首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Early Caledonian folded area in Central Asia (Early Caledonian superterrane) hosts micro-continent fragments with an Early and Late Precambrian crystalline basement, the largest of them being the Dzabkhan and Tuva-Mongolian fragments. Their junction zone hosts exposures of crystalline rocks that were previously thought to be part of the Early Precambrian Dzabkhan microcontinent. The Bayannur zone in the southern part of the Songino block hosts the Baynnur gneiss-migmatite and Kholbonur metavolcanic-terrigenous metamorphic complexes. The former is believed to be the Early Proterozoic crystalline basement, and the latter is thought to unconformably overly the Late Riphean cover complex of the Songino block. Various rocks of the tectono-stratigraphic complexes in the Bayannur zone were studied geologically and geochronologically (by the U-Pb technique of zircon). Regional metamorphism and folding in the Bayannur Complex were dated at 802 ± 6 Ma. The Nd model ages lie within the range of 1.5–2.0 Ga and thus preclude the correlation of these rocks with those in the Archean and Early Proterozoic basement of the Dzabkhan microcontinent. The upper age limit for folding and metamorphism in the Bayannur zone is marked by postkinematic granites dated at 790 ± 3 Ma, and the lower limit of the volcano-sedimentary complex is determined by the Nd model age of the sandstone (1.3 Ga). The upper age limit of the volcano-plutonic rocks in this zone is set by the gabbroids and anorthosites: 783 ± 2 and 784 ± 3 Ma, respectively. The complex of island-arc granitoids in the Bayannur zone is dated at 859 ± 3 Ma. The age constraints make it possible to correlate crystalline rocks in the Bayannur Complex of the Sangino block and the Dzhargalant Complex in the Tarbagatai block. Currently available data testify that the Precambrian Khangai group of blocks in the Early Caledonian Central Asian superterrane includes continental crustal blocks related to the processes of Early Precambrian, Late Riphean, and Vendian tectonism.  相似文献   

2.
The structure, composition, and age of Vendian–Early Cambrian plagiogranitoid associations composing the Kshta and Taraskyr massifs of the Yenisei pluton in the Altai–North Sayan island-arc belt are considered. We have established that these associations formed within 550–520 Ma and differ in petrographic composition and sources. Two stages of island-arc plagiogranitoid magmatism are recognized: early (550–540 Ma, formation of plagiogranitoids of the Kshta (545 ± 8 Ma) and Taraskyr (545 ± 7 Ma) massifs) and late (525–520 Ma, formation of plagiogranitoids of the Maina complex of the Yenisei (524 ± 2 Ma) and Tabat plutons). By petrochemical composition and geochemical characteristics, the rocks of the Kshta massif are high-alumina plagiogranitoids similar to adakites. They might have been produced through the melting of metabasites compositionally similar to N-MORB in equilibrium with garnet-containing restite during the subduction of oceanic slab at ≥ 15 kbar. The rocks of the Taraskyr massif are low-alumina plagiogranites. They formed through the melting of metabasites located in the lower layers and(or) the basement of the island-arc system in equilibrium with plagioclase-containing restite at 3–8 kbar. The low-alumina plagiogranitoids of the Yenisei pluton melted out under the same conditions. Isotope-geochemical studies showed that the Vendian–Early Cambrian plagiogranitoids formed at the early stage are characterized by high positive ∑ Nd(T) values (7.5–4.9), Late Riphean model Nd-age (TNd(DM) = 0.64–0.98 Ga), and Sr isotope ratio varying from 0.7040 to 0.7053. These data point to the juvenile parental melts of the rocks and the varying content of ancient crustal material in the magma generation zone.  相似文献   

3.
The Lugokan ore cluster is located in the southeastern part of Transbaikalia within the Aga–Borzya structural–formational zone of the Mongol–Okhotsk orogenic belt. The 40Ar/39Ar dating of K-bearing minerals of syngenetic to ore parageneses has been carried out applying stepwise heating technique: it has been demonstrated that the earliest gold-ore mineral associations are Au–pyrite–arsenopyrite (163 ±1.9 Ma) and Au–chalcopyrite (160 ±2 Ma). The later parageneses encompass the Au–polymetallic (156.3 ± 1.8 Ma) and Au–Bi (155.9 ± 4.5 Ma) one. By their ages and position in the general scheme of the Late Jurassic magmatism of Eastern Transbaikalia, the Lugokan’s ore cluster gold-bearing mineral associations corresponds to the time of intrusion of the Shakhtama pluton (161 Ma) and the Porphyry Complex (159–155 Ma).  相似文献   

4.
In this study we discuss the problem of dating the Kiryabinka complex. The data collected on zircons from pyroxenites of the Kiryabinka polyphase pyroxenite-gabbro complex can help address a number of controversial issues regarding the Precambrian geology of the Southern Urals. First, the age of the complex (T = 680 ± 3.4 Ma) can be assigned within the late Riphean (RF4, Arshinian) or the middle Neoproterozoic (Cryogenian). The available zircon dates from gabbroic and granitoid rocks in the western flank of the Southern Urals (Berdyaush, Akhmer, and Barangul massifs) are supplemented with a new age of ultramafic rocks, the differentiates of a basaltic magma, which further corroborate the conclusion about the Upper Riphean age of the country rocks.  相似文献   

5.
《地学前缘(英文版)》2020,11(5):1695-1709
The Mesozoic geodynamic evolution of Transbaikalia has been largely controlled by the scissors-like closure of the Mongol-Okhotsk Ocean that separated Siberia from Mongolia-North China continents.Following the oceanic closure,the tectonic evolution of that region was characterized by collisional uplift and subsequent extension that gave rise to the formation of metamorphic core complexes.This complex tectonic setting prevailed simultaneously between 150 Ma and 110 Ma both in Transbaikalia,North Mongolia,and within the North China Craton.Published paleobotanical and paleontological data show that the oldest Mesozoic basins had formed in western Transbaikalia before the estimated age of extension onset.However no precise geochronological age is available for the onset of extension in Transbaikalia.The Tugnuy Basin,as probably the oldest Mesozoic basin in western Transbaikalia,is a key obj ect to date the onset of extension and following changes in tectonic setting.In this study,U-Pb(LA-ICP-MS) dating of detrital zircons from three key Jurassic sediment formations of the Tugnuy Basin are used to identify the potential source areas of the sediments,understand the changes in sediment routing and provide insights on the topographic evolution of western Transbaikalia.Our results show several significant changes in tectonic regime after the closure of the Mongol-Okhotsk Ocean.A wide uplifted plateau formed during the closure of the Mongol-Okhotsk Ocean,determining the Early Jurassic drainage system reaching the AngaraVitim batholith to the north and shedding sediments to the continental margin to the South.The following collisional event at the end of the Early Jurassic led to the uplift of the collision zone,which partially inverted the drainage system toward the North.A strike-slip displacement induced by the oblique collision initiated some of the early Transbaikalian depressions,such as the Tugnuy Basin at about 168 Ma.A phase of basin inversion,marked by folding and erosion of the Upper Jurassic sediments,could correspond to the short-term collision event that took place during the latest Jurassic-earliest Cretaceous in the eastern Central Asian Orogenic Belt.The following inversion in tectonic regime from compression to extension is consistent with the mid-lower-crustal extension that led to the formation of the numerous metamorphic core complexes throughout northeastern continental Asia during the Early Cretaceous.  相似文献   

6.
Zircons were separated from syenites of the Avashla intrusion in the Kurgass anticline of the Bashkir megaanticlinorium in the Southern Urals. The obtained samples were dated using the U–Pb procedure by means of a SHRIMP II ion microprobe. The integrated mineralogical, geochemical, and isotope studies of zircons resulted in primary data on the origin and current conditions of zircons in syenites of the Avashla intrusion. The relics of early zircon generations (1320–1340 Ma) allowed us to specify the geological position of syenites along with the stratigraphic location of the enclosing sedimentary rocks. The time of the transformation (metamorphism) of the zircons at the Middle–Upper Riphean boundary is represented by a dating of 1097±20 Ma, which is of importance for specifying the boundary age and for revealing a geological event that started a new development stage of the stratoregion in the Upper Riphean.  相似文献   

7.
The basement of the south Ulutau sialitic massif, which is located in the western part of Central Kazakhstan, comprises metamorphized volcanogenic-sedimentary and plutonic complexes of Proterozoic age. The upper boundary of the metamorphism age corresponds to the age of nonmetamorphized syenites from the Karsakpai massif (673 ± 2 Ma, Late Riphean). U-Pb geochronological studies of accessory zircon were made, and a Late Riphean age of biotite alkali granite from the Aktas massif (the youngst metamorphic Precambrian igneous units in South Ulutau) was found. The obtained age estimate of 791 ± 7 Ma can be considered as the lower age limit of metamorphism. Thus, the last stage of regional metamorphism in South Ulutau took place in the second half of the Late Riphean, in the time interval of 790?C670 Ma.  相似文献   

8.
New geological. geochronological, and Nd isotopic data are reported for the rocks occurring at the interfluve of the Barguzin, Nomama, and Katera rivers, where the main structural elements of the Early Paleozoic collisional system have been established. The strike-slip and thrust Tompuda-Nomama and Barguzin boundary sutures separate the Svetlaya and the Katera zones of the Baikal-Muya Belt from the Barguzin terrigenous-carbonate terrane. The age estimates of syntectonic (prebatholithic) gneissic granite and gabbrodiorite intrusive bodies (469 ± 4 and 468 ± 8 Ma, respectively) coincide with the age of collisional events in the Ol’khon, Southwest Baikal, and Sayan regions (480–470 Ma). A linear zone with zonal metamorphism and granite-gneiss domes dated at 470 Ma is revealed in the allochthonous fold-nappe packet of the Upper Riphean Barguzin Formation. This zone of Caledonian remobilization marks the collisional front between the Riphean structural units of the Barguzin Terrane consolidated 0.60–0.55 Ga ago and the Baikal-Muya Belt. New data allow us to recognize this zone as the northeastern flank of the Baikal Collisional Belt. The Nd isotopic data for the reference igneous complexes of the collisional zone indicate that the Late Riphean juvenile crust was involved in the Ordovician remobilization in the zone of conjugation of the consolidated Baikalian structural elements at the northeastern flank of the Baikal Belt and likely was a basement of the entire Barguzin Terrane or, at least, its frontal portion. The lateral displacements of the terranes to the northeast during the Early Ordovician collision were constrained by the rigid structural framework of the Baikalides in the Muya segment of the Baikal-Muya Belt, where the Riphean blocks were involved in strike-slip faulting and the Vendian-Cambrian superimposed basin underwent deformation. Finally, it may be concluded that the Early Ordovician was an epoch of collision, complex in kinematics, between heterogeneous blocks of the continental crust: the Baikalides of the Baikal-Muya Belt and polycyclic Barguzin-Vitim Superterrane.  相似文献   

9.
This work presents results of the complex mineralogical, geochemical, and isotope-geochronological investigation of globular dioctahedral 2: 1 phyllosilicates (GPS) of the illite–glauconite series from the Riphean sequences of the Olenek Uplift. It is established that GPS (glauconite, Al-glauconite, Fe-illite) in deposits of the Arymass, Debengda, and Khaipakh formations are represented by mixed-layer varieties of two types: (1) with relatively low (<10%) and (2) higher (10–20%) contents of expandable layers. Among the mixed-layer varieties are those with disordered alternation of micaceous and smectite layers (R = 0), as well as with tendency to ordering (R ≥ 1). The parameter b of an elementary cell of minerals varies from 9.18 to 9.72 Å. The Rb–Sr age dating of GPS was first carried out in combination with the calculation of theoretical pattern of the cation distribution in the mineral structure and comparison of the calculation results obtained with the Mössbauer and IR spectroscopy data. This approach is based on the assumption that development and evolution of isotope systems in GPS are synchronous with the evolution of the crystalline structure of the mineral at various stages of the geological and geochemical history of the development of sedimentary units. Analysis of the obtained data allows us to state that the structural features of the Riphean GPS from the Olenek section reflect the early diagenetic stages of the formation of the minerals studied. The 87Sr/86Sr initial ratios in the studied sediments are consistent with the range of variations in this ratio in the Middle Riphean Ocean (0.7049–0.7061). The Rb–Sr and K–Ar ages of the GPS of the Arymass (1305 ± 8 and 1302 Ma, respectively), Debengda (1265 ± 12 and 1284 ± 22 Ma), and Khaipakh (1172 ± 18 and 1112 ± 24 Ma) formations in the Olenek Uplift section are close to the accumulation time of corresponding deposits and, correspondingly, have significance for stratigraphic correlations.  相似文献   

10.
The geodynamic nature of the Late Neoproterozoic island-arc dacites (691 ± 8.8 Ma) and rift basalts (572 ± 6.5 Ma) of the Kiselikhinskaya Formation, Kutukasskaya Group, in the Isakovskii terrane is inferred from geochemical data and U–Pb zircon (SHRIMP-II) dates. The volcanic rocks were produced during the late evolutionary history of the Yenisei Range, starting at the origin of oceanic crustal fragments and their accretion to the Siberian craton to the postaccretionary crustal extension and the onset of the Caledonian orogenesis. The reproduced sequence of geological processes marks the early evolution of the Paleo- Asian Ocean in its junction zone with the Siberian craton. The data refine the composition and age of volcanic rocks in the trans-Angara part of the Yenisei Range and specifics of the Neoproterozoic evolution of the Sayan–Yenisei accretionary belt.  相似文献   

11.
The Early Caledonian Central Asian Orogenic Belt hosts fragments of continental blocks with Early and Late Precambrian crystalline basement. One of the structures with an Early Precambrian basement was thought to be the Dzabkhan microcontinent, which was viewed as an Early Precambrian “cratonal terrane”. The first geochronologic data suggest that the basement of the Dzabkhan microcontinent includes a zone of crystalline rocks related to Late Riphean tectonism. Geological, geochronological (U-Pb zircon dates), and Nd isotopic-geochemical data were later obtained on the northwestern part of the Dzabkhan microcontinent. The territory hosts the most diverse metamorphic complexes thought to be typical of the Early Precambrian basement. The complexes were determined to comprise the Dzabkhan-Mandal and Urgamal zones of high-grade metamorphic rocks. Gabbrodiorites related to the early metamorphic episode and dated at 860 ± 3 Ma were found in the Dzabkhan-Mandal zone, and the gneiss-granites marking the termination of this episode were dated at 856 ± 2 Ma. The granitoids of the Dzabkhan batholith, whose emplacement was coeval with the termination of the late high-grade metamorphic episode in rocks of both zones, have an age of 786 ± 6 Ma. Similar age values were determined for the granitoids cutting across the Late Precambrian rocks of the Songino and Tarbagatai blocks, which mark the stage when the mature Late Riphean continental crust was formed. The Late Riphean magmatic and metamorphic rocks of the Dzabkhan microcontinent were found out to have Nd model ages mostly within the range of 1.1–1.4 Ga at ?Nd(T) from +1.9 to +5.5. The Nd model age of the metaterrigenous rocks is 2.2?1.3 Ga at ?Nd(T) from ?7.2 to +3.1. The results of our studies provide evidence of convergence processes, which resulted in the Late Riphean (880?780 Ma) continental crust in Central Asia. Simultaneously with these processes, divergence processes that were responsible for the breakup of Rodinia occurred in the structures of the ancient cratons. It is reasonable to suggest that divergence processes within ancient continental blocks and Rodinia shelf were counterbalanced by the development of the Late Riphean continental crust in the convergence zones of its surrounding within established interval.  相似文献   

12.
The novel detailed geological and geochronological data for the tonalitie rocks and products of its structural and metamorphic overprint in the Orekhovo-Pavlogradskaya collision zone (Ukrainian Shield) are discussed. Magmatic crystallization of tonalites (3500 ± 13 Ma) followed by amphibolite (2863 ± 22 Ma) and granulite (2105 ± 40 Ma) facies metamorphic events, resulting in biotite-garnet gneisses formation. The last date also indicating the time of collision event. The earliest age of 3.64 Ga was found in the zonal zircon fragment within 3.5-Ga old magmatic zircon from tonalite.  相似文献   

13.
The results of LA–ICP–MS U–Pb analyses of detrital zircons from the Precambrian deposits of Luga–Ladoga monocline are discussed. The age spectra of the zircons separated from the Riphean to Upper Vendian sandstones from the Shotkusa-1 well demonstrate dominance of the Paleo- and Mesoproterozoic grains while the Archaean zircons are subordinate. The Riphean debris sources were local swells of the Northern Ladoga basement. The sequence interval presumably corresponding to the Vasilieostrov Formation (Upper Vendian) has yielded not only Paleo- and Mesoproterozoic zircon ages, but Neoproterozoic as well, implying a Timanide provenance: these zircons (527 ± 9 and 516 ± 13 Ma) allow deposition of a significant part of the Shotkusa-1 sequence at the very beginning of the Cambrian.  相似文献   

14.
West of the Main Uralian fault, the main suture in the southern Urals, 40Ar/39Ar apparent ages of amphibole, muscovite and potassium feldspar are interpreted as cooling ages. A fast exhumation of the metamorphic complex of Kurtinsky during Upper Carboniferous time is indicated by the small age difference (15 Ma) between cogenetic amphibole and muscovite. Differentiated movement in the footwall of the Main Uralian fault along strike is indicated by the age difference of 70 Ma between the metamorphic complexes of Kurtinsky (north) and Maksyutov (south). No Upper Paleozoic (Uralian) medium- to high-temperature event is recorded in 40Ar/39Ar data from the metamorphic complex of Beloretzk (MCB). An amphibole age of 718±5 Ma and the occurrence of mafic intrusions might signal the break-up of Rodinia and therefore indicate the rifting period followed by the separate movement of the "Beloretzk terrane". Muscovite ages of approximately 550±5 Ma, the unique pre-Ordovician tectonometamorphic evolution of the MCB and the Late Vendian sedimentary history of the western Bashkirian Megaanticlinorium (BMA) imply the existence of a Neoproterozoic orogeny at the eastern margin of Baltica. This orogeny might have been initiated by the accretion of the "Beloretzk terrane". The metamorphic grade of the overlain Silurian shales and the K/Ar microcline ages from the "Beloretzk terrane" give evidence for a new thermal event at approximately 370 Ma. A microcline age of 530–550 Ma obtained for the Vendian conglomerate in the western BMA suggests that a maximum temperature of approximately 200°C was reached in Cambrian or Vendian times. An orthoclase age (590–630 Ma) of the Vendian Zigan flysch deposits might be inherited from the eastern source area, the Cadomian orogen. An orthoclase age (910–950 Ma) from the Riphean Zilmerdak conglomerate coincides with a documented decrease in the subsidence rate of the Upper Riphean basin.  相似文献   

15.
16.
The metamorphic complexes in the northern part of the Olkhon terrane (Zunduk megazone), Central Asian Fold Belt, are studied. It is found that the age of gneiss–granites, which correspond to granites of type I formed within the active continental margin, is 800 ± 11 Ma, whereas the age of the protolith of epidote–muscovite–feldspar–quartz schist, which formed by metamorphic reworking of island-arc volcanic rocks, is 650–630 Ma. New results and those published earlier show that the structure of the Olkhon terrane contains traces of at least three stages of different ages when suprasubduction processes were manifested. The earliest episode (~850?800 Ma) occurred within the Panthalassa, and the subsequent ones (~650?620 and ~500 Ma) occurred in the Paleoasian Ocean. New data give us grounds to consider protoliths of the studied rocks from the northern flank of the Olkhon metamorphic terrane as products of convergence-related processes that took place within the limits of the paleooceans in the Late Precambrian, rather than in the Pleoproterozoic as was supposed earlier.  相似文献   

17.
The Khan Bogd alkali granite pluton, one of the world’s largest, is situated in the southern Gobi Desert, being localized in the core of the Late Paleozoic Syncline, where island-arc calc-alkaline differentiated volcanics (of variable alkalinity) give way to the rift-related bimodal basalt-comendite-alkali granite association. The tectonic setting of the Khan Bogd pluton is controlled by intersection of the near-latitudinal Gobi-Tien Shan Rift Zone with an oblique transverse fault, which, as the rift zone, controls bimodal magmatism. The pluton consists of the eastern and the western ring bodies and comes into sharp intrusive contact with rocks of the island-arc complex and tectonic contact with rocks of the bimodal complex. The inner ring structure is particularly typical of the western body and accentuated by ring dikes and roof pendants of the country island-arc complex. According to preliminary gravity measurements, the pluton is a flattened intrusive body (laccolith) with its base subsiding in stepwise manner northwestward. Reliable geochronologic data have been obtained for both plutonic and country rocks: the U-Pb zircon age of alkali granite belonging to the main intrusive phase is 290 ± 1 Ma, the 40Ar/39Ar ages of amphibole and polylithionite are 283 ± 4 and 285 ± 7 Ma, and the Rb-Sr isochron yields 287 ± 3 Ma; i.e., all these estimates are close to 290 Ma. Furthermore, the U-Pb zircon age of red normal biotite granite (290 ± 1 Ma) and the Rb-Sr age of the bimodal complex in the southern framework of the pluton are the same. The older igneous rocks of the island-arc complex in the framework and roof pendants of the pluton are dated at 330 Ma. The geodynamic model of the Khan Bogd pluton formation suggests collision of the Hercynian continent with a hot spot in the paleoocean; two variants of this model are proposed. According to the first variant, the mantle plume, after collision with the margin of the North Asian paleocontinent, reworked the subducted lithosphere and formed a structure similar to an asthenospheric window, which served as a source of rift-related magmatism and the Khan Bogd pluton proper. In compliance with the second variant, the emergence of hot mantle plume resulted in flattening of the subducted plate; cessation of the island-arc magmatism; and probably in origin of a local convective system in the asthenosphere of the mantle wedge, which gave rise to the formation of a magma source. The huge body of the Khan Bogd alkali granite pluton and related volcanic rocks, as well as its ring structure, resulted from the caldera mechanism of the emplacement and evolution of magmatic melts.  相似文献   

18.
Zircons in dunites of the Sakharin and East Khararnin massifs, situated in the South Urals and part of the platinum-bearing Uralian belt, were investigated for the first time. Several types were identified in the polygene-polychronous zircon assemblage of both massifs. The first is represented by Proterozoic (from 1517 ± 12 to 2693 ± 9 Ma) crystals similar to those widely spread in the Riphean and more ancient Uralian deposits. The second type includes dunite varieties of typical magmatic habit and of ages from 377 ± 3.6 Ma to 402 ± 3 Ma. The third contains crystals and crystal fragments of a high degree of crystallinity. The concordant Archean dating (2808 ± 26 Ma) for zircons of this type determines the minimum age of the dunite substrate. Zircons of Type 4 are heterogeneous, consist of the relict (nuclear) part represented by crystals of Types I and III and the newly formed mantle, and are consistent with zircons of Type II.  相似文献   

19.
The geological, geochemical, and isotope-geochronological evidence of the events at the final stage of the Neoproterozoic history of the Yenisei Range is considered (beginning from the formation of fragments of the oceanic crust in the region and their accretion to the Siberian Craton until the postaccretionary stage of crustal tension and onset of the Caledonian orogeny). Based on an analysis of new data on the petrogeochemical composition, age, and geodynamic nature of the formation of contrasting rocks in the composition of tectonic mélange of the Near-Yenisei (Prieniseiskaya) regional shear zone, we have found the chronological sequence of events that marks the early stages of the Paleoasian Ocean evolution in the zone of its junction with the Siberian Craton. These events are documented by the continental marginal, ophiolitic, and island-arc geological complexes, each of which has different geochemical features. The most ancient structures are represented by fragments of oceanic crust and island arcs from the Isakovka terrane (700–620 Ma). The age of glaucophane-schist metamorphic units that formed in the paleosubduction zone corresponds to the time interval of 640–620 Ma. The formation of high-pressure tectonites in the suture zone, about 600 Ma in age, marks the finishing stage of accretion of the Isakovka block to the western margin of the Siberian Craton. The final events in the early history of the Asian Paleoocean were related to the formation of Late Vendian riftogenic amygdaloidal basalts (572 ± 6.5 Ma) and intrusion of postcollisional leucogranites of the Osinovka massif (550–540 Ma), which intruded earlier fragments of the oceanic crust in the Isakovka terrane. These data allow us to refine the Late Precambrian stratigraphic scheme in the northwestern Trans-Angarian part of the Yenisei Range and the evolutionary features of the Sayan–Yenisei accretionary belt. The revealed Late Neoproterozoic landmarks of the evolution of the Isakovka terrane are attributed to the terminal phase of the breakup of Rodinia, separation of the Siberian Craton, and opening of the Paleoasian Ocean.  相似文献   

20.
The Karakoram fault zone is a prominent right lateral fault that connects the frontal thrust of the North Pamir with the Indus suture zone near Mount Kailas. Its nature and age of initiation is controversial. In the Nubra valley, Ladakh, India, a Karakoram range granite is thrust over Cretaceous magmatic arc rocks and this thrust is cut by a western strand of the Karakoram fault zone. Three different lithologies from this granite gave weighted mean zircon U/Pb ages of 12.92±0.77 Ma, 12.41±0.43 Ma, and 11.72±0.31 Ma. The ages indicate a relatively short intrusive history of about 1 Ma for the phases: the geochemistry is practically identical to the Pangong leucogranites in the same tectonic block. The Karakoram fault zone in this area is thus less than ~12 Ma old which supports a post middle Miocene (Serravallian) age of Karakoram fault initiation in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号