首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
英雄岭构造带是柴达木盆地油气最为富集的地区之一,地温场对油气成藏过程有重要影响,也是油田开发工程实施的重要参考.利用试油静温数据,结合激光扫描法开展岩心热导率及放射性生热测试,对研究区地温场进行了研究.英东地区地温梯度为31.8~35.3℃/km,平均为33.6℃/km,新近系热导率为1.8~2.4W/m/K,平均为2.07W/m/K,大地热流值为65~74mW/m2,平均为69mW/m2.热流呈“西高东低”特征,昆北、南翼山及一里坪等地热流值超过65mW/m2,而阿尔金山前、冷湖构造带及涩北等地较低,咸水泉和冷湖等地普遍低于50mW/m2.新近系实测平均生热率为2.84μW/m3,对热流的贡献约20%.研究区具有“热壳温幔”特征,其影响因素包括地壳放射性生热、蚀源区高U中酸性侵入岩、印度板块汇聚引起的构造热及热岩石圈厚度较薄等.  相似文献   

2.
利用磷灰石裂变径迹研究塔里木盆地中部地区的热历史   总被引:12,自引:1,他引:11  
利用磷灰石裂变径迹反演计算了塔里木中部地区3口井志留纪以来的热历史。研究认为,塔中地区志留纪以来的大地热流变化不大,为56~62mW/m2。志留纪、泥盆纪大地热流较低,约为58mW/m2;石炭纪大地热流略有增高,二叠纪时大地热流可能达到62mW/m2;中生代期间,大地热流逐渐降低,中生代末约为57mW/m2;新生代期间,大地热流略有增高,现今大地热流约为60mW/m2。塔中地区的热历史与其构造演化史密切相关。  相似文献   

3.
辽河盆地东部凹陷热历史及构造—热演化特征   总被引:9,自引:5,他引:9  
根据辽河盆地东部凹陷大地热流测量和镜质体反射率数据,恢复了该区的热历史,结果表明:东部凹陷热流呈现古热流高现今热流低的变化特征,沙河街组三段沉积期到东营组沉积期(距今43~25Ma)盆地热流为66~82mWm2,现今热流值为47~70mWm2。构造沉降史分析显示,盆地经历了早期的裂谷阶段(距今43~25Ma)和后期的热沉降阶段,裂谷阶段包含了两个裂谷亚旋回。盆地现今较低的大地热流和较高的古热流及典型的裂谷型构造沉降样式为东部凹陷的构造—热演化提供了重要认识。  相似文献   

4.
《地学前缘》2017,(3):94-104
利用镜质体反射率(Ro)和磷灰石裂变径迹(AFT)数据,对四川盆地东部不同地区的古地温梯度、古热流、剥蚀量进行了研究。AFT模拟结果表明,四川盆地东部在晚白垩世早期(100~80 Ma)开始抬升,抬升剥蚀过程具有一定的阶段性且不同地区存在差异:以约30 Ma为界,重庆北碚地区表现为两期冷却,先期冷却缓慢,后期冷却迅速;川东北持续的冷却过程虽有波动但冷却速率差别较小。依据重建的最高古地温剖面恢复了侏罗系顶部不整合面的剥蚀量,川东北普光地区剥蚀量在2.45~2.85km,鄂西渝东地区齐岳山复背斜北部剥蚀量较大,达3.65km,齐岳山复背斜南部剥蚀量2.67km,川东南地区剥蚀量2.05km。研究区的构造热演化表现为既存在抬升剥蚀又存在盆地冷却效应的双重作用:由三叠纪至今,研究区地温梯度和热流持续降低,地温梯度由30~38℃/km降低至20~23℃/km;热流由70~85mW/m2降低至50~55mW/m2。  相似文献   

5.
深部温度场与岩石圈热结构特征是认识地热系统深部热源机理的重要途径。本文在系统分析渭河盆地及其邻区现今大地热流特征基础上,基于旬邑—西峡宽角反射/折射地震测深剖面揭示的地壳分层结构,采用二维有限元方法,对渭北隆起、渭河盆地以及北秦岭构造带的深部温度场和岩石圈热结构开展数值模拟研究,在此基础上分析渭河盆地地热系统深部热源机理。结果表明,旬邑—西峡剖面上大地热流介于57.6~75.7mW/m2之间,平均为(70.4±4.7)mW/m2;地幔热流在29.5~38.6mW/m2之间,平均值为34.1mW/m2;莫霍面温度变化范围约在600~740℃之间;“热”岩石圈厚度约为95~110km。从渭北隆起—渭河盆地—秦岭造山带,大地热流、莫霍面温度和地幔热流值表现出低→高→低的变化规律,相应地“热”岩石圈厚度则表现出厚→薄→厚的变化趋势。渭河盆地地壳厚度减薄明显,莫霍面温度显著高于渭北隆起和秦岭造山带,暗示着渭河盆地地壳活动性显著。然而,从渭北隆起—渭河盆地—秦岭造山带,“热”岩石圈厚度变化范围不大,且渭河盆地内...  相似文献   

6.
彭波  邹华耀 《现代地质》2013,27(6):1399
依据236口井共2 706组的静温数据以及25口井的系统测温数据,分析计算了渤海盆地地温梯度及大地热流;建立地壳分层结构模型,利用回剥法计算现今地幔热流、深部温度以及岩石圈厚度;在此基础上,利用地球动力学方法恢复本区热流演化史。结果表明:渤海盆地背景地温梯度为322 ℃/km,热流值为648 mW/m2;盆地现今热岩石圈厚度在61~69 km之间,地幔热流占地表热流的比例在60%左右,属于“热幔冷壳”型岩石圈热结构,盆地地壳底部或莫霍面温度变动在548~749 ℃之间;热流演化的特征与盆地的构造演化背景吻合,新生代以来盆地经历了3期岩石圈减薄并加热的过程,在东营组沉积末期热流达到最高(70~83 mW/m2),这期间盆地内产出多期碱性玄武岩,表明盆地经历了波及地幔的裂谷过程,随后进入热沉降期,热流逐渐降低,盆地向坳陷型转变。  相似文献   

7.
饶松  朱亚珂  胡迪  胡圣标  王强 《地质学报》2018,92(6):1176-1195
大地热流是盆地动力学成因及构造演化过程的客观反映,不同时代、不同动力学背景形成的盆地,大地热流差异极大,因此盆地构造—热演化研究不仅能够揭示盆地不同演化阶段的地温场特点,而且能够有效地约束盆地在特定地质演化历史时期的动力学机制和构造属性。本文针对准噶尔盆地深层多期复杂热史的特点,在盆地现今地温场研究的基础上,采用镜质体反射率和裂变径迹等古温标,结合古地温梯度法和古热流法定量恢复了准噶尔盆地二叠纪以来的热历史,进而分析了早—中二叠世期间盆地构造属性。研究表明,准噶尔盆地从早二叠世开始呈现出热流持续降低的热流演化特征,二叠纪期间,盆地热流值很高,多数钻井的古热流在75~85m W/m~2之间,少数钻井揭示的古热流更高,超过了100mW/m~2;中—新生代,热流持续、逐渐降低,直至现今的42.5mW/m~2。早—中二叠世,盆地的最高热流地区在中央坳陷和南部坳陷。以早—中二叠世期间高古热流为切入点,结合区域地质、地球物理和地球化学等资料,论证了准噶尔盆地早—中二叠世期间的裂谷构造属性。这一认识不仅是重新认识准噶尔地区晚古生代碰撞造山和陆内盆山体制转换的基础,而且对于准噶尔盆地深层石炭系、二叠系烃源岩油气进一步勘探具有重要意义。  相似文献   

8.
现今地温场是构造活动、岩石圈热状态的综合反应,对研究盆地的区域构造演化、深部岩石圈结构和评估油气潜力具有重要意义。地温梯度和大地热流是表征沉积盆地热状况的两个基本参数。虽然我国大陆地区地热数据较丰富,并已经过四次系统汇编,但中国海及邻区盆地地热数据报道较少,且未经过系统整理。本文基于近年来新增的钻井温度数据,新增计算研究区810个地温梯度数据,并收集了国内外数据库、期刊的地热数据,在此基础上,首次系统整理了中国海及邻区盆地地温梯度数据和大地热流数据,绘制了其等值线图,分析了研究区现今地温场特征并讨论了其影响因素。研究结果表明,中国海及邻区盆地平均地温梯度43.2±25.7℃/km,平均大地热流74.4±26.6 mW/m2,多数盆地平均大地热流高于65 mW/m2,属于“热盆”;地温场分布总体呈现较为明显的“两带性”,其中近岸带较冷,远岸带较热;研究区现今地温场特征直接或间接地受控于其所处的构造环境,整体上是太平洋板块等多板块作用下岩石圈伸展减薄的结果,局部地区的热异常可能与断裂活动、岩浆活动、泥-热流底辟活动等因素有关。  相似文献   

9.
《地学前缘》2017,(3):56-64
热流调查和构造热演化数值模拟是油气地热研究不可或缺的重要内容。沉积盆地在其演化过程中往往叠加了特殊构造事件。通过热流调查和构造热演化数值计算可以更好地约束这些特殊过程,重建更为真实的构造热演化历史。该文通过对南海北部琼东南盆地和珠江口盆地中段热流变化特征分析和构造热演化数值模拟,探讨了影响其热流变化的主要因素。结果表明,琼东南盆地可分3个热流分区:北部陆架与上陆坡区(50~70mW/m~2)、中央坳陷带深水区(70~85mW/m~2)和盆地东部深水区高热流带(85mW/m~2);珠江口盆地中段从陆架往海盆方向热流呈阶梯式抬高,西江凹陷平均热流为55mW/m~2,番禺低隆起为58mW/m~2,白云凹陷为70mW/m~2,下陆坡区为85mW/m~2;陆坡区高热流不仅与岩石圈强烈减薄相关,而且还受到岩石圈破裂时引起的深部热物质上涌的影响,后者对现今陆坡区还有约20mW/m~2的热流贡献;琼东南盆地东部高热流值则主要受到晚中新世以来的岩体侵位热事件的影响,岩体侵入热事件对现今热流值贡献可达10~25mW/m~2。分析表明,在南海深水盆地开展构造热演化数值计算时,需要考虑沉积过程、海底扩张以及岩浆活动等影响因素。  相似文献   

10.
朱传庆  饶松  徐明  胡圣标 《地质科学》2011,46(1):194-202
沉积盆地热体制与油气资源勘探有着密切的联系.基于石油钻井的Ro数据,采用古地温梯度法恢复了四川盆地钻井的最高古地温.结果显示,四川盆地西部、川东南和川东北的钻井,顶部的剥蚀量在3 700 m左右,盆地中部的剥蚀量约3 100 m.钻井古地温梯度在13.2~24.5℃/km之间,古热流在31.2~60.1 mW/m2之间...  相似文献   

11.
We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0–4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m2 with a mean of 41.8 ± 7.8 mW/m2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J1b) and Middle Jurassic Xishanyao Group (J2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic source rocks of the Central Depression and Southern Depression increases with depth. The source rocks only reached an early maturity with a R0 of 0.5–0.7% in the Wulungu Depression, the Luliang Uplift and the Western Uplift, whereas they did not enter the maturity window (R0 < 0.5%) in the Eastern Uplift of the basin. This maturity evolution will provide information of source kitchen for the Jurassic exploration.  相似文献   

12.
Heat flow and thermal modeling of the Yinggehai Basin, South China Sea   总被引:9,自引:0,他引:9  
Geothermal gradients are estimated to vary from 31 to 43 °C/km in the Yinggehai Basin based on 99 temperature data sets compiled from oil well data. Thirty-seven thermal conductivity measurements on core samples were made and the effects of porosity and water saturation were corrected. Thermal conductivities of mudstone and sandstone range from 1.2 to 2.7 W/m K, with a mean of 2.0±0.5 W/m K after approximate correction. Heat flow at six sites in the Yinggehai Basin range from 69 to 86 mW/m2, with a mean value of 79±7 mW/m2. Thick sediments and high sedimentation rates resulted in a considerable radiogenic contribution, but also depressed the heat flow. Measurements indicate the radiogenic heat production in the sediment is 1.28 μW/m3, which contributes 20% to the surface heat flow. After subtracting radiogenic heat contribution of the sediment, and sedimentation correction, the average basal heat flow from basement is about 86 mW/m2.Three stages of extension are recognized in the subsidence history, and a kinematic model is used to study the thermal evolution of the basin since the Cenozoic era. Model results show that the peak value of basal heat flow was getting higher and higher through the Cenozoic. The maximum basal heat flow increased from 65 mW/m2 in the first stage to 75 mW/m2 in the second stage, and then 90 mW/m2 in the third stage. The present temperature field of the lithosphere of the Yinggehai Basin, which is still transient, is the result of the multistage extension, but was primarily associated with the Pliocene extension.  相似文献   

13.
The GALO system is applied to the numerical reconstruction of burial and thermal histories of the West Bashkirian lithosphere from the Riphean to the present. An analysis of the variation in tectonic subsidence of the basin during its development is utilized to estimate approximately the mantle heat flow variations. Our variant of basin evolution suggests that after cooling in the Early Riphean, the rather weak thermal reactivations have not led to considerable heating of the lithosphere in the study region. Surface heat flow decreased from relatively high values in the Early Riphean (60–70 mW/m2 in the eastern area and 40–50 mW/m2 in the western part) to present-day values of 32–40 mW/m2. In spite of the relatively low temperature regime of the basin as a whole, a syn-rifting deposition of more than 10 km of limestone, shale and sandstone in the Riphean resulted in rather high temperatures (180–190 °C) at the base of present-day sedimentary blanket in the eastern area. In agreement with the observed data, computed present-day heat flow through the sediment surface increases slightly from 32 to 34 mW/m2 near the west boundary of the region to 42 mW/m2 near the boundary of the Ural Foldbelt, whereas the heat flow through the basement surface decreases slightly from 28–32 to 24–26 mW/m2 in the same direction. The mantle heat flow is only 11.3–12.7 mW/m2, which is considerable lower than mean heat flow of the Russian Platform (16–18 mW/m2) and comparable with the low heat flow of Precambrian shields.  相似文献   

14.
In the complex structural framework of the Western Mediterranean. Hercynian areas are expected to be thermally preserved from the recent tectonic evolution. The thermal regime of these areas is studied using heat flow, heat production and fission track data. The surface heat flow is significantly higher in Corsica (76 ± 10 mW m−2) than in the Maures and Estérel (58 ± 2 mW m−2). Neither heat production nor erosion subsequent to the Alpine orogeny in Corsica can explain such a difference. It is suggested that a deep thermal source related to the asymmetric evolution of the Provençal basin could explain the higher heat flow in Corsica. A model of thermal structure based on the present day thermal regime of the Maures and Estérei is proposed for the stable Hercynian crust in this area. The mantle heat flow is 20–25 mW m−2 and the temperature at Moho level is 375–500°C, depending on the thermal parameter distribution with depth.  相似文献   

15.
Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ∼30 mK/m and ∼90 mW/m2 compared to ∼32 mK/m and 70 –80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ∼20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ∼7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north–south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ∼40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ∼10–20 mW/m2 since ∼40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ∼36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.  相似文献   

16.
Heat flow variations with depth in Europe can be explained by a model of surface temperature changes >10°C. New heat flow map of Europe is based on updated database of uncorrected heat flow values to which paleoclimatic correction is applied across the continent. Correction is depth dependent due to a diffusive thermal transfer of the surface temperature forcing of which glacial–interglacial history has the largest impact. It is obvious that large part of the uncorrected heat flow values in the existing heat flow databases from wells as shallow as few hundreds of meters is underestimated. This explains some very low uncorrected heat flow values 20–30 mW/m2 in the shields and shallow basin areas of the craton. Also, heat flow values in other areas including orogenic belts are likely underestimated. Based on the uncorrected and corrected heat flow maps using 5 km × 5 km grid, we have calculated average heat flow values (uncorrected heat flow: 56.0 mW/m2; SD 20.3 mW/m2 vs. corrected heat flow: 63.2 mW/m2; SD 19.6 m/Wm2) and heat loss for the continental part. Total heat loss is 928 E09 W for the uncorrected values versus corrected 1050 E09 W.  相似文献   

17.
Heat flow and lithospheric thermal regime in the Northeast German Basin   总被引:3,自引:0,他引:3  
New values of surface heat flow are reported for 13 deep borehole locations in the Northeast German Basin (NEGB) ranging from 68 to 91 mW m− 2 with a mean of 77 ± 3 mW m− 2. The values are derived from continuous temperature logs, measured thermal conductivity, and log-derived radiogenic heat production. The heat-flow values are supposed free of effects from surface palaeoclimatic temperature variations, from regional as well as local fluid flow and from thermal refraction in the vicinity of salt structures and thus represent unperturbed crustal heat flow. Two-D numerical lithospheric thermal models are developed for a 500 km section along the DEKORP-BASIN 9601 deep seismic line across the basin with a north-eastward extension across the Tornquist Zone. A detailed conceptual model of crustal structure and composition, thermal conductivity, and heat production distribution is developed. Different boundary conditions for the thickness of thermal lithosphere were used to fit surface heat flow. The best fit is achieved with a thickness of thermal lithosphere of about 75 km beneath the NEGB. This estimate is corroborated by seismological studies and somewhat less than typical for stabilized Phanerozoic lithosphere. Modelled Moho temperatures in the basin are about 800 °C; heat flow from the mantle is about 35 to 40 mW m− 2. In the southernmost part of the section, beneath the Harz Mountains, higher Moho temperatures up to 900 to 1000 °C are shown. While the relatively high level of surface heat flow in the NEGB obviously is of longer wave length and related to lithosphere thickness, changes in crustal structure and composition are responsible for short-wave-length anomalies.  相似文献   

18.
Heat flow has been determined by combining temperature measurements in 7 boreholes with thermal conductivity measurements in the Upper Vindhyan sedimentary rocks of Shivpuri area, central India. The boreholes are distributed at 5 sites within an area of 15 × 10 km2; their depths range from 174 to 268 m. Geothermal gradients estimated from borehole temperature profiles vary from 8.0–12.7 mK m−1 in the sandstone-rich formations to 25.5–27.5 mK m−1 in the shale-rich formations, consistent with the contrast in thermal conductivities of the two rock types. Heat flow in the area ranges between 45 and 61 mW m−2, with a mean of 52±6 mW m−2. The heat flow values are similar to the >50 mW m−2 heat flow observed in other parts of the northern Indian shield. The heat flow determinations represent the steady-state heat flow because, the thermal transients associated with the initial rifting, convergence and sedimentation in the basin as well as the more recent Deccan volcanism that affected the region to the south of the basin would have decayed, and therefore, the heat flow is in equilibrium with the radiogenic heat production of the crust and the heat flow from the mantle. The present study reports the heat flow measurements from the western part of the Vindhyan basin and provides heat flow information for the Bundhelkhand craton for the first time. Radioelement (Th, U and K) abundances have been measured both in the sedimentary rocks exposed in the area as well as in the underlying basement granite-gneiss of Bundelkhand massif exposed in the adjacent area. Radioactive heat production, estimated from those abundances, indicate mean values of 0.3 μW m−3 for sandstone with inter-bands of shale and siltstone, 0.25 μW m−3 for sandstone with inter-bands siltstone, 0.6 μW m−3 for quartzose sandstone, and 2.7 μW m−3 for the basement granitoids. With a total sedimentary thickness not exceeding a few hundred metres in the area, the heat production of the sedimentary cover would be insignificant. The radioactive heat contribution from the basement granitoids in the upper crust is expected to be large, and together with the heat flow component from the mantle, would control the crustal thermal structure in the region.  相似文献   

19.
Jeffrey Poort  Jan Klerkx   《Tectonophysics》2004,383(3-4):217-241
Heat flow in active tectonic zones as the Baikal rift is a crucial parameter for evaluating deep anomalous structures and lithosphere evolution. Based on the interpretation of the existing datasets, the Baikal rift has been characterized in the past by either high heat flow, or moderately elevated heat flow, or even lacking a surface heat flow anomaly. We made an attempt to better constrain the geothermal picture by a detailed offshore contouring survey of known anomalies, and to estimate the importance of observed heat flow anomalies within the regional surface heat output. A total of about 200 new and close-spaced heat flow measurements were obtained in several selected study areas in the North Baikal Basin. With an outrigged and a violin-bow designed thermoprobe of 2–3-m length, both the sediment temperature and thermal conductivity were measured. The new data show at all investigated sites that the large heat flow highs are limited to local heat flow anomalies. The maximum measured heat flow reaches values of 300–35000 mW/m2, but the extent of the anomalies is not larger than 2 to 4 km in diameter. Aside of these local anomalies, heat flow variations are restricted to near background values of 50–70 mW/m2, except in the uplifted Academician zone. The extent of the local anomalies excludes a conductive source, and therefore heat transport by fluids must be considered. In a conceptual model where all bottom floor heat flow anomalies are the result of upflowing fluids along a conduit, an extra heat output of 20 MW (including advection) is estimated for all known anomalies in the North Baikal Basin. Relative to a basal heat flow of 55–65 mW/m2, these estimations suggest an extra heat output in the northern Lake Baikal of only 5%, corresponding to a regional heat flow increase of 3 mW/m2. The source of this heat can be fully attributed to a regional heat redistribution by topographically driven ground water flow. Thus, the surface heat flow is not expected to bear a signal of deeper lithospheric thermal anomalies that can be separated from heat flow typical for orogenically altered crust (40–70 mW/m2). The new insights on the geothermal signature in the Baikal rift once more show that continental rifting is not by default characterized by high heat flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号