首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper and Zn metals are produced in large quantities for different applications. During Cu production, large amounts of Cu and Zn can be released to the environment. Therefore, the surroundings of Cu smelters are frequently metal-polluted. We determined Cu and Zn concentrations and Cu and Zn stable isotope ratios (δ65Cu, δ66Zn) in three soils at distances of 1.1, 3.8, and 5.3 km from a Slovak Cu smelter and in smelter wastes (slag, sludge, ash) to trace sources and transport of Cu and Zn in soils. Stable isotope ratios were measured by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in total digests. Soils were heavily contaminated with concentrations up to 8087 μg g−1 Cu and 2084 μg g−1 Zn in the organic horizons. The δ65Cu values varied little (−0.12‰ to 0.36‰) in soils and most wastes and therefore no source identification was possible. In soils, Cu became isotopically lighter with increasing depth down to 0.4 m, likely because of equilibrium reactions between dissolved and adsorbed Cu species during transport of smelter-derived Cu through the soil. The δ66ZnIRMM values were isotopically lighter in ash (−0.41‰) and organic horizons (−0.85‰ to −0.47‰) than in bedrock (−0.28‰) and slag (0.18‰) likely mainly because of kinetic fractionation during evaporation and thus allowed for separation of smelter-Zn from native Zn in soil. In particular in the organic horizons large variations in δ66Zn values occur, probably caused by biogeochemical fractionation in the soil-plant system. In the mineral horizons, Zn isotopes showed only minor shifts to heavier δ66Zn values with depth mainly because of the mixing of smelter-derived Zn and native Zn in the soils. In contrast to Cu, Zn isotope fractionation between dissolved and adsorbed species was probably only a minor driver in producing the observed variations in δ66Zn values. Our results demonstrate that metal stable isotope ratios may serve as tracer of sources, vertical dislocation, and biogeochemical behavior in contaminated soil.  相似文献   

2.
Heavy metals in soils are of great environmental concern, in order to evaluate heavy metal contents and their relationships in the surface soil of industrial area of Baoji city, and also to investigate their influence on the soils. Soil samples were collected from 50 sites, and the concentration of Pb, Zn, Cu, Cr, Ni heavy metals and the contents of characteristics in soil from industrial area of Baoji city were determined with X-ray fluorescence method. The concentrations of Pb, Zn, Cu, Cr and Ni in the investigated soils reached the amount of 2,682.00–76,979.42, 169.30–8,288.58, 62.24–242.36, 91.96–110.54 and 36.14–179.28 mg kg−1, respectively. The major element Pb contents of the topsoils were determined. to highlight the influence of ‘anthropic’ features on the heavy metal concentrations and their distributions. To compare, all values of elements were much higher than those of unpolluted soils in the middle of Shaanxi province that average 16.0–26.5, 67.1–120.0, 17.8–57.0, 46.9–65.6 and 24.7–34.6 mg kg−1 for Pb, Zn, Cu, Cr and Ni, respectively. An ensemble of basic and relativity analysis was performed to reduce the precipitate of Pb in soil was extremely high and greatly relativity with other elements. Meanwhile, Pb, Zn, Cu, Cr, Ni heavy metals were typical elements of anthropic activities sources, so it was easy to infer to the tracers of anthropic pollutions from the factorial analysis, which was coming from the storage battery manufactory pollutions. The pollutant distributions were constructed for the urban area which identified storage battery manufactory soot precipitate as the main source of diffuse pollution and also showed the contribution of the topsoils of industrial area of Baoji city as the source point of pollution. Consequently, the impact of heavy metals on soil was proposed and discussed. These results highlight the need for instituting a systematic and continuous monitoring of heavy metals and other forms of pollutants in Baoji city to ensure that pollution does not become a serious problem in the future.  相似文献   

3.
《Applied Geochemistry》2001,16(11-12):1369-1375
The heavy metal contamination of soils and waters by metalliferous mining activities in an area of Korea was studied. In the study area of the Imcheon Au–Ag mine, soils and waters were sampled and analyzed using AAS for Cd, Cu, Pb and Zn. Analysis of HCO3, F, NO3 and SO42− in water samples was also undertaken by ion chromatography. Elevated concentrations of the metals were found in tailings. The maximum contents in the tailings were 9.4, 229, 6160 and 1640 mg/kg extracted by aqua regia and 1.35, 26.4, 70.3 and 410 mg/kg extracted by 0.1 N HCl solution for Cd, Cu, Pb and Zn, respectively. These metals are continuously dispersed downstream and downslope from the tailings by clastic movement through wind and water. Because of the existence of sulfides in the tailings, a water sample taken on the tailings site was very acidic with a pH of 2.2, with high total dissolved solids (TDS) of 1845 mg/l and electric conductivity (EC) of 3820 μS/cm. This sample also contained up to 0.27, 1.90, 2.80, 53.4, 4,700 mg/l of Cd, Cu, Pb, Zn and SO42−, respectively. TDS, EC and concentrations of metals in waters decreased with distance from the tailings. The total amount of pulverized limestone needed for neutralizing the acid tailings was estimated to be 46 metric tons, assuming its volume of 45,000 m3 and its bulk density of 1855 kg/m3.  相似文献   

4.
Mineralogical, geochemical and microbial characterization of tailings solids from the Greens Creek Mine, Juneau, Alaska, was performed to evaluate mechanisms controlling aqueous geochemistry of near-neutral pH pore water and drainage. Core samples of the tailings were collected from five boreholes ranging from 7 to 26 m in depth. The majority of the 51 samples (77%) were collected from the vadose zone, which can extend >18 m below the tailings surface. Mineralogical investigation indicates that the occurrence of sulfide minerals follows the general order: pyrite [FeS2] >> sphalerite [(Zn,Fe)S] > galena [PbS], tetrahedrite [(Fe,Zn,Cu,Ag)12Sb4S13] > arsenopyrite [FeAsS] and chalcopyrite [CuFeS2]. Pyrite constitutes <20 to >35 wt.% of the tailings mineral assemblage, whereas dolomite [CaMg(CO3)2] and calcite [CaCO3] are present at ?30 and 3 wt.%, respectively. The solid-phase geochemistry generally reflects the mineral assemblage. The presence of additional trace elements, including Cd, Cr, Co, Mo, Ni, Se and Tl, is attributed to substitution into sulfide phases. Results of acid–base accounting (ABA) underestimated both acid-generating potential (AP) and neutralization potential (NP). Recalculation of AP and NP based on solid-phase geochemistry and quantitative mineralogy yielded more representative results. Neutrophilic S-oxidizing bacteria (nSOB) and SO4-reducing bacteria (SRB) are present with populations up to 107 and 105 cells g−1, respectively. Acidophilic S-oxidizing bacteria (aSOB) and iron-reducing bacteria (IRB) were generally less abundant. Primary influences on aqueous geochemistry are sulfide oxidation and carbonate dissolution at the tailings surface, gypsum precipitation–dissolution reactions, as well as Fe reduction below the zone of sulfide oxidation. Pore-water pH values generally ranged from 6.5 to 7.5 near the tailings surface, and from approximately 7–8 below the oxidation zone. Elevated concentrations of dissolved SO4, S2O3, Fe, Zn, As, Sb and Tl persisted under these conditions.  相似文献   

5.
Industrial development has increased fast in China during the last decades. This has led to a range of environmental problems. Deposition of trace elements to forest ecosystems via the atmosphere is one potential problem. In this paper, we report the results from a pilot study where the trace element levels of the sub-alpine forest soils on the eastern edge of the Tibetan Plateau have been measured. Possible relationships between soil properties and trace element concentrations have also been investigated. The obtained concentrations (mg kg−1) were boron (B) 48.06–53.70, molybdenum (Mo) 1.53–2.26, zinc (Zn) 68.18–79.53, copper (Cu) 36.81–42.44, selenium (Se) 0.33–0.49, cadmium (Cd) 0.16–0.29, lead (Pb) 25.80–30.71, chromium (Cr) 96.10–110.08, nickel (Ni) 30.16–45.60, mercury (Hg) 0.05–0.11, and arsenic (As) 3.09–4.17. With a few exceptions, the element concentration can be characterized as low in the investigated sub-alpine forest soils. No clear differences in trace element levels were found between topsoil and subsoil samples, indicating that the atmospheric deposition of trace element has been low. The soil parent material plays a key role to determine trace element levels. Soil properties, including pHw, organic carbon (OC), clay fraction, cation-exchange capacity (CEC), total iron (Fe), and total aluminum (Al) concentrations were related to trace element concentration using correlation analysis. Total Fe and Al showed the strongest relationships with concentrations of most trace elements in the sub-alpine forest soils. PCA analyses indicated that a significant increase in the number of cars with the fast development of local tourism may result in higher Pb concentration in the future.  相似文献   

6.
An exploratory study has been conducted to test the utility of automated mineral analysis observations to identify flue dust particles in topsoils exposed for several decades to emissions of a copper smelter. The methods used are readily available in mining countries. To identify the most impacted sites, the Cu, Zn, Pb, Mo and As levels in water and diluted sulphuric acid extractions of four topsoil size fractions (833–495 μm, 246–148 μm; 74–38 μm; <38 μm) were analysed. X-ray diffraction analyses were used to demonstrate the mineralogical degradation of smectite phases when approaching the smelter. Flue dust particles in different states of conservation in topsoils were directly observed by scanning electron microscopy (SEM) aided by energy dispersive detection of X-rays. Qemscan® scanning of dispersed topsoil preparations (10,000 particles) pinpoints smelter particles by their density; flue dust pearls can be tracked by sorting particles according to their sphericity, clearly identifying them as pyrometallurgical products. When sorting soil particles by mineral groups (e.g. sulphides), an increase in this phase group can be observed when approaching the smelter. SEM resolution limits observations to particles larger than 2–3 μm. Smaller particles can be observed by transmission electron microscopy, although observer experience and the availability of equipment time are essential as is the case for SEM.  相似文献   

7.
Mineral processing operation at the Sarcheshmeh porphyry copper mine has produced huge quantities of tailings materials containing sulphide minerals in particular pyrite. These tailings materials were geochemically and mineralogically characterised to assess pyrite and chalcopyrite oxidation, acid mine drainage generation, and trace element mobility to lead development of a proper remediation plan. Five vertical trenches up to 4.2 m deep were excavated from the tailings surface, and 70 solid samples were taken in 0.3 m intervals. The samples were first mineralogically analysed. Pyrite was the main sulphide mineral found in the tailings. The gangue minerals include quartz ± muscovite–illite ± chlorite ± albite ± orthoclase ± halite. The samples were geochemically analysed for total concentrations of 62 elements, paste pH, SO4 2?, CO3 2?, and HCO3 ?. The maximum concentrations of SO4 2? (1,300, 1,170, 1,852, 1,960 and 837 mg/L) were observed at a depth of 0.9 m in profiles A, B, C, D and E, respectively. The tailings have a high acid-producing potential and low acid-neutralising potential (pyrite 4–6 wt %, calcite 1 wt %). Fe2(SO4)3, CuSO4, MgSO4 and MnSO4 were the dominant secondary sulphate minerals in the tailings. The lowest pH values (2.9, 3 and 3) were measured at a depth of 0.3 m in the profiles A, B and C, 3.9 at a depth of 0.6 m in the profile D and 3 at a depth of 0.9 m in the profile E. The upper portions of the profiles C (1.8 m) and D (2.1 m) were moderately oxidised, while oxidation in the profiles A, B and E did not extend more than 1.2, 1.2 and 1.5 m beneath the tailings surface. Zn, Pb, Rb, U, Hf, Nd, Zr and Ga show almost a constant trend with depth. Cd, Sr, Th, La and Ce increased with increasing depth of the tailings materials while, Co, V, Ti, Cr, Cu, As, Mn, Ag, Mo and Ni exhibit initially a decreasing trend from tailings surface to the depths that vary between 0.9 and 1.2. They then remained constant with the depth. The results show pyrite and chalcopyrite oxidation at surface layers of the tailings and subsequent leaching of the oxidation products and trace elements by infiltrated atmospheric precipitation.  相似文献   

8.
The Sarcheshmeh copper mine smelter plant is one of the biggest copper producers in Iran. Long-time operation of about 25 years of the smelter plant causes release of potentially toxic heavy metals into the environment. In this paper, geochemical distribution of toxic heavy metals in 28 soil samples was evaluated around the Sarcheshmeh smelter plant. Soils developed over the nonmineralized and uncontaminated areas have an average background concentration of 41.25 mg kg−1 Cu, 26.6 mg kg−1 As, 12.7 mg kg−1 Pb, 0.9 mg kg−1 Sb, 1.9 mg kg−1 Mo, 1.7 mg kg−1 Sn, 0.2 mg kg−1 Cd, 0.15 mg kg−1 Bi, 235 mg kg−1 S and 73.4 mg kg−1 Zn, respectively. As a result of smelting process, the upper soil layers (0–5 cm) were polluted by Cu (>1,397 mg kg−1), Cd (>3.42 mg kg−1), S (>821 mg kg−1), Mo (>10.3 mg kg−1), Sb (>11.7 mg kg−1), As (>120.6 mg kg−1), Pb (>83.8 mg kg−1), Zn (>214.9 mg kg−1), and Sn (>3.7 mg kg−1), respectively. These values are much higher than the normal concentration of the elements in the uncontaminated soil layers. The elemental values decrease with distance travelled away of the smelter plant, especially at minimum wind direction. Furthermore, high contaminated values of Cu (8,430 mg kg−1), As (500 mg kg−1), Pb (331 mg kg−1), Mo (61 mg kg−1), Sb (56.2 mg kg−1), Zn (664 mg kg−1), Cd (17.2 mg kg−1), Bi (13.4 mg kg−1), and S (3,780 mg kg−1) were observed in the upper soil layers close to the smelting waste dumps. Sequential extraction analysis shows that about 270 mg kg−1 Cu, 28 mg kg−1 Pb, 50.33 mg kg−1 Zn, and 47.84 mg kg−1 As were adsorbed by Fe and Mn oxides. The carbonate phases include 151 mg kg−1 Cu, 28 mg kg−1 Pb, 25 mg kg−1 Zn, and 32.99 mg kg−1 As. Organic matter adsorbed 314.6 mg kg−1 Cu and 29.18 mg kg−1 Zn.  相似文献   

9.
《Applied Geochemistry》2006,21(10):1760-1780
Sulfide-rich mine tailings in Adak that are exposed to weathering cause acid mine drainage characterized by low pH (2–4) and high SO4 (up to 800 mg L−1). Surface water, sediment and soil samples collected in this study contain higher concentrations of As, Cu, Fe and Zn, compared to the target and/or intervention limits set by international regulatory agencies. In particular, high As concentrations in water (up to 2900 μg L−1) and sediment (up to 900 mg kg−1) are of concern. There is large variability in trace element concentrations, implying that both physical (grain size) and chemical factors (pH, secondary phases as sulfides, Al-oxides or clay minerals) play an important role in their distribution. The low pH keeps the trace elements dissolved, and they are transported farther downstream. Trace element partition coefficients are low (log Kd = 0.3–4.3), and saturation indices calculated with PHREEQC are <0 for common oxide and sulfidic minerals. The sediment and soil samples indicate an enhanced pollution index (up to 17), and high enrichment factors for trace elements (As up to 38,300; Zn up to 800). Finally, leaves collected from different plant types indicate bioaccumulation of several elements (As, Al, Cu, Fe and Zn). However, some of the plants growing in this area (e.g., Salix, Equisétum) are generally resistant to metal toxicity, and hence, liming and phytoremediation could be considered as potential on-site remediation methods.  相似文献   

10.
The area of the city of Tsumeb in northern Namibia is strongly affected by gaseous emissions and by dust fallout from the local smelter. This is also reflected in increased concentrations of lead and arsenic in blood and urine of the residents. Consequently, modeling of the dispersion of dust and SO2 emissions from the smelter was used in this study to delineate the contaminated area and to assess the health risks. The modeling results were verified by ground-based geochemical survey of soil and grass in the area. The results of modeling revealed that the concentrations of SO2 in the Tsumeb town were relatively low, whereas the highest dust fallout concentrations were found around the Tsumeb smelter. The Tsumeb town residential area was less affected due to favorable landscape morphology between the smelter and the city (the Tsumeb Hills).The results of modeling of dust fallout and geochemical survey coincided very well. Since the anthropogenic contamination was bound only to the surface layer of soil, the local soils were sampled at two depth horizons: topsoil and the deeper soil horizon. This enabled us to distinguish between the anthropogenic contamination of soil surface from natural (geogenic) concentrations of studied metals in the deeper part of the soil profile. Concentrations of metals in grass correlated with the concentration of metals in topsoil.In contrast to a good conformity with the modeling of dust fallout from the smelter and geochemical survey, the results of modeling of SO2 contents in the air, and total sulfur content in soils were different. Differences can be explained by additional sources of contamination, as for example a sulfate-rich dust fallout from local tailings ponds and slag dumps that were not considered in the SO2 dispersion model.The results of the present investigation can be used by the mining companies in the management of air quality, assessment of the efficacy of applied remediation measures, and in reducing the impact of dust fallout on the local ecosystem. The Municipal Administration may use these results to plan further development of the city of Tsumeb, especially in terms of further expansion of housing construction.  相似文献   

11.
Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2σ) to +0.34 ± 0.17‰ (2σ) at the lowest horizons and from +0.38 ± 0.45‰ (2σ) to +0.76 ± 0.14‰ (2σ) near the surface. The δ66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe2O4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ66Zn values of +0.81 ± 0.20‰ (2σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.  相似文献   

12.
The impact of 60 a of SO2 emissions from a Ni–Cu plant in the Kola Peninsula (Russia) on soil S contents was assessed in podzols under pine forests. Sulphate desorption and the possible delay of acidification reversal was investigated, because the plant will be reconstructed in 2006 with an expected emission reduction of 90%. Sites were sampled along a pollution gradient in the prevailing wind direction from 1 to 66 km. The investigated podzols stored S mostly in the organic form. The concentrations of total and organic S in soil organic horizons tended to be higher near the smelter but were only weakly correlated with S deposition. No relationship between distance to smelter and S contents was found for the mineral horizons. Sulphate content and desorption behavior were highly variable due to natural variations of texture and extractable Al and Fe contents of the soils. The lack of a clear strong trend with distance from the smelter except in the organic layer indicated that long range transport and diffuse input of SO4 played a major role rather than point source impact. It was concluded that biological turnover is most likely the regulating process in these soils and thus low to medium release of SO4 is expected under decreasing deposition scenarios because organic S was the dominant fraction of total S in all soils.  相似文献   

13.
The Mike Horse Mine tailings dam in western Montana was partially breached in 1975 due to heavy rainfall and a failed drainage bypass. Approximately 90,000 tons of metal and arsenic-enriched tailings flowed into Beartrap Creek and the Blackfoot River. The spatial distribution of trace elements As, Cd, Cu, Mn, Pb, and Zn in floodplain alluvium of the upper Blackfoot River were examined along 20 transects in the upper 105 river kilometers downstream from the tailings dam. Trace element concentrations decrease with distance from the failed dam, with As reaching background concentrations 15 km from the Mike Horse dam, Cd and Pb at 21 km, Cu at 31 km, and Mn and Zn at 37 km. Distance from the Mike Horse tailings dam and mine area is the dominating factor in explaining trace element levels, with R 2 values ranging from 0.67 to 0.89. Maximum floodplain trace element concentrations in the upper basin exceed US. EPA ecological screening levels for plants, birds and other mammals, and reflect adverse hazard quotients for exposure to As and Mn for ATV/motorcycle use. Trace element concentrations in channel bank and bed alluvium are similar to concentrations in floodplain alluvium, indicating active transport of trace elements through the river and deposition on the floodplain. The fine fraction (<2 mm) of floodplain alluvium is dominated by sand-sized particles (2.0–0.05 mm), with Cu and Mn significantly correlated with silt-sized (0.05–0.002 mm) alluvium. Ongoing remediation in the headwaters area will not address metal contamination stored downstream in the channel banks and on the floodplain. Additionally, some trace elements (Cu, Mn and Zn) were conveyed farther downstream than were others (As, Cd, Pb).  相似文献   

14.
A soil-based geochemical survey was carried out in an area of about 350 km2 in northern Kosovo around the Zve?an Pb-Zn smelter. The concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, Sb, Tl, Th, U, Zn were determined in 452 topsoil and 82 subsoil samples. High contents of Pb, Cd, As, Sb, Zn and Cu were found in topsoil over a vast area including the Ibar and Sitnica river valleys. The highest concentrations were usually measured close to the Zve?an smelter. In some zones, the lead contents in surface soils exceeded 5000 mg/kg. Arsenic and antimony levels were usually more than 200 and 50 mg/kg, respectively, while cadmium contents were in the range 5-20 mg/kg. South of the Zve?an area, lead, antimony and cadmium pollution was strong in the densely populated urban area of Kosovska Mitrovica and along the agricultural alluvial plain of the Sitnica River. Depending on the chemical element, the pollution extended 15-22 km north and south of the Zve?an smelter. There was a progressive decrease of heavy element concentrations with increasing distance from the smelting plant. The contents of Pb, Zn, Cu, As, Cd, Sb significantly decreased with soil depth; in fact, the pollution only affected the upper 50 cm of soil. Crops were affected by soil pollution and many food-stuffs exceeded the EU standards. Suggestions for soil remediation are given.  相似文献   

15.
Copper smelting and toxic emissions in Sarcheshmeh Copper Complex have resulted in soil pollution especially in the vicinity of the smelting plant. Calculated geoaccumulation index, contamination factor (C f), and contamination degree (C deg) indicate surface soil enrichment in potentially toxic metals (As, Cu, Pb, Zn, Mo, and Cd). The results also indicate that most contaminated areas are located in the prevailing wind directions (N and NE). However, continuous copper smelting can result in extensive pollution in the study area. This is especially alarming for adjacent townships. Since, the sampled sites are also used as grazing land, the soils are likely to become phytotoxic and provide a potential pathway for the toxic elements to enter the food chain. C f based on distance and direction give more reasonable results; that is, the decrease of contamination degree with distance. This is in agreement with I geo and also statistical analysis, which show a decreasing trend of metal loadings of soil with distance from the smelter. Statistical analysis reaffirms the polluting role of the smelting plant.  相似文献   

16.
Agricultural soils of the Riotinto mining area (Iberian Pyrite Belt) have been studied to assess the degree of pollution by trace elements as a consequence of the extraction and treatment of sulphides. Fifteen soil samples were collected and analysed by ICP-OES and INAA for 51 elements. Chemical analyses showed an As–Cu–Pb–Zn association related with the mineralisation of the Iberian Pyrite Belt. Concentrations were 19–994 mg kg−1 for As, 41–4,890 mg kg−1 for Pb, 95–897 mg kg−1 for Zn and of 27–1,160 mg kg−1 for Cu. Most of the samples displayed concentrations of these elements higher than the 90th percentile of the corresponding geological dominium, which suggests an anthropogenic input besides the bedrock influence. Samples collected from sediments were more contaminated than leptosols because they were polluted by leachates or by mining spills coming from the waste rock piles. The weathering of the bedrock is responsible for high concentrations in Co, Cr and Ni, but an anthropogenic input, such as wind-blown dust, seems to be indicative of the high content of As, Cu, Pb and Zn in leptosols. The metal partitioning patterns show that most trace elements are associated with Fe amorphous oxy-hydroxides, or take part of the residual fraction. According to the results obtained, the following mobility sequence is proposed for major and minor elements: Mn, Pb, Cd, > Zn, Cu > Ni > As > Fe > Cr. The high mobility of Pb, Cu and Zn involve an environmental risk in this area, even in soils where the concentrations are not so high.  相似文献   

17.
Active and abandoned mine activities constitute the sources of deterioration of water and soil quality in many parts of the world, particularly in the African Copperbelt regions. The accumulation in soils and the release of toxic substances into the aquatic ecosystem can lead to water resources pollution and may place aquatic organisms and human health at risk. In this study, the impact of past mining activity (i.e., abandoned mine) on aquatic ecosystems has been studied using ICP-MS analysis for trace metals and Rare Earth Elements (REE) in sediment samples from Lubumbashi River (RL) and Tshamilemba Canal (CT), Katanga, Democratic Republic of the Congo (DRC). Soil samples from surrounding CT were collected to evaluate trace metal and REE concentrations and their spatial distribution. The extent of trace metal contamination compared to the background area was assessed by Enrichment Factor (EF) and Geoaccumulation Index (Igeo). Additionally, the trace metal concentrations probable effect levels (PELs) for their potential environmental impact was achieved by comparing the trace metal concentrations in the sediment/soil samples with the Sediment Quality Guidelines (SQGs). Spearman's Rank-order correlation was used to identify the source and origin of contaminants. The results highlighted high concentrations of trace metals in surface sediments of CT reaching the values of 40152, 15586, 610, 10322, 60704 and 15152 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. In the RL, the concentrations reached the values of 24093, 2046, 5463, 3340, 68290 and 769 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. The ΣREE varied from 66 to 218 and 142–331 mg kg−1 for CT and RL, respectively. The soil samples are characterized by variable levels of trace metals. The EF analysis showed “extremely severe enrichment” for Cu and Co. However, no enrichment was observed for REE. Except for Mo, Th, U, Eu, Mo, Ho and Tm for which Igeo is classified as “moderately polluted and/or unpolluted”, all elements in different sites are classified in the class 6, “extremely polluted”. The trace metal concentrations in all sampling sites largely exceeded the SQGs and the PELs for the Protection of Aquatic Life recommendation. Cu and Co had positive correlation coefficient values (r = 0.741, P < 0.05, n = 14). This research presents useful tools for the evaluation of water contamination in abandoned and active mining areas.  相似文献   

18.
Total concentrations of chemical elements in soils may not be enough to understand the mobility and bioavailability of the elements. It is important to characterise the degree of association of chemical elements in different physical and chemical phases of soil. Another geochemical characterisation methodology is to apply sequential selective chemical extraction techniques. A seven-step sequential extraction procedure was used to investigate the mobility and retention behaviour of Al, Fe, Mn, Cu, Zn, Pb, Cr, Co, Ni, Mo, Cd, Bi, Sn, W, Ag, As and U in specific physical–chemical and mineral phases in mine tailings and soils in the surroundings of the abandoned Ervedosa mine. The soil geochemical data show anomalies associated with mineralised veins or influenced by mining. Beyond the tailings, the highest recorded concentrations for most elements are in soils situated in mineralised areas or under the influence of tailings. The application of principal components analysis allowed recognition of (a) element associations according to their geochemical behaviour and (b) distinction between samples representing local geochemical background and samples representing contamination. Some metal cations (Mn, Cd, Cu, Zn, Co, Cr, Ni) showed important enrichment in the most mobilisable and bioavailable (i.e., water-soluble and exchangeable) fractions due likely to the acidic conditions in the area. In contrast, oxy-anions such as Mo and As showed lower mobility because of adsorption to Fe oxy-hydroxides. The residual fraction comprised largest proportions of Sn and Al and to a lesser extent Zn, Pb, Ni, Cr, Bi, W, and Ag, which are also present at low concentrations in the bioavailable fractions. The elements in secondary mineral phases (mainly Fe, Mn, Cu, Zn, Cd, Pb, W, Bi, Mo, Cr, Ni, Co, As and U) as well as in organic matter and sulphides are temporarily withheld, suggesting that they may be released to the environment by changes in physico-chemical conditions.  相似文献   

19.
To evaluate trace element soil contamination, geochemical baseline contents and reference values need to be established. Pedo-geochemical baseline levels of trace elements in 72 soil samples of 24 soil profiles from the Mediterranean, Castilla La Mancha, are assessed and soil quality reference values are calculated. Reference value contents (in mg kg?1) were: Sc 50.8; V 123.2; Cr 113.4; Co 20.8; Ni 42.6; Cu 27.0; Zn 86.5; Ga 26.7; Ge 1.3; As 16.7; Se 1.4; Br 20.1; Rb 234.7; Sr 1868.4; Y 38.3; Zr 413.1; Nb 18.7; Mo 2.0; Ag 7.8; Cd 4.4; Sn 8.7; Sb 5.7; I 25.4; Cs 14.2; Ba 1049.3; La 348.4; Ce 97.9; Nd 40.1; Sm 10.7; Yb 4.2; Hf 10.0; Ta 4.0; W 5.5; Tl 2.3; Pb 44.2; Bi 2.2; Th 21.6; U 10.3. The contents obtained for some elements are below or close to the detection limit: Co, Ge, Se, Mo, Ag, Cd, Sb, Yb, Hf, Ta, W, Tl and Bi. The element content ranges (the maximum value minus the minimum value) are: Sc 55.0, V 196.0, Cr 346.0, Co 64.4, Ni 188.7, Cu 49.5, Zn 102.3, Ga 28.7, Ge 1.5, As 26.4, Se 0.9, Br 33.0 Rb 432.7, Sr 3372.6, Y 39.8, Zr 523.2, Nb 59.7, Mo 3.9, Ag 10.1, Cd 1.8, Sn 75.2, Sb 9.9, I 68.0, Cs 17.6, Ba 1394.9, La 51.3, Ce 93.5, Nd 52.5, Sm 11.2, Yb 4.2, Hf 11.3, Ta 6.3, W 5.2, Tl 2.1, Pb 96.4, Bi 3.0, Th 24.4, U 16.4 (in mg kg?1). The spatial distribution of the elements was affected mainly by the nature of the bedrock and by pedological processes. The upper limit of expected background variation for each trace element in the soil is documented, as is its range as a criterion for evaluating which sites may require decontamination.  相似文献   

20.
In this paper we examine the influence of the development of supergene oxide and sulphide zones on the original hypogene geochemical patterns at the Berg deposit, British Columbia.The deposit, in the alpine zone of the Tahtsa Range, was logged (GEOLOG) and sampled in fourteen diamond drill holes along a N—S section and from outcrop where possible. Anomalous populations of major and trace elements were defined using log probability graphs and a sequential extraction (10% hydrochloric acid— ammonium oxalate — potassium chlorate/hydrochloric acid — nitric/perchloric acids) was used to study the distribution of elements between carbonate, oxide, sulphide and silicate phases.Core logs and assays show that primary ore minerals (chalcopyrite—molybdenite) extend from the outer part of the porphyry intrusion into the surrounding hornfels where the best grades of copper are found close to the intrusive contact. Maximum copper grades, however, result from development of a supergene enrichment blanket. Within the hypogene zone, principal lithogeochemical patterns reflect the differences in composition of the hornfels, originally intermediate to basic volcanics, and the intrusion, as well as the introduction of F and trace metals (Cu, Mo, Pb, Zn and Ag). Distribution of Ag is broadly comparable to that of Cu and Mo whereas anomalous Pb and Zn are present as peripheral haloes around the potential ore zones.Emergence of strongly acidic ground water and precipitation of iron oxides, indicate that leaching processes are active. Furthermore, although primary sulphides, associated with both their oxidation products and secondary sulphides, can still be found in surface samples, sequential extractions on drill core clearly indicate vertical redistribution of copper between oxide, carbonate and sulphide phases. Using ratios of metal concentrations to TiO2, the surface concentrations of trace metals can be compared with those at depth and the relative amount of enrichment or depletion can be quantified. In highly leached sites the absolute concentrations of Cu, Mn and Zn are low which is reflected in TiO2 ratios of <1. However, Mo, Pb and Ag are enriched at the same sites (TiO2 ratios >1). In areas where physical erosion exceeds leaching (topographic lows) primary sulphides co-exist with secondary sulphide and oxide minerals. Here Cu, Mo, Pb, Zn, Mn and Ag are enriched. Fluorine is relatively unaffected by the leaching process. It would appear signature for a cale alkaline Cu and Mo porphyry deposit in an area where outcrop was intensely leached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号