首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 939 毫秒
1.
The results of geological study of the mountain framework of the southern part of the Lambert Glacier, Mawson Escarpment, Eastern Antarctica, are discussed. The studied territory is of key importance for understanding the regional geological history. The Ruker and the Lambert rock complexes have been distinguished at the Mawson Escarpment. The former is subdivided into the Mawson and Menzies groups. The polymetamorphic rocks of the Mawson Group comprise granite gneiss, orthopyroxene gneiss, and crystalline schists dated at >3000 Ma combined with tectonic wedges and blocks of the variegated sequence with ultramafic (komatiitic) rocks. The find of those rocks allows us to suggest that an ancient granite-greenstone domain existed in the territory of the Prince Charles Mts.; this domain is retained only as tectonic wedges amongst granite gneisses of the Mawson and Menzies groups composed of polymetamorphic terrigenous rocks with basic sills. The following sequence of metamorphic mineral assemblages in the Menzies Group has been established: (1) And-Crd ± St, (2) Ky-St-Grt-Bt-Ms, (3) Sil-Grt-Crd. The andalusite-type metamorphism of rocks pertaining to the Menzies Group probably has the same age as greenschist metamorphism of rocks belonging to the Collaboration Group (2917 ± 82–2878 ± 65 Ma at Mt. Ruker). The formation of kyanite-staurolite mineral assemblage (mounts Stinear, Maguire, Rymill; South Mawson Escarpment) might be related to a metamorphic event dated at 2400–2350 Ma. The formation of sillimanite-garnet and sillimanite-cordierite assemblages with staurolite relics correlates in time with emplacement of the MacColly granite 600–500 Ma ago. Polymetamorphic rocks of the Lambert Complex are migmatites and gneisses, often with orthopyroxene relics. Blocks of ultramafic rocks are localized amongst granite gneisses. The superimposed metamorphism of amphibolite and granulite facies took place 1800 Ma ago. The model Nd age of ultramafic rocks (2500 Ma) is treated as the time of emplacement of magma into the rocks of the Lambert Complex. Isotopic and geochemical evidence for Early Paleozoic granulite-facies metamorphism is known.  相似文献   

2.
The age and Precambrian history of the Moine Supergroup within the Caledonide belt of north-west Scotland have long been contentious issues. The Ardgour granite gneiss is essentially an in situ anatectic granite formed during deformation and regional high-grade metamorphism from Moine metasediments. High-precision TIMS and SHRIMP U-Pb zircon dating shows that the age of the anatectic Ardgour granite gneiss and its enclosed segregation pegmatites is 873 ± 7 Ma. This demonstrates the reality of a Neoproterozoic episode of high-grade metamorphism in the Glenfinnan Group Moine and, contrary to previous evidence, the absence of Grenvillian-aged metamorphism. This conclusion places constraints on Neoproterozoic palaeogeographic reconstructions of the North Atlantic region, indicating that the Moine rocks cannot be used as a link between the Grenvillian belt of North America and the Sveconorwegian orogen in Scandinavia. SHRIMP ages of between c. 1100 and 1900 Ma were obtained from detrital, inherited zircons and reflect the provenance of the Glenfinnan Group Moine sediments which must, therefore, have been deposited between c. 1100 and 870 Ma. Potential sources are found as relatively minor, tectonically bounded basement inliers within the British Caledonides, although more widespread source areas occur outside Britain in both Laurentia and Baltica. The most important feature of the provenance is the absence of detrital Archaean grains. This suggests that the Archaean Lewisian gneiss complex, which forms the basement component of the western foreland to the Caledonides in Britain, was not a major contributor to the Glenfinnan Group basin. Received: 16 June 1996 / Accepted: 29 January 1997  相似文献   

3.
The Tanami Region, a poorly exposed, mostly Paleoproterozoic province within the North Australian Craton, hosts a number of significant gold deposits in diverse settings. Rare exposures of 2,520–2,500 Ma amphibolite facies Archean gneiss and metasedimentary rocks form basement to the thick overlying metasedimentary succession of the 1,880–1,830 Ma Tanami Group. The basal unit of the Tanami Group is the Dead Bullock Formation, a fining-upward deep-water succession dominated by siltstone, carbonaceous siltstone, iron-rich siltstone and mafic sills. Carbonaceous- and iron-rich lithologies in the upper Dead Bullock Formation represent important hosts for gold mineralization. The conformably overlying Killi Killi Formation represents turbiditic sedimentary rocks that are correlated with the widespread Lander Rock beds of the Arunta Region. Sedimentation of the Tanami Group was terminated by regional deformation and greenschist to amphibolite facies metamorphism during the Tanami Event (D1/M1), at around 1,830 Ma. The Tanami Group is unconformably overlain by rhyolite, siliciclastic sedimentary rocks, and felsic ignimbrite of the Ware Group that were deposited at about 1,825–1,810 Ma. Subsequent ESE–WNW to SE–NW directed shortening (D2), followed by NE–SW to E–W directed shortening (D3), has resulted in open NE F2- and NW F3-trending folds in both the Tanami and Ware Groups. Voluminous granitoids, dominated by I-type, biotite granodiorite, and monzogranite were intruded in the interval 1,825–1,790 Ma and have been subdivided using geochemical criteria into the Birthday, Frederick, and Grimwade Suites. Basalt and immature sedimentary rocks of the Mount Charles Formation are restricted in extent to the Tanami mine corridor, and are interpreted to reflect a continental rift succession that was deposited around 1,800 Ma, with an early Archean sedimentary provenance. Steep S to SE dipping F4-fold structures of Tanami and Ware Group metasedimentary rocks, many spatially associated with 1,825–1,790 Ma granitoid intrusions, indicate a period of SSE-directed regional shortening (D4) syn-to-post the regional granitoid intrusive phase. A network of N to NW striking faults, several of which are interpreted as oblique thrusts with a component of left lateral movement, indicates a period of D5 convergence during WSW–ENE to E–W directed shortening. The Tanami mine corridor fault system comprises a network of N, NE to ENE striking D5 faults that merge with N to NW striking faults and probably accommodated movement between granite core domains. D5 faulting is associated with the main phase of gold mineralization in suitable structural–lithological traps. The Paleoproterozoic basement of the Tanami Region is unconformably overlain by quartz sandstone, lithic arenite, and conglomerate of the Pargee Sandstone. Pargee Sandstone may represent syn-tectonic sedimentation related to the 1,730 Ma Strangways Orogeny, and is unconformably overlain by the late Paleoproterozoic platform cover succession of the Birrindudu Group. The Paleoproterozoic basement and cover sequences have subsequently undergone several episodes of faulting, collectively termed D6+. The Paleoproterozoic evolution of the Tanami Region is interpreted to have occurred in an intracratonic setting, but was fundamentally influenced by tectonic events in the adjacent Halls Creek Orogen (1,835–1,805 Ma Halls Creek Orogeny) and Arunta Region (1,815–1,800 Ma Stafford Event). The boundaries between the Tanami Region and Kimberley Region to the northwest and the Arunta Region to the southeast are transitional, and are largely defined by the presence or absence of identifiable Dead Bullock Formation.  相似文献   

4.
陈蔡岩群是华夏地块西北缘的主要前寒武纪变质基底,蕴含着有关江绍结合带构造演化的丰富信息,长期为众多学者所关注。作者最近通过路线调查和地质剖面测制,将研究区"陈蔡岩群"解体为条带状黑云斜长片麻岩、侵入其中的二长花岗岩及后期基性岩脉等。黑云斜长片麻岩的锆石年龄数据可分为多组,其中以约1800 Ma、约700Ma、220 Ma三组最为集中,前者给出了片麻岩继承锆石年龄的峰值,中者给出了片麻岩原岩时代的上限,后者为变质年龄;二长花岗岩年龄为220 Ma,与前述变质年龄对应,均为印支期构造热事件,显示了江绍结合带对华南印支期造山运动的响应。  相似文献   

5.
The Makuti Group of northwest Zimbabwe is composed of mafic and intermediate biotite-rich gneisses interlayered with quartzofeldspathic gneisses of granitic composition, and minor sedimentary units. The gneisses have experienced a multi-staged metamorphic history, including an early high temperature-high pressure event and subsequent reworking at upper- to mid-amphibolite-facies conditions. They are positioned along the strongly deformed, southern margin of the east-west trending Zambezi Belt, and have been correlated with supracrustal gneiss units along the northern margin of the Zimbabwe Craton.The Makuti Group is characterised by an intensely developed gneissic layering and complex disharmonic folds that resulted from non-coaxial deformation involving repeated stages of transposition. The basal contact of the g roup coincides with a decrease in strain intensity, but not with a directional change of characteristic structural elements (e.g. lineations, fold axes), nor with a clear change in rock types. Pink quartzofeldspathic gneisses of granitic composition are typical for the Makuti Group, but locally intrude basement gneiss as well. The quartzofeldspathic gneisses occur as porphyritic and non-porphyritic varieties that are, invariably, intensely sheared.The age and nature of the basal contact of the Makuti Group and its relationship to the quartzofeldspathic gneisses has been investigated. Samples for single zircon PbPb dating were collected from a felsic biotite gneiss just below (2704 ± 0.3 Ma) and above (2510 ± 0.4 Ma) the lower contact of the Makuti Group at an ‘unconformity’ 2 km northwest of Vuti. Further samples were collected from pink quartzofeldspathic units at the base (737 ± 0.9 Ma), central part (764 ± 0.9 Ma; 797 ± 0.9 Ma) and top (794 ± 0.5 Ma; 854 ± 0.8 Ma) of the Makuti Group. Two samples of Kariba orthogneiss (1920 ± 0.4 and 1963 ± 0.4 Ma) underlying the Makuti Group in the northwest were also collected. In all samples, long-prismatic, colourless to brown, igneous zircon grains were selected. Dates were obtained using a stepwise single-grain evaporation technique. Although this technique only allows minimum age estimates, the dates are highly reproducible, indicating that they approximate emplacement ages. The ages conform with the field observations that the basement has been reworked in the Makuti Group and that the quartzofeldspathic units may have been emplaced as granites.It is proposed that the Makuti Group represents a crustal scale shear zone that partly reworked basement gneisses and acted as a conduit for granite emplacement. Shearing took place in an extensional setting around 800 Ma ago, and may have resulted in the exhumation of lower crustal rocks.  相似文献   

6.
Contacts between Archaean granites and greenstones in the northeastern part of the Pilbara Craton have been described as intrusive and tectonic. New field observations in the Shay Gap region demonstrate that greenstones of the Gorge Creek Group unconformably overlie the Muccan and Warrawagine batholiths. Regionally, the unconformity is marked by a persistent but relatively thin basal clastic sequence, locally with a granite boulder conglomerate, overlain by ore‐bearing banded iron‐formation, fine‐grained clastic rocks and chert. The granite basement is dated at 3443 ± 6 Ma. The precise age of the hiatus is unknown but its maximum effect might have been the removal of a substantial thickness of Early to Middle Archaean strata.  相似文献   

7.
巴西卡拉加斯(Carajás)地区出露世界上重要且古老的太古宙变质基底,是世界上矿床类型最为丰富、资源聚集程度最高的成矿区之一,它的基底兴谷(Xingú)杂岩是南美克拉通古老的太古宙花岗岩-绿岩地体。在调查该地区基底杂岩地质特征的基础上,对侵入其中的变质深成岩体进行了年代学研究,提出了基底杂岩的组成、结构与构造的认识,认为兴谷杂岩是以麻粒岩相-角闪岩相片麻岩和混合岩为主体的古老变质岩,将其中的紫苏花岗岩和英云闪长质-奥长花岗质片麻岩从中剥离出来,进一步分解出不同时期的变质侵入体;本次在其中的片麻状花岗岩中获得了(2899±45)Ma、(2742±9.5)Ma和(2831±19)Ma的锆石LA-ICP-MS年龄,进一步确认兴谷杂岩的时代为中太古代,时代约束在3.05~2.85 Ga,其中包含3.05~2.96 Ga和2.96~2.85 Ga的两个构造时段的表壳岩和TTG片麻岩套。  相似文献   

8.
The Pan-African basement exposed in the Meatiq area west of Quseir, Egypt, consists of an infracrustal basement overthrusted by a supracrustal cover. The infracrustal rocks were developed as a result of an old orogeny referred to as the Meatiqian orogeny where granite—gneiss, migmatitic gneisses and migmatized amphibolites were formed. The granite—gneiss represents a deformed granite pluton emplaced at 626±2 Ma, whereas the migmatitic gneisses and amphibolites are of mixed igneous and sedimentary parentage. In view of the data so far available, the nature of the Meatiqian orogeny could not be deciphered. In spite of the young isotopic ages, it is suggested that at least the metasedimentary gneisses represent older rocks in the stratigraphic sequence of the infracrustal basement.The supracrustal cover represents a part of an extensive ophiolitic mélange obducted onto the infracrustal basement during the next orogeny (Abu Ziran orogeny) which culminated at 613±2 Ma. An active continental margin-type regime can adequately explain the evolution of such a supracrustal cover. During obduction, the ophiolitic mélange and the upper 2 km thick part of the infracrustal basement were intensely deformed and metamorphosed under PT conditions of the greenschist—epidote amphibolite facies. The deformed infracrustal basement was converted into mylonitic—blastomylonitic rocks and schists composing five thrust sheets, and subsequently intruded by synkinematic granitoid sheets. Later, both the infracrustal basement and the overlying supracrustal cover were isostatically uplifted, subjected to complex shallow folding giving rise to the major Meatiq domal structure, and were intruded by a postkinematic adamellite pluton at 579±6 Ma.  相似文献   

9.
北阿尔金是塔里木克拉通变质基底的主要出露区之一。对该区具有侵入接触关系的正长花岗岩和花岗片麻岩进行了LA-ICP-MS锆石U-Pb定年研究。正长花岗岩中的锆石多呈椭圆状,具有振荡环带结构,部分颗粒中可见老锆石残核,Th/U值较高,亏损轻稀土元素,富集重稀土元素,具有负Eu异常和正Ce异常的特点,表明该组锆石为岩浆成因。定年结果获得1903±13Ma和2506±55Ma两组年龄加权平均值,前者代表岩体的结晶年龄,后者为捕获锆石年龄,结合区域年代学资料,认为正长花岗岩岩浆侵入过程中可能捕获了太古宇米兰群的古老基底锆石。花岗片麻岩中16个测点的锆石~(207)Pb/~(206)Pb年龄集中于1802±28Ma,代表了岩体侵位时代,其余5个测点的锆石~(207)Pb/~(206)Pb年龄为1911~1951Ma,说明岩浆侵位过程中捕获了部分正长花岗岩的物质。区域地质与同位素年代学研究表明,北阿尔金地区广泛存在2.0~1.8Ga的构造-热事件。获得的花岗质岩石的1.9~1.8Ga的年龄结果,直接证实了北阿尔金存在约1.9Ga的岩浆作用,可能为古元古代Columbia超大陆汇聚事件在该地区的响应,为探讨塔里木板块前寒武纪构造-热事件演化历史提供了新资料。古元古代末期约1.8Ga的花岗片麻岩,代表了后造山伸展阶段的岩浆活动。  相似文献   

10.
拉萨地块西部呈断块状沿狮泉河-申扎-嘉黎蛇绿混杂岩带附近分布的念青唐古拉岩群被认为是前寒武纪变质基底。本文对念青唐古拉岩群进行了系统的岩石学、地球化学、同位素年代学及构造地质学研究。研究结果表明片岩-片麻岩-变粒岩含十字石、石榴子石等特征变质矿物,遵循粒度分异规律,其原岩可能为来自冈瓦纳古陆核北缘中新元古代弧盆体系的活动大陆边缘浊积岩。斜长角闪岩具低硅、高铁镁、富钙的基性岩特征,其原岩为岛弧型基性火山岩。念青唐古拉岩群中的花岗伟晶岩锆石LA-ICPMS U-Pb年龄为1150±13Ma,具过铝质S型花岗岩地球化学特征,可能为中元古代(1150±13 Ma)以前就开始沉积的念青唐古拉岩群基底岩石通过部分熔融形成。与花岗伟晶岩渐变过渡接触的二云斜长片麻岩第一组变质重结晶锆石U-Pb年龄为701±15 Ma,结合十字石特征变质矿物,暗示了该地区中温高压变质作用的峰期变质,变质程度达角闪岩相;第二组热液流体锆石UPb年龄为301±8.4 Ma,可能与冈瓦纳大陆北缘古特提斯洋演化过程中的岩浆热液作用有关。  相似文献   

11.
The Archaean Peninsular Gneiss of southern India is considered by a number of workers to be the basement upon which the Dharwar supracrustal rocks were deposited. However, the Peninsular Gneiss in its present state is a composite gneiss formed by synkinematic migmatization during successive episodes of folding (DhF1, DhF1a and DhF2) that affected the Dharwar supracrustal rocks. An even earlier phase of migmatization and deformation (DhF*) is evident from relict fabrics in small enclaves of gneissic tonalites and amphibolites within the Peninsular Gneiss. We consider these enclaves to represent the original basement for the Dharwar supracrustal rocks. Tonalitic pebbles in conglomerates of the Dharwar Supergroup confirm the inference that the supracrustal rocks were deposited on a gneissic basement. Whole rock Rb-Sr ages of gneisses showing only the DhF1 structures fall in the range of 3100–3200 Ma. Where the later deformation (DhF2) has been associated with considerable recrystallization, the Rb-Sr ages are between 2500 Ma and 2700 Ma. Significantly, a new Rb-Sr analysis of tonalitic gneiss pebbles in the Kaldurga conglomerate of the Dharwar sequence is consistent with an age of ~2500 Ma and not that of 3300 Ma reported earlier by Venkatasubramanian and Narayanaswamy (1974). Pb-Pb ages based on direct evaporation of detrital zircon grains from the metasedimentary rocks of the Dharwar sequence fall into two groups, 3300–3100 Ma, and 2800–3000 Ma. Stratigraphic, structural, textural and geochronologic data, therefore, indicate that the Peninsular Gneiss of the Dharwar craton evolved over a protracted period of time ranging from > 3300 Ma to 2500 Ma.  相似文献   

12.
本文对华北克拉通北缘集宁地区空间上密切共生的片麻状石榴花岗岩和孔兹岩系富铝片麻岩的岩相学、地球化学及年代学特征进行了对比研究。SHRIMP锆石U-Pb定年方面,在富铝片麻岩中获得了1910±10Ma和1839±13Ma变质锆石年龄,在片麻状石榴花岗岩中获得了1919±17Ma的变质重结晶锆石年龄。在石榴花岗岩的石榴石包裹体中识别出与富铝片麻岩相对应的进变质阶段(M1)和峰期阶段(M2)的矿物组合,由此确认富铝片麻岩的变质作用和导致石榴花岗岩形成的深熔作用是同一构造热事件的产物。通过对二者变质作用演化及特征变质矿物的对比,认为深熔作用主要发生在峰期后等温降压阶段(M3),石榴花岗岩中的石榴石为深熔作用过程中的残留矿物相或转熔矿物相,而石榴花岗岩则是混合有大量残留矿物相的熔体结晶的产物。对片麻状石榴花岗岩和富铝片麻岩的地球化学组成特征进行了对比分析,片麻状石榴花岗岩既有一定的继承性,又有十分明显的变异性。变异性表现为:1)石榴花岗岩主量和微量元素含量分布极不均匀,微量元素含量普遍低于源岩(Cs、Rb、Th、U、Nb、Ta、Zr、Hf等);2)大离子亲石元素Cs和生热元素U、Th亏损明显,Sr相对富集;3)高场强元素Nb、Ta、P、Ti的明显亏损;4)铕异常变化大,存在铕富集型、铕平坦型和铕亏损型共存的稀土配分曲线的岩石,这是深熔成因石榴花岗岩最突出的表现,也可能是原地-半原地深熔花岗岩的主要地球化学标志。综合区域上的地质资料,认为深熔作用与碰撞后伸展构造背景下基性岩浆底侵事件有关。  相似文献   

13.
滇西崇山岩群一直被认为是元古宙的大陆地壳-结晶基底,但至今无精确的年龄依据。对滇西澜沧江南段小湾地区崇山岩群的5件样品(糜棱岩化斜长变粒岩、黑云斜长角闪岩、片麻岩、糜棱岩化花岗质片麻岩、糜棱岩化黑云斜长变粒岩)进行锆石U-Pb定年。5件样品的锆石阴极发光图像显示,锆石有明显的生长振荡环带,指示岩浆成因。5件样品锆石的206Pb/238U年龄加权平均值分别为239.4±3.8Ma、248.4±4.3Ma、237.1±5.7Ma、268.7±3.2Ma、238.4±5.5Ma。根据野外地质特征和年龄数据,认为滇西澜沧江南段小湾地区崇山岩群是不同时代、不同岩性的岩体/地层(二叠系、三叠系)经后期变质作用形成的一套正变质岩,并不全是古老基底岩石出露。  相似文献   

14.
In an effort to quantify the geogenic radon soil–gas potential and appraise the use of radon technique as a geological mapping tool in a crystalline basement rock terrain of Ile–Ife Nigeria, radon measurement concentration were made using a radon detector instrument (EDA RD-200) that measures radon isotopes by a scintillator cell coupled to a photomultiplier tube. The data were collected from soils derived from three different lithologic rock units. The observed values were then correlated with the geology of the area. Significant differences in the radon soil–gas concentrations among the three geologic units were observed. Granite gneiss has the highest concentration, followed by grey gneiss and mica schist in that order. The geometric mean (GM) concentration of radon-222 measured in soils directly overlying the three different rock types were 301.4 pCi/l for granite gneiss, 202.8 pCi/l for the grey gneiss, and 199.4 pCi/l for mica schist. Conversely, the average values for radon-220 averaged 1510.0, 815.4, and 733.0 pCi/l for granite gneiss, grey gneiss, and mica schist rocks, respectively. Statistical t test (α=0.05) results indicated that there was no significant difference in the geometric mean of radon soil–gas measured between low and medium potential zones. However, significant differences were found between the low and high radon potential zones, and between the medium and high zones. The low concentrations of radon soil–gas emission observed in this study is explained in terms of the seasonal variation due to thermal convection fluid movement, while the radon concentrations were found to be controlled by the lithology and geochemistry of the underlying bedrock.  相似文献   

15.
Malani is the largest event of anorogenic felsic magmatism (covering ∼50, 000 km2) in India. This magmatic activity took place at ∼750 Ma post-dating the Erinpura granite (850 Ma) and ended prior to Marwar Supergroup (680 Ma) sedimentation. Malani eruptions occurred mostly on land, but locally sub-aqueous conditions are shown by the presence of conglomerate, grits and pillow lava. The Malani rocks do not show any type of regional deformation effects. The Malanis are characterised by bimodal volcanism with a dominant felsic component, followed by granitic plutonism and a terminal dyke phase. An angular unconformity between Malani lavas and basement is observed, with the presence of conglomerate at Sindreth, Diri, and Kankani. This indicates that the crust was quite stable and peneplained prior to the Malani activity. Similarly, the absence of any thrust zone, tectonic mélange and tectonised contact of the Malanis with the basement goes against a plate subduction setting for their genesis. After the closure of orogenic cycles in the Aravalli craton of the northwestern shield, this anorogenic intraplate magmatic activity took place in a cratonic rift setting under an extensional tectonic regime.  相似文献   

16.
耿元生  周喜文 《岩石学报》2012,28(9):2667-2685
在阿拉善变质基底中发现了大量的早二叠世的弱变形花岗岩类。采自阿拉善东部的闪长质片麻岩(AL0705-1)、含石榴英云闪长质片麻岩(AL0709-1)、英云闪长岩(AL0718-1)、条痕状黑云斜长片麻岩(AL0822-1)和片麻状花岗岩(AL0822-3)的锆石U-Pb年龄分别为270±1.6Ma、276±1.8Ma、269±2.4Ma、276±2.4Ma和287±2.5Ma。采自阿拉善变质基底西部的花岗闪长质片麻岩(AL0805-1)、闪长质片麻岩(AL0805-4)、粗粒花岗闪长质片麻岩(AL0810-1)和中粒闪长质片麻岩(AL0810-2)的锆石LA-ICP-MSU-Pb年龄分别为284±3Ma、289±3Ma、276±2Ma和279±2Ma。尽管早二叠世花岗岩的岩石类型和化学成分不同,但它们都形成于269~289Ma一个较短的时间范围,属于同一期岩浆热事件的产物。早二叠世花岗岩的形成年龄与基底变质岩中角闪石39Ar-40Ar的坪年龄277~288Ma近于一致,表明这期岩浆热事件对基底变质岩石产生了改造,使角闪石等变质矿物的Ar-Ar同位素体系发生了重置。在阿拉善变质基底中大量早二叠世花岗岩类侵入体的发现表明,阿拉善变质基底在古生代晚期受到中亚造山带碰撞造山作用的强烈影响和改造。  相似文献   

17.
The Baoshan block of the Tethyan Yunnan, southwestern China, is considered as northern part of the Sibumasu microcontinent. Basement of this block that comprises presumably greenschist-facies Neoproterozoic metamorphic rocks is covered by Paleozoic to Mesozoic low-grade metamorphic sedimentary rocks. This study presents zircon ages and Nd–Hf isotopic composition of granites generated from crustal reworking to reveal geochemical feature of the underlying basement. Dating results obtained using the single zircon U–Pb isotopic dilution method show that granites exposed in the study area formed in early Paleozoic (about 470 Ma; Pingdajie granite) and in late Yanshanian (about 78–61 Ma, Late Cretaceous to Early Tertiary; Huataolin granite). The early Paleozoic granite contains Archean to Mesoproterozoic inherited zircons and the late Yanshanian granite contains late Proterozoic to early Paleozoic zircon cores. Both granites have similar geochemical and Nd–Hf isotopic charateristics, indicating similar magma sources. They have whole-rock T DM(Nd) values of around 2,000 Ma and zircon T DM(Hf) values clustering around 1,900–1,800 and 1,600–1,400 Ma. The Nd–Hf isotopic data imply Paleoproterozoic to Mesoproterozoic crustal material as the major components of the underlying basement, being consistent with a derivation from Archean and Paleoproterozoic terrains of India or NW Australia. Both granites formed in two different tectonic events similarly originated from intra-crustal reworking. Temporally, the late Yanshanian magmatism is probably related to the closure of the Neotethys ocean. The early Paleozoic magmatism traced in the Baoshan block indicates a comparable history of the basements during early Paleozoic between the SE Asia and the western Tethyan belt, such as the basement outcrops in the Alpine belt and probably in the European Variscides that are considered as continental blocks drifting from Gondwana prior to or simultaneously with those of the SE Asia.  相似文献   

18.
中国东北~500Ma泛非期孔兹岩带的确定及其意义   总被引:14,自引:7,他引:7  
周建波  张兴洲  郑常青 《岩石学报》2011,27(4):1235-1245
东北地区的变质基底,如佳木斯地块的麻山群、兴安地块的兴华渡口群等岩石组合是以(含石墨)大理岩、夕线石榴片麻岩、斜长角闪岩等为主要标志的孔兹岩系。在额尔古纳、兴安和佳木斯-兴凯地块的夕线石榴片麻岩分别得到锆石U-Pb年龄,证明这些高级变质岩的原岩年龄以新元古代(600~850Ma)为主,变质年龄为~500Ma,因此东北地区的变质基底记录了从Rodinia 到 Gondwana大陆的聚合与离散的过程。泛非期高级变质岩及其同期岩浆岩在额尔古纳、兴安、松辽、佳木斯 和兴凯地块等断续分布,总体出露范围>1300km,并沿虎头、鸡西、萝北、兴华渡口和漠河一线总体北西向沿黑龙江断续分布,因此我们命名为"中国东北泛非期孔兹岩带"。 "中国东北泛非期孔兹岩带"的提出和进一步研究, 对深入探讨东北地区各地块基底组成的异同性以及陆块聚合的过程,以及东北地区的构造演化历史及其在Gondwana大陆重建中的位置都具有重要的科学意义。  相似文献   

19.
抚顺南部早前寒武纪变质杂岩的地质事件序列   总被引:8,自引:7,他引:1  
白翔  刘树文  阎明  张立飞  王伟  郭荣荣  郭博然 《岩石学报》2014,30(10):2905-2924
抚顺南部早前寒武纪变质杂岩是华北克拉通北缘辽北-吉南早前寒武纪变质地块的一个重要组成部分,主要由浑南群石棚子组角闪岩相变质火山岩、火山碎屑岩及相伴生的沉积岩等表壳岩系和侵位于其中的石英闪长质片麻岩、英云闪长质-奥长花岗质-花岗闪长质(TTG)片麻岩和花岗闪长岩-二长花岗岩-钾长花岗岩岩石组合组成。LA-ICP-MS锆石U-Pb同位素分析结果显示,侵位于表壳岩中的石英闪长质片麻岩样品12LN39-3的岩浆结晶年龄为2571±7Ma,指示存在老于该年龄的表壳岩系。英云闪长质片麻岩样品12LN04-1和奥长花岗质片麻岩样品13LB49-3的岩浆结晶年龄分别为2544±4Ma和2550±10Ma,记录了一期重要的英云闪长质-奥长花岗质片麻岩侵位事件。斜长角闪岩(样品12LN25-2)的岩浆结晶的最小年龄为2530±5Ma,指示另一火山喷发阶段。晚期钾长花岗岩样品12LN01-1和奥长花岗质片麻岩样品12LN27-1分别侵位于2522±4Ma和2518±23Ma,说明它们的岩浆作用发生于同一时期。而采自于晚期未变形侵入体的石英闪长岩样品12LN30-2的岩浆结晶年龄为2496±18Ma,与上述表壳岩和深成侵入体的主要变质作用(2510~2470Ma)同期发生。这些年代学结果表明,抚顺南部地区新太古代大规模的铁镁质火山喷发作用在大于2571±7Ma已经发生,紧接着2571±7Ma发生石英闪长质岩浆侵位,在2550±10Ma~2544±4Ma之间发生英云闪长质-奥长花岗质岩浆侵位。接下来铁镁质火山再度喷发(~2530±5Ma),随后为钾长花岗岩和奥长花岗质岩浆的侵位(2522±4Ma~2518±23Ma)。晚期为角闪岩相变质作用时期(2510~2470Ma),伴随一定规模的石英闪长岩侵位。  相似文献   

20.
The Precambrian Chhotanagpur granite gneiss complex (CGGC) terrain covers more than 80,000 sq km area, and is dominated by granitoid gneisses and migmatites. Recent geochronological data indicate that the CGGC terrain has witnessed five tectonomagmatic thermal events at: (i) 2.5–2.4 Ga, (ii) 2.2–2.0 Ga, (iii) 1.6–1.4 Ga, (iv) 1.2–1.0 Ga, and (v) 0.9–0.8 Ga. Of these, the third and the fourth events are widespread. The whole-rock Rb-Sr isotopic analysis of twenty granite samples from the CGGC of Raikera-Kunkuri region, Jashpur district, Chhattisgarh, Central India, yields two distinct isochrons. The eleven samples of grey granites define an isochron age of 1005±51 Ma with moderate initial 87Sr/86Sr ratio of 0.7047±0.0065, which corresponds to the fourth tectonomagmatic event. On the other hand, the nine samples of pink granites indicate younger isochron age of 815±47 Ma with a higher initial 87Sr/86Sr ratio of 0.7539±0.0066 that matches with the fifth phase of the thermal event. The data suggest emplacement of large bodies of grey granite at ∼1005 Ma that evolved possibly from precursors of tonalitic-granodioritic composition. Furthermore, the younger age (∼815 Ma) suggests the age of metasomatism, involving isotopic resetting, that resulted in genesis of pink granite bodies of limited areal extent. By analogy, the age of metasomatism (∼815 Ma) may also be taken to represent the age of Y-mineralisation in the Raikera-Kunkuri region of the CGGC terrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号