, orthopyroxene and minor olivine. The observed major and trace element distributions through a 1.7 m thick spinifex-textured flow are consistent with a model involving concentration of phenocryst phases resulting in significant fractionation upwards in the flow. Approximately 40% of the spinifex-textured phenocrysts grew in situ after the lithological units were established. Collapse and displacement of the coned crystal networks, originally attached to the top of the flow, are shown to have influenced the distribution of liquid within the flow and accentuated the fractionation. Associated with the spinifex-textured units are massive aphyric and brecciated flows which show distinct chemical cycles through the succession. The brecciated zones have compositions with <18% MgO and are characterised by ovoid bodies that are not pillows and may represent magmatic reworking and movement of a partly congealed flow. Post-solidus alteration is considered to have caused early hydration of the original mineralogy and also introduced SiO2 and Na2O into the upper part of the flow by way of microfractures. The observed alteration is different to that of Mid-Ocean Ridge basalts, and a subaerial/shallow water environment is suggested.  相似文献   

8.
Komatiites from Alexo, Canada, are well preserved and represent high-degree partial mantle melts (∼50%). They are thus well suited for investigating the Mg and Fe isotopic compositions of the Archean mantle and the conditions of magmatic differentiation in komatiitic lavas. High precision Mg and Fe isotopic analyses of 22 samples taken along a 15-m depth profile in a komatiite flow are reported. The δ25Mg and δ26Mg values of the bulk flow are −0.138 ± 0.021‰ and −0.275 ± 0.042‰, respectively. These values are indistinguishable from those measured in mantle peridotites and chondrites, and represent the best estimate of the composition of the silicate Earth from analysis of volcanic rocks. Excluding the samples affected by secondary Fe mobilization, the δ56Fe and δ57Fe values of the bulk flow are +0.044 ± 0.030‰, and +0.059 ± 0.044‰, respectively. These values are consistent with a near-chondritic Fe isotopic composition of the silicate Earth and minor fractionation during komatiite magma genesis. In order to explain the early crystallization of pigeonite relative to augite in slowly cooled spinifex lavas, it was suggested that magmas trapped in the crystal mush during spinifex growth differentiated by Soret effect, which should be associated with large and coupled variations in the isotopic compositions of Mg and Fe. The lack of variations in Mg and Fe isotopic ratios either rules out the Soret effect in the komatiite flow or the effect is effaced as the solidification front migrates downward through the flow crust. Olivine separated from a cumulate sample has light δ56Fe and slightly heavy δ26Mg values relative to the bulk flow, which modeling shows can be explained by kinetic isotope fractionation associated with Fe-Mg inter-diffusion in olivine. Such variations can be used to identify diffusive processes involved in the formation of zoned minerals.  相似文献   

9.
The Black Swan komatiite sequence is a package of dominantly olivine-rich cumulates with lesser volumes of spinifex textured rocks, interpreted as a section through an extensive komatiite lava flow field. The sequence hosts a number of nickel sulfide orebodies, including the Silver Swan massive shoot and the Cygnet and Black Swan disseminated orebodies. A large body of whole rock analyses on komatiitic rocks from the Black Swan area has been filtered for metasomatic effects. With the exception of mobile elements such as Ca and alkalis, most samples retain residual igneous geochemistry, and can be modelled predominantly by fractionation and accumulation of olivine. Whole rock MgO–FeO relationships imply a relatively restricted range of olivine compositions, more primitive than the olivine which would have been in equilibrium with the transporting komatiite lavas, and together with textural data indicate that much of the cumulus olivine in the sequence was transported. Flow top compositions show evidence for chromite saturation, but the cumulates are deficient in accumulated chromite. Chromite compositions are typical of those found in compound flow-facies komatiites, and are distinct from those in komatiitic dunite bodies. Incompatible trace element abundances show three superimposed influences: control by the relative proportion of olivine to liquid; a signature of crustal contamination and an overprint of metasomatic introduction of LREE, Zr and Th. This overprint is most evident in cumulates, and relatively insignificant in the spinifex rocks. Platinum and palladium behaved as incompatible elements and are negatively correlated with MgO. They show no evidence for wholesale depletion due to sulfide extraction, which was evidently restricted to specific lava tubes or pathways. The lack of correspondence between PGE depletion and contamination by siliceous material implies that contamination alone is insufficient to generate S-saturation and ore formation in the absence of sulfide in the assimilant. Contamination signatures in spinifex-textured rocks may be a guide to Ni-sulfide mineralisation, but are not entirely reliable in the absence of other evidence. The widespread vesicularity of the sequence may be attributable to assimilated water rather than to primary mantle-derived volatiles, and cannot be taken as evidence for primary volatile-rich magmas. The characteristic signature of the Black Swan Succession is the presence of highly localised disseminated sulfide within a sequence showing more widespread evidence for crustal contamination and interaction with its immediate substrate. This has important implications for the applicability of trace element geochemistry in exploration for komatiite-hosted nickel deposits.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial handling: Peter Lightfoot  相似文献   

10.
Crystallochemistry and origin of pyroxenes in komatiites   总被引:1,自引:1,他引:0  
We present a detailed mineralogical and major- and trace-element study of pyroxenes in two Archean komatiitic flows in Alexo, Canada. The pyroxenes in spinifex-textured lavas commonly are zoned with cores of magnesian pigeonite and rims of augite. Concentrations of incompatible trace elements are low in pigeonite and jump to higher values in the augite mantles, a variation that can be modelled using accepted partition coefficients and assuming crystallization from komatiitic liquids. Crystallization sequences are very different in different parts of both flows. In the flow top, the sequence is olivine followed by augite: deeper in the spinifex sequence, pigeonite crystallizes after olivine, followed by augite; in lower cumulates, orthopyroxene or augite accompany olivine. In spinifex lavas, pigeonite crystallizes sooner than would be predicted on the basis of equilibrium phase relations. We propose that contrasting crystallization sequences depend on the position in the flow and on the conditions of crystal growth. In the flowtop, rapid cooling causes quench crystallization. Deeper in the spinifex layer, constrained growth in a thermal gradient, perhaps augmented by Soret differentiation, accounts for the early crystallization of pigeonite. The cumulus minerals represent a near-equilibrium assemblage. Augites in Al-undepleted Archean komatiites in various localities in Canada and Zimbabwe have high moderate to high Wo contents but their Mg# (Mg/(Mg + Fe) are lower than in augites in komatiites from Barberton, South Africa. We attribute the combination of high Wo and high Mg# in Barberton rocks to the unusually high CaO/Al2O3 of these Al-depleted komatiites.  相似文献   

11.
The nickel sulfide bearing Main Flow at Hunters Road is a thick komatiite unit situated at the base of a well developed lava channel complex overlying a prominent banded iron formation that caps a thick sequence of felsic lavas and volcaniclastic rocks intruded by a probably comagmatic feeder sill. The 300–350 m thick inner flank comprises a 200–250 m thick central olivine meso to adcumulate, relatively narrow lower and upper ortho to mesocumulates and a 2–10 m thick olivine spinifex zone at the top. Approximately 700 m towards the 90 m thick outer flank, the spinifex zone is up to 30 m thick, the central meso to adcumulate lenses out between the upper and lower mesocumulates, and the lower orthocumulate is more rich in clinopyroxene. In places, the flanks are directly overlain by rubbly hyaloclastite. The less well preserved, 500 m thick central axis coincides with a floor rock embayment of demonstrably primary origin, which is 200 m deep and at least 800 m wide. Nickel sulfide mineralisation is disseminated, texturally cocumulus to olivine and confined to the meso to adcumulate, the highest nickel grades being located towards the top. Large floor rock xenoliths occur in the mineralised meso to adcumulate of the inner flank within reaction envelopes of barren, pyroxene bearing, olivine ortho to mesocumulate. Formation of the embayment and xenoliths (clear evidence of large scale thermomechanical floor rock erosion) and of the olivine sulfide meso to adcumulate (the sulfur probably derived by the assimilation of sulfidic wall rocks adjacent to the feeder sill) is attributed to prolonged focused flow of hot turbulent lava close to the vent. The Main Flow is interpreted as the product of a thick channelised sheet flow comprising: (i) a turbulent lava river, open along the central axis and partly tubed over along the inner flanks; and (ii) a tubed over levée facies along the outer flanks accommodating overflow from the central axis by inflationary growth under laminar flow conditions.  相似文献   

12.
Certain petrological features of oceanic volcanic and plutonic rocks are not completely consistent with previously proposed models of crystal fractionation or magma mixing. For example, Sr is often higher in the differentiated basalts of a suite of aphyric rocks than in the relatively primitive basalts even though the differentiated basalts have apparently been produced by crystallization of large amounts of plagioclase with olivine and clinopyroxene. Additionally, oceanic basalts and gabbroic rocks often contain plagioclase crystals in excess of the appropriate cotectic proportions. Certain differentiated oceanic basaltic glasses and aphyric rocks crystallize plagioclase as the liquidus mineral, which would seem inconsistent with the strongly cotectic nature of the olivine + plagioclase + liquid surface.It is proposed here that plagioclase in mid-ocean ridge magma chambers separates from the basaltic liquid that it crystallizes in at a slower rate than does co-crystallizing olivine or pyroxene. Magma mixing in which a portion of the plagioclase remains suspended in the liquid during crystallization results in much more complex liquid lines of descent in mixed magmas and appears to resolve the apparent discrepancies noted above.  相似文献   

13.
Formation of Spinifex Texture in Komatiites: an Experimental Study   总被引:5,自引:1,他引:4  
The formation of platy olivine spinifex, the texture that characterizeskomatiite lavas, has long been enigmatic. A major problem isthat the dendritic morphology of the olivine resembles thatof crystals grown in laboratory experiments at high coolingrates (>50°C/h), but at the position where these texturesform, up to several meters below the komatiite flow top, thecooling rate cannot have been greater than 1–5°C/h.We performed experiments that demonstrate that the platy habitof spinifex olivine or pyroxene is a consequence of slow coolingof ultramafic magma in a thermal gradient (7–35°C/cm).The charges were cooled at rates between 2 and 1428°C/hand, even at the low cooling rates, the thermal gradient ledto constrained growth and the development of preferentiallyoriented dendritic crystals with morphologies like those innatural platy spinifex-textured lavas. Under these conditions,olivine starts to crystallize at temperatures well below theequilibrium liquidus temperature (37°C < –T<56°C) depending on the composition of the starting material.When the cooling rate is high, the thermal gradient has a negligibleeffect on the texture and the crystals have a random orientation,like that in the upper parts of komatiite flows. KEY WORDS: komatiite; spinifex; cooling rate; experimental petrology; thermal gradient  相似文献   

14.
Fifteen samples across a 4 m thick komatiite flow from the Val d'Or region in the southeast portion of the Abitibi greenstone belt have been analysed for major oxides and trace elements including the rare earth elements (REE). The flow has been subjected to low grade regional metamorphism: virtually all primary mineralogy (olivine and clinopyroxene) has been obliterated although primary textures are well preserved. Compositional differences between the upper, spinifex textured portion and the underlying massive portion of the flow are largely consistent with the primary fractionation of approximately 30% olivine with a composition close to Fo92. Variations in incompatible element ratios across the flow and in enrichments between the spinifex and massive units suggest that Si, Ce and possibly Lu have been lost to, and Ca, Sr and possibly Y have been gained from, the surroundings. Remobilization of other elements (e.g. Zr, Hf, and alkali metals and most of the REE) appears to have been confined within the flow. AI, Ti, V and Sc appear to have been immobile during alteration of the flow. For the flow as a whole values for many element ratios (e.g. Al/Zr, Al/Sc, Sc/Yb, Zr/Hf, K/Rb) are very similar to chondritic values. If the flow represents a 40% melt approximately, and if the residue was essentially dunitic then the source abundance for most elements was close to chondritic; exceptions are the REE (1.5 to 2×chondrite), Ti (enriched relative to chondrites), and V (depleted relative to chondrites).  相似文献   

15.
Mafic rocks at Lake Nipigon provide a record of rift-related continental basaltic magmatism during the Keweenawan event at 1109 Ma. The mafic rocks consist of an early, volumetrically minor suite of picritic intrusions varying in composition from olivine gabbro to peridotite and a later suite of tholeiitic diabase dikes, sheets and sills. The diabase occurs primarily as two 150 to 200 m thick sills with a textural stratigraphy indicating that the sills represent single cooling units. Compositional variation in the sills indicates that they crystallized from several magma pulses.The diabases are similar in chemistry to olivine tholeiite flood basalts of the adjacent Keweenawan rift, particularly with respect to low TiO2, K2O and P2O5. The picrites have higher TiO2, K2O and P2O5 than the diabases and are similar to, but more primitive than, high Fe-Ti basalts which erupted early in the Keweenawan volcanic sequence.All of the rocks crystallized from fractionated liquids. The picrites are cumulate rocks derived at shallow crustal depths from a magma controlled predominantly by olivine fractionation. Picritic chills are in equilibrium with olivine phenocrysts of composition Fo80 and are interpreted to represent the least evolved liquids observed. The parental magma of the picrites was probably Fe rich relative to the parental magma of the diabase. The diabase sills crystallized from an evolved basaltic liquid controlled by cotectic crystallization of plagioclase and lesser olivine and pyroxene.The emplacement of dense olivine phyric picritic magmas early in the sequence, followed by later voluminous compositionally evolved magmas of lower density suggests the development of a crustal density filter effect as the igneous event reached a peak. Delamination of the crust-mantle interface may have resulted in the transition from olivine controlled primitive magma to fractionated magma through the development of crustal underplating.  相似文献   

16.
Although komatiite has been defined as an ultramafic volcanicrock characterized by spinifex texture, there is a growing recognitionthat similar textures can also form in high-level dykes andsills. Here, we report the results of a petrological and geochemicalinvestigation of a 5 m thick komatiite sill in Dundonald Township,Ontario, Canada. This unit forms part of a series of komatiitesand komatiitic basalts, some of which clearly intruded unconsolidatedsediments. The komatiite sill is differentiated into a spinifex-texturedupper part and an olivine cumulate lower part. Features characteristicof the upper sections of lava flows, such as volcanic brecciaand a thick glassy chilled margin, are absent and, instead,the upper margin of the sill is marked by a layer of relativelylarge (1–5 mm) solid, polyhedral olivine grains that gradesdownwards over a distance of only 2 cm into unusually large,centimetre-sized, skeletal hopper olivine grains. This is underlainby a 1 m thick zone of platy spinifex-textured olivine and coarse,complex, dendritic, spinifex-textured olivine. The texture ofthe olivine cumulate zone in the overlying unit is uniform rightdown to the contact and a lower chilled margin, present at thebase of all lava flows, is absent. The textures in the silland the overlying unit are interpreted to indicate that thesill intruded the olivine cumulate zone of the overlying unit.Thermal modelling suggests that soon after intrusion, a narrowinterval of the overlying cumulate partially melted and thatthe liquid in the upper part of the sill became undercooled.The range of olivine morphologies in the spinifex-textured partof the sill was controlled by nucleation and crystallizationof olivine in these variably undercooled liquids. KEY WORDS: komatiite; intrusion; spinifex texture; olivine  相似文献   

17.
Ultramafic inclusions and megacrysts are unusually abundant in a nephelinite sill in the Nandewar Mountains in north-eastern New South Wales. The inclusions are divisible into a Cr-diopside group and a Ti-augite group, the former being dominated by Cr-spinel Iherzolites of restricted modal composition, the latter by olivine and titaniferous Al-rich clinopyroxene assemblages which vary widely in their modal proportions. The principal megacryst species are olivine and black, titaniferous Al-rich clinopyroxene; additional but comparatively rare megacrysts include titanphlogopite, kaersutitic amphibole, and deep green, relatively Fe-rich clinopyroxene. The Cr-spinel Iherzolites conform closely in mineralogy and chemistry with the spinel lherzolites which dominate upper mantle xenolith assemblages in alkaline mafic volcanic rocks from other provinces. Megacrysts and Ti-augite inclusion mineral assemblages are consistently more Fe-rich than analogous phases in the Cr-diopside xenoliths and also display more extensive cryptic variation. The available experimental data on the high pressure liquidus or near-liquidus phases in olivine nephelinite and related compositions indicate that the olivine and black clinopyroxene megacrysts were precipitated at pressures in the vicinity of 15–20 kb. The similarity in the nature and compositions of the principal megacryst species to analogous phases in the Tiaugite group of inclusions indicates that the latter also represent cognate cumulates derived from the olivine nephelinite at broadly comparable pressures. High pressure fractionation of the host olivine nephelinite liquid, controlled mainly by the separation of olivine and aluminous clinopyroxene, produced only comparatively minor compositional changes in the derivative liquid. The hiatus in olivine compositions at approximately Fo86–88, apparently characteristic of the olivines in coexisting Cr-diopside and Ti-augite inclusions, is assessed in terms of the compositions of olivine in equilibrium with alkali basaltic liquids at high pressures.  相似文献   

18.
橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式   总被引:33,自引:2,他引:31  
张宏福 《地学前缘》2006,13(2):65-75
橄榄岩-熔体/岩浆的相互作用常被用来解释蛇绿岩套橄榄岩、造山带橄榄岩、超镁铁质侵入杂岩体、地幔橄榄岩捕虏体中某些具有不平衡结构和矿物组成的岩石的形成过程。橄榄岩-熔体的反应主要有两种方式,即消耗橄榄石(和单斜辉石)生成斜方辉石或消耗斜方辉石生成橄榄石(和单斜辉石)。反应的结果不仅造成矿物百分含量的变化,而且造成矿物组成的变化;后者更重要但未引起足够的重视。华北东部中生代玄武质岩石中具有环带状结构的橄榄石和辉石捕虏晶,特别是具有环带状结构的地幔橄榄岩捕虏体的发现,暗示这种橄榄岩-熔体的相互作用在华北东南部中生代岩石圈地幔中很可能普遍存在,为岩石圈地幔组成转变和快速富集的重要方式。这是全球首例由橄榄岩-熔体相互反应造成的岩石圈地幔大规模的组成变化。反应熔体来源途径主要有地壳来源和软流圈地幔来源。来源不同的熔体与橄榄岩的反应造成的组成变化完全不同。  相似文献   

19.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO–Al2O3 and negative MgO–Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a “clinopyroxene paradox”. The highest magnesium-bearing MORB sample E13-3B (MgO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4 ±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure ~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the “clinopyroxene paradox”.  相似文献   

20.
The Khopoli intrusion, exposed at the base of the Thakurvadi Formation of the Deccan Traps in the Western Ghats, India, is composed of olivine gabbro with 50–55 % modal olivine, 20–25 % plagioclase, 10–15 % clinopyroxene, 5–10 % low-Ca pyroxene, and <5 % Fe-Ti oxides. It represents a cumulate rock from which trapped interstitial liquid was almost completely expelled. The Khopoli olivine gabbros have high MgO (23.5–26.9 wt.%), Ni (733–883 ppm) and Cr (1,432–1,048 ppm), and low concentrations of incompatible elements including the rare earth elements (REE). The compositions of the most primitive cumulus olivine and clinopyroxene indicate that the parental magma of the Khopoli intrusion was an evolved basaltic melt (Mg# 49–58). Calculated parental melt compositions in equilibrium with clinopyroxene are moderately enriched in the light REE and show many similarities with Deccan tholeiitic basalts of the Bushe, Khandala and Thakurvadi Formations. Nd-Sr isotopic compositions of Khopoli olivine gabbros (εNdt?=??9.0 to ?12.7; 87Sr/86Sr?=?0.7088–0.7285) indicate crustal contamination. AFC modelling suggests that the Khopoli olivine gabbros were derived from a Thakurvadi or Khandala-like basaltic melt with variable degrees of crustal contamination. Unlike the commonly alkalic, pre- and post-volcanic intrusions known in the Deccan Traps, the Khopoli intrusion provides a window to the shallow subvolcanic architecture and magmatic processes associated with the main tholeiitic flood basalt sequence. Measured true density values of the Khopoli olivine gabbros are as high as 3.06 g/cm3, and such high-level olivine-rich intrusions in flood basalt provinces can also explain geophysical observations such as high gravity anomalies and high seismic velocity crustal horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号