首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of two quiescent filaments show oscillatory variations in Doppler shift and central intensity of the He i 10830 Å line.The oscillatory periods range from about 5 to 15 min, with dominant periods of 5, 9, and 16 min. The 5-min period is also detected in the intensity variations, after correction for atmospheric effects. Doppler shifts precede intensity variations by about one period. The possibility that the oscillations are Alfvén waves is discussed.The Doppler signals of the filament form fibril-like structures. The fibrils are all inclined at an angle of about 25° to the long axis of the filament. The magnetic field has a similar orientation relative to the major direction of the filament, and the measured Doppler signals are apparently produced by motions along magnetic flux tubes threading the filament.The measured lifetimes of the small-scale fibrils of quiescent disk filaments are very likely a combined effect of intensity modulations and reshuffling of the structures.  相似文献   

2.
Line profiles of He ii 4686 Å and He i 4713 Å from active regions in the chromosphere were observed during the total solar eclipse of February 16, 1980, with a grazing incidence objective grating spectrograph. The Doppler width of the He i triplet line of 4713 Å increases with height and the average width is compatible with width of metallic and hydrogen lines, suggesting that the kinetic temperature of He i triplet emitting region is T 8000 K. This can only be explained by recombination after photo-ionization due to coronal UV radiation. The Doppler width of the Paschen line of He ii 4686 is, without any correction for the separation of subcomponents of the line nor non-thermal velocity, 18.4 km s-1. This line width also shows a tendency to increase with height. After comparison with Doppler widths of He i 4713 and the EUV lines, and a necessary subtraction of non-thermal velocity, it is shown that this line is emitted in a 2 × 104 K temperature region, which again supports the view that this line is emitted through the recombination process after photoionization due to coronal XUV radiation below 228 Å.  相似文献   

3.
The Na i D emission lines are found to brighten temporarily in restricted regions of quiescent prominences and we call the phenomena the Na i D brightenings. The comparison of observed intensities of Na i D lines with model calculations shows that the phenomena is attributed to a kind of local activation of quiescent prominences accompanied by mass motions. The Na i D lines are emitted from extraordinarily high pressure regions in which the pressure rises up to 0.37 2.7 dyn cm–2 and the temperature seems to be in the range between 5800 7000 K. The line-of-sight velocity of the mass motions amounted to several tens of km s–1 in some Na i D emitting prominences investigated. The life time of the phenomena is estimated to be about several tens of minutes.  相似文献   

4.
Large-scale morphological waves with wavelengths of order 30° and amplitude=1/8 exist in several long Hi filaments in a 540 square degrees of sky aroundl=230°,b=+40°. The extent of the longest filament is greater than 72°, the limit set by the boundaries of the area surveyed. TheHi gas appears to be controlled by magnetic fields and the motion within flux tubes, determined by analysis of velocity along the filament axes, shows the presence of wave patterns with amplitude 5 to 6 km s–1 on an angular scale similar to that seen in the spatial structure projected on the sky.  相似文献   

5.
We discuss the longitudinal component of the magnetic field, B , based on data from about 135 quiescent prominences observed at Climax during the period 1968–1969. The measurements are obtained with the magnetograph which records the Zeeman effect on hydrogen, helium and metal lines. Use of the following lines, H; Hei, D3, Hei, 4471 Å; Nai, Di and D2, leads to the same value for the observed magnetic field component in these prominences. For more than half of the prominences their mean field, B , satisfy the inequalities 3 G B 8 G, and the overall mean value for all the prominences is 7.3 G. As a rule, the magnetic field enters the prominence on one side and exits on the other, but in traversing the prominence material, the field tends to run along the long axis of the prominence.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
The small-scale structure of solar magnetic fields has been studied using simultaneous recordings in the spectral lines Fe i 5250 Å and Fe i 5233 Å, obtained with the Kitt Peak multi-channel magnetograph. We find that more than 90% of the magnetic flux in active regions (excluding the sunspots), observed with a 2.4 by 2.4 aperture, is channelled through narrow filaments. This percentage is even higher in quiet areas. The field lines in a magnetic filament diverge rapidly with height, and part of the flux returns back to the neighbouring photosphere. Therefore the strong fields within a magnetic filament are surrounded by weak fields of the order of a few gauss of the opposite polarity. The field-strength distribution within a filament, including the surrounding opposite-polarity fields, seems to be almost the same for all filaments within a given active or quiet region.The analysis of a scan made during an imp. 2 flare showed that observations during and after the flare would give a fictitious decrease of the magnetic energy in the region by a factor of 2–3 due to line-profile changes during the flare.Visiting Astronomer, Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

7.
Measurements of the Sun in the near-infrared He i 10830 Å absorption line were performed using the echelle spectrograph with a dispersion of 6.71 mÅ per pixel at the Vacuum Tower Telescope (German Solar Telescopes, Teide Observatory, Izaña, Tenerife, Spain) on May 26, 1993. These measurements were compared with full-disc soft X-ray images of the Sun (Japanese solar satellite Yohkoh), full-disc solar images in H (Big Bear Solar Observatory), full-disc solar images in the He i 10830 Å line (National Solar Observatory, Kitt Peak) and with full-disc microwave solar maps at 37 GHz (Metsähovi Radio Research Station). In the He 10830 Å line the Sun displays a limb darkening similar to that in the visible part of the spectrum. Active regions and H filaments show a strong absorption in the He 10830 Å line, whereas the absorption is weak in coronal holes.  相似文献   

8.
Hei 10830 Å spectroheliograms of a major 3N two-ribbon flare occurring in Boulder Region 3885/3886 early on 4 September, 1982 are discussed and compared with H and soft X-ray observations of the event. This flare, observed for more than 60 hr in Hei 10830, was associated with the eruption of a large filament in the active region complex, the formation of coronal holes, a long-duration soft X-ray event, and was the probable source of a earthward coronal mass ejection and the largest geomagnetic storm of this solar cycle. The results of this study suggest the Hei flare is a chromospheric manifestation of the X-ray coronal loop structures associated with flares.Visitor, National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

9.
We have calculated the emission spectra of hydrogen and sodium atoms in the cool part of prominence models which satisfy simultaneously the constraints of radiative transfer, statistical equilibrium and charge-particle conservations.In the considered range of our model parameters, emission strengths of H and Nai D lines increase with the temperature and the total number density. Low-pressure models raise the ionization rate highly but yield very weak Nai D line intensities, since these model prominences contain small amounts of free electrons and sodium atoms which have a deep relation with the formation of sodium lines. We find that sodium D lines should be emitted in the high pressure region of prominences, and that their intensities are difficult to attain in the cool core of any model prominence with a temperature as low as 4000 K. In order to explain consistently the spectral emissions of H and Nai D lines observed in quiescent prominences, a total number density higher than 4 x 1011 cm-3 and a temperature over 5000 K are required at least in the cool part of prominences.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 282.  相似文献   

10.
A technique developed for analysing line profiles with both speed and high accuracy was used to study the physical conditions of a coronal formation near a quiescent prominence. Detailed analyses of five coronal lines (Fe xiv λ 5303, Fe x λ 6374, Ni xv λ 6702, Fe xv λ 7059, and Fe xi λ 7892) provided total intensities, Doppler width temperatures, ionization temperatures, and velocities. Dissimilar spatial fluctuations in intensity are obvious for ions grouped according to (low vs high) ionization potentials. The intensity of the green line shows a local minimum around the observed quiescent prominence; a corresponding but much more diffuse pattern is visible in the red line intensity. Large differences are observed in temperatures derived by different means. In particular, , while , and . The differences between and are taken as direct evidence of temperature inhomogeneity. One can thus put little significance in T e (xi/x). T D(λ5303) and T e (xv/xiv) fluctuate nearly in parallel at each slit height, with a weak local minimum evident around the prominence. The discrepancy between these two can be removed if a non-thermal turbulent motion of 6–16 km s−1 is assumed. Variations with height of both T D(λ5303) and T e (xv/xiv) suggest that the coronal temperature maximum is located no more than 15000 km above the top of spicules. A negative gradient of about 6 deg km−1 is found in the height variation of T D(λ5303). The height variation of the green line wavelength shows that the majority of coronal material in this region is flowing from west to east on the Sun, with the highest velocity of 12 km s−1 found at the lowest heights. This motion is in the same sense as that of the nearby coronal rain, as determined both from the spectra and wavelength-shifted Hα filtergrams. Superposed on the above flow is a systematic velocity field of up to ±5 km s−1. This field similarly reaches maximum amplitudes at lowest heights showing a local maximum around the prominence. On leave from Institute of Earth Science and Astrophysics, Shiga University, Ohtsu 520, Japan, as 1973–75 National Academy of Science/National Research Council Senior Post-Doctoral Research Associate at Sacramento Peak Observatory.  相似文献   

11.
O vi ( = 1032 Å) profiles have been measured in and above a filament at the limb, previously analyzed in H i, Mg ii, Ca ii resonance lines (Vial et al., 1979). They are compared to profiles measured at the quiet Sun center and at the quiet Sun limb.Absolute intensities are found to be about 1.55 times larger than above the quiet limb at the same height (3); at the top of the prominence (15 above the limb) one finds a maximum blue shift and a minimum line width. The inferred non-thermal velocity (29 km s–1) is about the same as in cooler lines while the approaching line-of-sight velocity (8 km s–1) is lower than in Ca ii lines.The O vi profile recorded 30 above the limb outside the filament is wider (FWHM = 0.33 Å). It can be interpreted as a coronal emission of O vi ions with a temperature of about 106 K, and a non-thermal velocity (NTV) of 49 km s–1. This NTV is twice the NTV of quiet Sun center O vi profiles. Lower NTV require higher temperatures and densities (as suggested by K-coronameter measurements). Computed emission measures for this high temperature regime agree with determinations from disk intensities of euv lines.  相似文献   

12.
The present paper is devoted to the interpretation of linear polarization data obtained in 14 quiescent prominences with the Pic-du-Midi coronagraph-polarimeter by J. L. Leroy, in the two lines Hei D3 andH quasi-simultaneously. The linear polarization of the lines is due to scattering of the anisotropic photospheric radiation, modified by the Hanle effect due to the local magnetic field. The interpretation of the polarization data in the two lines is able to provide the 3 components of the magnetic field vector, and one extra parameter, namely the electron density, because the linear polarization of H is also sensitive to the depolarizing effect of collisions with the electrons and protons of the medium. Moreover, by using two lines with different optical thicknesses, namely Hei D3, which is optically thin, and H, which is optically thick ( = 1), it is possible to solve the fundamental ambiguity, each line providing two field vector solutions that are symmetrical in direction with respect to the line of sight in the case of the optically thin line, and which have a different symmetry in the case of the optically thick line.It is then possible to determine without ambiguity the polarity of the prominence magnetic field with respect to that of the photospheric field: 12 prominences are found to be Inverse polarity prominences, whereas 2 prominences are found to be Normal polarity prominences. It must be noticed that in 12 of the 14 cases, the line-of-sight component of the magnetic field vector has a Normal polarity (to the extent that the notion of polarity of a vector component is meaningful; no polarity can be derived in the 2 remaining cases); this may explain the controversy between the results obtained with methods based on the Hanle effect with results obtained through the Zeeman effect. A dip of the magnetic field lines across the prominence has been assumed, to which the optically thick H line is sensitive, and the optically thin Hei D3 line is insensitive.For the Inverse prominences, the average field strength is 7.5±1.2 G, the average angle,, between the field vector and the prominence long axis is 36° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 29° ± 20°, and the average electron density is 2.1 × 1010 ± 0.7 × 1010 cm–3. For the Normal prominences, the average field strength is 13.2±2.0 G, the average angle,, between the field vector and the prominence long axis is 53° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 0° ± 20° (horizontal field), and the average electron density is 8.7 × 109 ± 3.0 × 109 cm–3.  相似文献   

13.
Six spectrograms of the solar spectrum were obtained in the region from 1970 to 1800 at a resolution of approximately 2 × 105 with a rocket-borne spectrograph using an echelle as the principal dispersing element. Reduction of data obtained has been completed in the region from 1946.5 to 1963.5 , in which 79 absorption features are measured and 33 identified. Most of the identified stronger lines are due to Fei. A significant feature of the solar spectrum in this region coincides with the raie ultime of Sei.  相似文献   

14.
I ±V profiles of the Fei 5247 and 5250 lines in the 2B flare of June 16, 1989 have been analyzed. A bright knot of the flare outside the sunspot where the central intensity of H reached a peak value of 1.4 (relative to the continuum) has been explored. The Fei 5250/Fei 5247 magnetic line ratio based on the StokesV peak separations of these lines at five evolutionary phases of the flare (including the start of the flare, the flash phase, the peak and 16 min after the peak) has been analyzed. It was found that the StokesV peak separation for the Fei 5250 line was systematically larger than that of the Fei 5247 line. This is evidence for the presence in the flare of small-scale flux tubes with kG fields. The flux tube magnetic field strength was about 1.1 kG at the start of the flare and during the flash phase, 1.55 kG during the peak, and 1.38 kG 16 min after the peak. The filling factor,, appears to decrease monotonically during the flare.  相似文献   

15.
A solar flare with both H and Fe i 5324 emissions was observed in AR 7529 (S13, E65) on 24 June, 1993 at the Bejing Astronomical Observatory. Our calculations show that the Fe i 5324 emission region of the flare was located in the low photosphere at a height of about 180 km above 5000 = 1, which is lower than many previous studies of white-light flares. To study a Fe i 5324 flare, which represents a kind of extreme case in solar flares, would be useful for clarifying some arguments in the researches of white-light flares as well as for understanding the mechanism of solar flares.The synthetic analyses from vairous features of the flare lead to the following possible exciting mechanism of the Fe i 5324 flare: owing to the flow of energetic electrons from the corona and probably also the thermal conduction downward into the lower atmosphere, a condensation with a temperature higher than that below it was formed near the transition region. Then the low photosphere was heated through backwarming. The Fe i 5324 flare occurred as an indicator of the excitation in the low photosphere.  相似文献   

16.
A sequence of images taken at different positions in the resonance lines of Ca ii, Mg ii, and H i was obtained over a quiescent prominence with the LPSP instrument on OSO-8. Ca ii K (and H) profiles are reconstructed at different locations in the prominence with a (10 × 5) arc sec2 resolution. Significant variations of FWHM and line shifts are found: FWHM range from 0.14 Å to 0.5 Å; blue shifts reach about 14 km s-1. The ratio of K to H absolute intensities shows a large spread around the average value of 1.2. The same ratio for the Mg ii lines in the whole prominence is higher (1.7), a fact already noticed at the edge of an active prominence (Vial et al., 1979). The ionization degree, as measured by the L/Ca K ratio, shows noticeable variations within the prominence. The L intensity is about 0.3 times the intensity measured in the quiet Sun, and the L/L ratio is less than one half the disk value. These results indicate important variations of the thermal conditions inside the prominence.DASOP, Observatoire de Paris, 92190 Meudon, France.  相似文献   

17.
The solar transition region in the neighbourhood of prominences has been studied from observations with the Ultraviolet Spectrometer and Polarimeter of NASA's Solar Maximum Mission satellite. Dopplergrams from observations of the transition-region lines Civ 1548 Å and Siiv 1393 Å, which are formed at about 105 K, give velocity amplitudes typically in the range ± 15 km s-1. Prominences are found to be located very close to dividing lines between areas of up- and down-draughts in the transition-region. The observed pattern suggests that the 105 K gas flows take place within arcades of magnetic loops, which most likely are part of the supporting magnetic structure for the prominence matter. An additional band of blue-ward Doppler shifts is frequently seen close to quiescent prominences. This may be the source of outward flowing matter along the helmet streamers above filament channels.  相似文献   

18.
Schultz  R. B.  White  O. R. 《Solar physics》1974,35(2):309-316
We obtained simultaneous spectra with a spatial resolution of 1/2 and a temporal resolution of 15 s in H, Ca ii-K, Caii 8542 Å, and three Fei lines of the sunspot group responsible for the large flares of August, 1972 (McMath No. 11976). A time series taken 1972, August 3 in the Fei 6173 Å Zeeman sensitive line was analyzed for oscillations of field strength and the angle between the field and the line of sight, and for changes of the field associated with the Ca ii-K umbral flashes discovered by Beckers and Tallant (1969). The power spectra show no significant peaks, conflicting with the results of Mogilevskii et al. (1972) who reported oscillations in the longitudinal component of the field strength with periods of 56, 90, and 150 s. Changes in the field were not observed to be correlated with the occurrence of umbral flashes. These results place restrictions on magnetic modes of energy transport between the photospheric layers and the chromospheric layers where the umbral flashes are observed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
Previous observations of spatially-resolved vertical velocity variations in ten lines of Fe i spanning the height range 0 h 1000 km are re-analyzed using velocity weighting functions. The amplitudes and scale heights of granular and oscillatory velocities are determined, as well as those of the remaining unresolved velocities. I find that the optimal representation of the amplitude of the outward-decreasing granular velocities is an exponentially decreasing function of height, with a scale height of 150 km and a velocity at zero height of 1.27 km s–1. The optimal representation of the same quantities for oscillatory velocities is an exponential increase with height, with a scale height of 1100 km and a velocity at zero height of 0.35 km s–1. The remaining unresolved velocities decrease with height, with a scale height of 380 km and a velocity at zero height of 2.3 km s–1.  相似文献   

20.
Using a 32 minutes sequence of observation, brightness and velocity fluctuations in the wings of the Mgi line at 5172.7 Å and Fe ii line at 5197.578 Å are analysed. The analysis of phase shifts and amplitude ratios leads to the following conclusions:
(1)  In the frequency range from (400s)–1 to (130s)–1, we find the existence of three modes of waves: internal gravity, evanescent and propagating acoustic waves which appear with increasing frequency. A satisfactory agreement for velocity between observations and theory in the range of horizontal wavelengths \s>5000km with a theoretically local relaxation time –180s-40s is obtained. The calculation of intensity fluctuations shows that the Mgi line is sensitive to temperature and density fluctuations while the Fe ii line is only sensitive to temperature perturbation. For the best fit with the same value of –1 to both lines (i.e., Fe ii and Mg i) it is found necessary that the density effect should be taken into account for the Mg i intensity fluctuations. The relaxation time deduced from observed intensity fluctuations seems to decrease with the period of oscillation. This suggests the presence of a dissipation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号