首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The velocity structure of the crust beneath Liaoning province and the Bohai sea in China was imaged using ambient seismic noise recorded by 73 regional broadband stations. All available three-component time series from the 12-month span between January and December 2013 were cross-correlated to yield empirical Green's functions for Rayleigh and Love waves. Phasevelocity dispersion curves for the Rayleigh waves and the Love waves were measured by applying the frequencytime analysis method. Dispersion measurements of the Rayleigh wave and the Love wave were then utilized to construct 2D phase-velocity maps for the Rayleigh wave at8–35 s periods and the Love wave at 9–32 s periods,respectively. Both Rayleigh and Love phase-velocity maps show significant lateral variations that are correlated well with known geological features and tectonics units in the study region. Next, phase dispersion curves of the Rayleigh wave and the Love wave extracted from each cell of the 2D Rayleigh wave and Love wave phase-velocity maps,respectively, were inverted simultaneously to determine the3 D shear wave velocity structures. The horizontal shear wave velocity images clearly and intuitively exhibit that the earthquake swarms in the Haicheng region and theTangshan region are mainly clustered in the transition zone between the low-and high-velocity zones in the upper crust, coinciding with fault zones, and their distribution is very closely associated with these faults. The vertical shear wave velocity image reveals that the lower crust downward to the uppermost mantle is featured by distinctly high velocities, with even a high-velocity thinner layer existing at the bottom of the lower crust near Moho in central and northern the Bohai sea along the Tanlu fault, and these phenomena could be caused by the intrusion of mantle material, indicating the Tanlu fault could be just as the uprising channel of deep materials.  相似文献   

2.
地震槽波的数学-物理模拟初探   总被引:2,自引:0,他引:2       下载免费PDF全文
针对地震槽波在低速层的传播特性,开展了煤层内地震槽波勘探的数值模拟和物理模拟研究的初探工作.在数值模拟研究方面,采用交错网格有限差分法对煤层中的地震槽波进行三分量全波场模拟.基于波场快照和人工合成地震记录研究了不同模型中的波场特征和各种波型的传播规律.在物理模拟方面,通过选用不同配比的环氧树脂和硅橡胶类材料构建地震槽波物理模型,利用透射法和反射法观测系统获得了清晰的地震槽波记录以研究槽波的地震学特征.研究表明,在煤层内槽波的地震波场中,Love型槽波的能量小于Rayleigh型槽波的SV分量,大于Rayleigh型槽波的SH分量.相对于Love型槽波和Rayleigh型槽波的SH分量,Rayleigh型槽波的SV分量在围岩中的泄露能量较强.在煤层界面附近的围岩中,地震波仍以槽波形式传播,随着距离的增加能量逐渐衰减.随着煤层变薄,煤层槽波主频向高频方向移动,频散现象增强,传播速度增大.  相似文献   

3.
The traditional method of exciting channel waves in coal deposits underground consists of firing explosive sources in a mid-seam position generating seam waves of the Rayleigh and Love type. We investigate various source positions and excitation mechanisms within the bedrock structure surrounding the seam to evaluate the effects of source positions adjacent to the seam. The investigation is based on analogue and numerical modelling of half- and full-space cases, for which the excitation and the nature of Rayleigh channel waves are examined. In the analogue modelling, sources, located from mid-seam out into the bedrock, along the edge of a 2D plate model, excited channel waves through a conversion of the free surface Rayleigh wave at the edge of the plate. The excited channel wave belongs to the normal mode range. Frequency-wavenumber analysis shows that the symmetric 2nd mode of the channel wave is excited with frequencies comparable to the forcing frequency of the source signal. The polarization changes from retrograde to prograde, as the wave develops from the front to the rear of the seam, respectively. The amplitude-depth distribution resembles that of an ordinarily excited seam wave, for the symmetric component. However, the antisymmetric component does not show the characteristic change of sign in amplitudes across the mid-seam axis. Numerical modelling with sources located in the bedrock (full-space case) shows that relocating the source away from the seam lowers the frequency content of the excited channel wave. Based on these investigations, the influence of a lower-frequency source signal on the excitation of the channel wave is examined in an analogue experiment. Sources are sited in the bedrock adjacent to the seam at three locations. A lower-frequency wavelet is calculated for each source location from the results obtained in the numerical analysis. For comparison, a higher-frequency wavelet is also used which is known to be optimal for this model geometry when excited by a mid-seam source location. It is found that in two cases the use of the lower-frequency wavelet improves the channel wave excitation, while no amplification is achieved in one case.  相似文献   

4.
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling twodimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity–stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.  相似文献   

5.
Phase and group velocities and Q of mantle Love and Rayleigh waves from the 1963 Kurile Islands earthquake (Mw = 8.5) were determined over 37 great circle paths by a time variable filtering technique, in a period range 100–500 s for the fundamental modes and 100–275 s for the first higher modes. The preliminary reference Earth model (PREM) explains reasonably well the average dispersion results for the fundamental Love and Rayleigh waves. There exists a small, but significant inconsistency between the observation and the model for the first higher Love and Rayleigh waves. The Q structure of PREM is inconsistent with the observation for the fundamental Love waves, but explains other observations reasonably well. The dispersion of each mode shows a clear azimuthal dependence from which the four azimuthal windows were established. The phase and group velocity measurements for each window were, in general, shown to be mutually consistent. The azimuthal variations are largest for the first higher Rayleigh waves, indicating strong lateral heterogeneity in the structure of the low velocity zone. The first of the four windows is characterized by the largest fraction of Precambrian shields and the second window by the largest fraction of normal oceans. A comparison of these two windows may give some insight into deep lateral heterogeneity between continents and oceans. The observed phase and group velocities of the first window are systematically higher than those of the second window for the fundamental Love and Rayleigh waves at periods up to 400 s, and for the first higher Love and Rayleigh waves up to 175 s. Their differences are greatest for the first higher Rayleigh waves and least for the fundamental Rayleigh waves. Although the fundamental Rayleigh waves show the least velocity differences, their persistence up to a period of longer than 300 s is in striking contrast with some of the pure path phase velocities derived earlier for continents and oceans. A set of models for continents and oceans. PEM-C and PEM-O are not consistent with our observation. The third azimuthal window is characterized by trench-marginal seas and the fourth window by mountainous areas, typically the Asian high plateaus from northern China to the Middle East through Tibet. A comparison of these two windows gives some information about deep structural differences between subduction zones and continental collision zones, both belonging to plate convergence zones. For the fundamental and the first higher Love waves, the phase and group velocities for the third window are markedly low, whereas those for the fourth window are somewhat comparable to those for the second window. Slow Rayleigh waves are evident for two windows, with the fourth window apparently being the slowest for the fundamental Rayleigh above 200 s and for the first higher Rayleigh. For the fundamental Rayleigh waves, the third window is very slow below 200 s, but becomes progressively fast as the period increases and tends to be the fastest window around 400 s, suggesting a deep seated high velocity anomaly beneath trench-marginal seas. The dispersion characteristics of the fourth window indicate a thick high velocity lid with an extensive low velocity zone beneath it. The shield-like lithosphere, coupled with an extensive low velocity zone, may be a characteristic feature of continental collision zones. The particle motion of the fundamental Love waves was found not to be purely transverse to a great-circle connecting the epicenter to a station. The departure from the purely transverse motion is systematic among different periods, different G arrivals (G2, G3,…) and different stations, which may be interpreted as being due to lateral refraction.  相似文献   

6.
含小断层煤层Rayleigh型槽波波场和频散分析   总被引:1,自引:0,他引:1       下载免费PDF全文
煤层隐伏小断层在煤田地质勘探期间能否查明,是影响煤矿安全生产的主要地质因素.煤层中传播的地震槽波,非常适用于探测煤田异常构造.本文利用谱元法模拟计算了含断层模型Rayleigh型地震槽波的产生、传播过程,对于直达槽波、反射槽波、透射槽波进行了波场特征分析,频散特征分析,频谱特征分析.根据不同小落差断层模型(垂直断距分别为1/4、1/2、3/4、1个煤厚;断层倾角分别为90°、60°、45°),分析了Rayleigh型槽波传播过程中断层对反射槽波、透射槽波能量、频谱的影响效应.基于以上分析,对于小断层模型中的Rayleigh型地震槽波取得了一些规律性认识,并对Rayleigh型地震槽波的勘探应用做了一些探讨.  相似文献   

7.
Dispersion analysis is an important part of in-seam seismic data processing, and the calculation accuracy of the dispersion curve directly influences pickup errors of channel wave travel time. To extract an accurate channel wave dispersion curve from in-seam seismic two-component signals, we proposed a time–frequency analysis method based on single-trace signal processing; in addition, we formulated a dispersion calculation equation, based on S-transform, with a freely adjusted filter window width. To unify the azimuth of seismic wave propagation received by a two-component geophone, the original in-seam seismic data undergoes coordinate rotation. The rotation angle can be calculated based on P-wave characteristics, with high energy in the wave propagation direction and weak energy in the vertical direction. With this angle acquisition, a two-component signal can be converted to horizontal and vertical directions. Because Love channel waves have a particle vibration track perpendicular to the wave propagation direction, the signal in the horizontal and vertical directions is mainly Love channel waves. More accurate dispersion characters of Love channel waves can be extracted after the coordinate rotation of two-component signals.  相似文献   

8.
东北地区背景噪声的Rayleigh和Love波相速度层析成像   总被引:5,自引:2,他引:3       下载免费PDF全文
本文利用中国数字地震台网位于东北地区的122个宽频地震台站的18个月记录的三分量连续地震噪声数据,采用互相关方法提取了Rayleigh和Love波经验格林函数,并利用时频自动分析技术获取了相应的相速度频散曲线.通过反演频散曲线,获得了Rayleigh和Love波周期为8~35s的二维相速度分布.结果表明,东北地区相速度的分布存在横向和垂向的不均匀性.短周期的相速度分布同地表地质构造密切相关,松辽盆地及山间沉积盆地呈现低速异常,而大兴安岭、小兴安岭及东部的一些山岭显示高速异常.随着周期的增加,位于中间的松辽盆地变为高低速相间,两侧的造山带呈现低速异常.这种异常的转变,可能是受构造活动或者莫霍面深度的影响.另外,在周期为20~35s频段内,Rayleigh和Love波同一周期的相速度在松辽盆地和位于吉林地区的郯庐断裂带表现不一致,表明可能存在径向各向异性.  相似文献   

9.
HTI煤层介质槽波波场与频散特征初步研究   总被引:3,自引:0,他引:3       下载免费PDF全文
煤层内裂隙较为发育,具有明显的各向异性.目前槽波理论研究以各向同性介质为主,对HTI介质中槽波及其频散性质研究很少.本文以弱各向异性、含垂直裂隙HTI煤层介质为研究对象,研究了HTI煤层介质中的三维槽波波场,采用交错网格高阶有限差分法模拟槽波,推导了三层水平层状HTI煤层介质的Love型槽波理论频散公式和振幅深度分布,分析了HTI各弹性参数对频散曲线的影响.HTI介质和各向同性介质基阶Love槽波频散曲线差异较小,高阶较大;煤厚主要影响Airy相频率,而Airy相速度不变;煤层vs对Airy相速度影响很大;煤层γ对基阶Love槽波影响很小,高阶稍大.各波偏振方向不再与波的传播方向平行或垂直,而是呈一定夹角.利用基阶Love槽波频散曲线推测裂隙发育较为困难,可利用高阶频散曲线.  相似文献   

10.
基于应用透射人工边界条件的显式有限元法计算断层破碎带宽度及力学参数变化、地震动入射角变化时二维断层场地模型P波入射下地表地震动场的分布。结果表明:(1)低速度破碎带的存在导致整个场地都有P波转换为SV波的分量,且在断层破碎带的区域出现断层陷波;(2)低速度破碎带的存在使输入场地恒定的能量向破碎带集聚放大,随着破碎带宽度增大或其介质波速降低集聚放大效应增大;(3)场地放大效应是频率相关的,宽度较宽或介质波速较低的断层破碎带对输入地震动中较低的频率成份放大显著;(4)竖向断层破碎带能阻隔斜入射地震P波,随着入射角增加隔震效应更显著。  相似文献   

11.
采用与作者2014年发表的“大别-苏鲁及其邻近地区基于背景噪声的勒夫波群速度成像”文章相同的资料,用频时分析提取5 000余条瑞雷波和4 000余条勒夫波相速度频散曲线,反演得到了8—32 s的瑞雷波和勒夫波相速度分布图像.结果显示,瑞雷波与勒夫波相速度分布具有很好的一致性.8 s的相速度分布与地表构造特征相吻合,造山带与隆起区均表现为高速,盆地因其规模不同而显示不同程度的低速.随着周期的增大,大别 苏鲁的高速带由强变弱,但始终存在.16—24 s的高速可能主要受到中地壳高速的控制,而32 s的高速则可能与上地幔顶部的高速有关.比较大别造山带与苏鲁造山带的平均频散曲线,发现大别造山带和苏鲁造山带的勒夫波频散曲线均高于AK135模型计算的理论频散曲线,而瑞雷波则没有这一现象. 这可能意味着两个地区有比较强烈的径向各向异性.   相似文献   

12.
煤巷小构造Rayleigh型槽波超前探测数值模拟   总被引:13,自引:3,他引:10       下载免费PDF全文
对煤巷小构造地震波场进行了数值模拟研究,分析了层状煤层中地震波的传播特征.研究表明:(1)在煤巷迎头前方煤层内以纵波震源激发的Rayleigh型槽波相对于体波能量较强,波列较长,波速较低.(2)沿煤层传播的Rayleigh型槽波在小构造面上产生Rayleigh型槽波反射波,反射Rayleigh型槽波垂直分量相对于水平分量能量较强.沿煤层反向传播的反射Rayleigh型槽波在煤巷迎头面上转换为沿煤巷底板传播的Rayleigh面波.沿煤巷底板可以接收到能量较强的反射Rayleigh型槽波产生的Rayleigh面波,其可以作为超前探测小构造面的特征波.在地震记录上反射Rayleigh型槽波产生的Rayleigh面波波至最迟,在时间域与其他波列时间间隔较大,其垂直分量能量相对于水平分量较强,在地震记录上容易识别.(3)在相同的地质条件下应用反射地震超前探测方法,标志煤巷迎头前方存在小构造面的反射地震波能量较弱,受煤巷顶、底板界面和采煤迎头面的强反射波干扰,在地震记录中难以识别.  相似文献   

13.
Finite‐difference P‐SV simulations of seismic scattering characteristics of faulted coal‐seam models have been undertaken for near‐surface P‐ and S‐wave sources in an attempt to understand the efficiency of body‐wave to channel‐wave mode conversion and how it depends on the elastic parameters of the structure. The synthetic seismograms clearly show the groups of channel waves generated at the fault: one by the downgoing P‐wave and the other by the downgoing S‐wave. These modes travel horizontally in the seam at velocities less than the S‐wavespeed of the rock. A strong Airy phase is generated for the fundamental mode. The velocity contrast between the coal and the host rock is a more important parameter than the density contrast in controlling the amplitude of the channel waves. The optimal coupling from body‐wave energy to channel‐wave energy occurs at a velocity contrast of 1.5. Strong guided waves are produced by the incident S‐sources for source angles of 75° to 90° (close to the near‐side face of the fault). As the fault throw increases, the amplitude of the channel wave also increases. The presence of a lower‐velocity clay layer within the coal‐seam sequence affects the waveguiding characteristics. The displacement amplitude distribution is shifted more towards the lower‐wavespeed layer. The presence of a ‘washout’ zone or a brecciated zone surrounding the fault also results in greater forward scattering and channel‐wave capture by the coal seam.  相似文献   

14.
Small offsets in hard coal seams can be detected with the aid of seam (channel) waves. Transmission and reflection of seam waves depend, among other parameters, upon the symmetry properties of the sequence rock/coal/rock. Two typical unsymmetrical sequences are found in European coal deposits: (i) coal seams with roof and floor of differing acoustic impedance and (ii) coal seams interlayered with rock and soil. Two-dimensional analog models with appropriate impedance contrasts are used to study the effect of the unsymmetrical layers upon the propagation of Rayleigh seam waves. Data analysis is based upon amplitude measurements both parallel and perpendicular to the layers and dispersion curves. The effect of unsymmetrical roof (rock 1) and floor (rock 2) was studied with models containing homogeneous coal seams. Leaky mode wave groups with phase velocities (cR) in the range between the SV-wave velocities (βr1, 2) of the two rock materials, i.e. βr1cR > βr2, form a characteristic part of the Rayleigh seam wave signal. Using Knott's energy coefficient calculations it is shown that in that range energy leakage into the surrounding rock by refracted SV-waves is restricted to only one of the two interfaces, namely coal/rock 2. At the other interface, coal/rock 1, all waves are totally reflected. Thus, the high amplitudes of these leaky mode wave groups are explained by “quasi-normal mode” features. The influence of a dirt bed on wave propagation was studied in models where the roof and the floor have the same elastic properties. The maximum thickness of the dirt bed did not exceed 20% of the total seam thickness. The effect of the bed's location within the seam was also investigated. For all recorded normal-mode wave groups either the total seam or the coal layers could be regarded as wave guides. This was shown by the fact that the phases could be associated with the phase velocity dispersion curves calculated for the symmetrical sequence rock/coal/rock. These curves are relevant under the condition that the thickness of the coal layer assumed under the calculation coincides with the thickness of the effective wave guide of the respective wave groups. Wave groups guided in the total seam are not influenced by either the thickness or the position of the dirt bed. On the other hand, for wave groups guided in the coal layers, the quotient of signal amplitudes in the coal layers is influenced by the position of the dirt bed.  相似文献   

15.
在地下煤田的开发中,工作面内的小构造、异常体、煤层厚度变化等是需要解决的关键问题,而槽波探测则为这些问题的解决提供了重要的物探方法.本文对河南义马矿区11061工作面进行槽波透射法测量,在巷道显示的煤层厚度变化为1.5~8 m,从理论频散曲线分析速度与厚度关系,确定125 Hz频率槽波主要用于观测厚度约为2~5 m的煤层厚度变化;有效提取了684个频散曲线,并分别拾取了125 Hz时槽波群速度与走时,采用走时层析成像方法获得工作面内煤层速度、厚度以及高应力区分布特征,回采验证了结果的正确性.  相似文献   

16.
17.
In-seam seismic surveys with channel waves have been widely used in the United Kingdom and elsewhere to map coal-seams and to detect anomalous features such as dirt bands, seam thinning and thickening, and particularly in-seam faulting. Although the presence of cleat-induced anisotropy has been recognized in the past, almost all previous analyses have assumed homogeneous isotropic or transversely isotropic coal-seams. Channel waves, however, exhibit properties which cannot be fully explained without introducing anisotropy into the coal-seam. In particular, Love-type channel waves are observed for recording geometries where, in a homogeneous isotropic or transversely isotropic structure, the source would not be expected to excite transverse motion. Similarly, modes of channel-wave propagation display the coupled three-component motion of generalized modes in anisotropic substrates, which would not be expected for Rayleigh and Love wave motion in isotropy or in transversely isotropic media with azimuthal isotropy. We model the observed in-seam seismic channel waves with synthetic seismograms to gain an understanding of the effects of cleat-induced anisotropy on the behaviour of channel waves. The results show a reasonable good match with the observations in traveltime, relative amplitudes, dispersion characteristics and particle motions. We demonstrate that anisotropy in the surrounding country rocks contributes significantly to the coupling of channel wave particle motion, although its effect is not as strong as the anisotropy in the coal-seam. We conclude that the effects of cleat- and stress-induced anisotropy are observed and can be modelled with synthetic seismograms, and that anisotropy must be taken into account for the detailed interpretation of channel waves.  相似文献   

18.
Two-month continuous waveforms of 108 broadband seismic stations in Fujian Province and its adjacent areas are used to compute noise cross-correlation function (NCF). The signal quality of NCF is improved via the application of time-frequency phase weighted stacking. The Rayleigh and Love waves group velocities between 1s-20s are measured on the symmetrical component of the NCF with the multiple filter method. More than 5,000 Rayleigh wave dispersion curves and about 4,000 Love wave dispersion curves are obtained and used to invert for group velocity maps. This data set provides about 50km resolution that is demonstrated with checkerboard tests. Considering the off great circle effect in inhomogeneous medium, the ray path is traced based on the travel time field computed with a finite difference method. The inverted group velocity maps show good correlation with the geological features in the upper and middle crust. The Fuzhou basin and Zhangzhou basin showed low velocity on the short period group velocity maps. On the long period group velocity maps, the low velocity anomaly in the high heat flow region near Zhangzhou and clear velocity contrast across the Zhenghe-Dapu faults, which suggests that the Zhenghe-Dapu fault might be a deep fault.  相似文献   

19.
Three-component seismic and geoelectrical in-mine surveys were carried out in Lyukobanya colliery near Miskolc, Hungary to determine the in situ petrophysical parameter distributions and to detect inhomogeneities in the coal seam. The seismic measurements comprise an underground vertical seismic profile, using body waves, and an in-seam seismic amplitude-depth distribution and transmission survey, using channel waves. The geoelectrical measurements are based on the drift- and seam-sounding method. Interval traveltime-, amplitude-, multiple-filter- and polarization analysis methods are applied to the seismic data. They lead to a five-layer model for the strata including the coal seam. The coal seam and two underlying beds act as a seismic waveguide. The layer sequence supports the propagation of both normal and leaky mode channel waves of the Love- and Rayleigh type. A calculation of the total reflected energy for each interface using Knott's energy coefficients shows that the velocity ranges of high reflection energy and of normal and leaky mode wavegroups coincide. The excitation of wavegroups strongly depends on the seismic source. A simultaneous inversion of a geoelectrical drift- and seam-sounding survey prevents misinterpretations of the seismic data by clearly identifying the low-velocity coal seam as a high-resistivity bed. Calculations of dispersion and sounding curves improve the resolution of the slowness and resistivity in each layer. Both diminished amplitudes and distortions in the polarization of transmission seismo-grams and decreasing resistivities in a geoelectrical pseudosection of the coal seam are related to an inhomogeneity. A calculation of synthetic seismograms for Love and Rayleigh channel waves with the finite-difference and the Alekseev-Mikhailenko method agrees well with the field data for the main features, i.e., particular arrivals in the wave train, wavegroups, velocities and symmetries or asymmetries. This in-mine experiment demonstrates that the simultaneous acquisition, processing and interpretation of seismic and geoelectrical data improve the lithological interpretation of petrophysical parameter distributions. Coal seam inhomogeneities can also be detected more reliably by the two independent surveys than by one alone.  相似文献   

20.
In-seam seismic survey currently is a hot geophysical exploration technology used for the prediction of coal seam thickness in China. Many studies have investigated the relationship between the group velocity of channel wave at certain frequency and the actual thickness of exposed coal beds. But these results are based on statistics and not universally applicable to predict the thickness of coal seams. In this study, we first theoretically analyzed the relationship between the depth and energy distribution of multi-order Love-type channel waves and found that when the channel wave wavelength is smaller than the thickness of the coal seam, the energy is more concentrated, while when the wavelength is greater than the thickness, the energy reduces linearly. We then utilized the numerical simulation technology to obtain the signal of the simulated Love-type channel wave, analyzed its frequency dispersion, and calculated the theoretical dispersion curves. The results showed that the dispersion characteristics of the channel wave are closely related to the thickness of coal seam, and the shear wave velocity of the coal seam and its surrounding rocks. In addition, we for the first time realized the joint inversion of multi-order Love-type channel waves based on the genetic algorithm and inversely calculated the velocities of shear wave in both coal seam and its surrounding rocks and the thickness of the coal seam. In addition, we found the group velocity dispersion curve of the single-channel transmitted channel wave using the time–frequency analysis and obtained the phase velocity dispersion curve based on the mathematical relationship between the group and phase velocities. Moreover, we employed the phase velocity dispersion curve to complete the inversion of the above method and obtain the predicted coal seam thickness. By comparing the geological sketch of the coal mining face, we found that the predicted coal seam thickness is in good agreement with the actual thickness. Overall, adopting the channel wave inversion method that creatively uses the complete dispersion curve can obtain the shear wave velocities of the coal and its surrounding rocks, and analyzing the depth of the abruptly changed shear wave velocity can accurately obtain the thickness of the coal seam. Therefore, our study proved that this inversion method is feasible to be used in both simulation experiments and actual detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号