首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
Sweet 《Sedimentology》1999,46(1):171-187
The Permian Upper Rotliegend Group in offshore UK Quadrants 42, 43, 47 and 48 comprises a sequence of mixed aeolian/fluvial/playa deposits. These deposits are up to 300 m thick and contain a record of the interaction between desert fluvial systems and adjacent aeolian and playa environments. The relative dominance of water vs. wind transport and deposition in this stratigraphic package was a function of fluctuations in the discharge of ephemeral fluvial systems and changes in water table/playa level driven by a combination of climatic change and syndepositional tectonics. The Rotliegend sedimentary record is punctuated by numerous surfaces recording erosion by wind and water. The origin of these surfaces is mostly climatic, with periods of increased runoff resulting in fluvial incision, especially near active faults. During periods of reduced runoff, wind erosion of fluvial deposits occurred, with fluvially derived sand being reworked into expanding aeolian dune fields. Wind erosion also occurred as a rising water table isolated dunes from their sediment supply, resulting in deflation of dunes down to the water table. These surfaces formed in a basin that was subsiding. Thus, even in a background of overall increasing accommodation space, climatically driven falls in the water table allowed for periods of erosion. The occurrence of significant erosion, especially near syndepositional fault zones, resulted in a sedimentary record that shows pronounced lateral as well as vertical facies variations.  相似文献   

4.
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times.  相似文献   

5.
The Upper Jurassic Guará Formation comprises an 80–200 m thick continental succession exposed in the western portion of the Rio Grande do Sul State (Brazil). It comprises four distinct facies associations: (i) simple to locally composite crescentic aeolian dune sets, (ii) aeolian sand sheets, (iii) distal floodflows, and (iv) fluvial channels. The vertical stacking of the facies associations defines several 5–14 m thick wetting-upward cycles. Each cycle starts with aeolian dune sets followed by aeolian sand sheets deposits and culminating in either fluvial channels or distal flood strata. Within some cycles, aeolian sand sheets are absent and fluvial deposits rest directly above aeolian dune facies. The transitions from one facies association to another are abrupt and marked by erosive surfaces that delineate distinct episodes of sediment accumulation. The origin of both the wetting-upward cycles and the erosive surfaces was controlled by the ground-water table level, dry sand availability and aeolian and fluvial sediment transport capacity variations, related to climatic fluctuations between relatively arid and humid conditions. Preservation of the fluvial–aeolian deposits reflects an overall relative water table rise driven by subsidence.  相似文献   

6.
Aeolian sand sheets, which are characterized by low relief surfaces that lack dunes, are common in arid and semi‐arid climatic settings. The surface of an aeolian sand sheet can either be stable and subject to pedogenetic effects, or unstable such that it is affected by deflation or sedimentation. The Marília Formation (Late Cretaceous) may be interpreted as an ancient aeolian sand sheet area, where alternating phases of stability and instability of the accumulation surface have been recorded. Detailed field studies were carried out in several sections of the Marília Formation, where cyclic alternations of palaeosols and aeolian deposits were evident, using palaeopedological and facies analysis methods, supported in the laboratory by the analysis of rock samples, cut and polished in slabs, thin sections, scanning electron microscope images and X‐ray diffraction data from the clay minerals. The deposits comprise three lithofacies that, in order of abundance, are characterized by: (i) translatent wind‐ripple strata; (ii) flood deposits; and (iii) ephemeral river channel deposits. Palaeosols constitute, on average, 65% of the vertical succession. Three types of palaeosols (pedotypes) are recognized: (i) Aridisols; (ii) Entisols; and (iii) Vertisols. Erosional surfaces due to aeolian deflation divide the top of the palaeosol profiles from the overlying aeolian deposits. The palaeoenvironmental interpretation of the deposits and the palaeosols allows the depositional system of the Marília Formation to be defined as a flat area, dominated by aeolian sedimentation, with subordinate ephemeral river sedimentation, and characterized by a dry climatic setting with occasional rainfall. The climate is the main forcing factor controlling the alternation between episodes of active sedimentation and periods of palaeosol development. A climate‐controlled model is proposed in which: (i) the palaeosols are indicative of a stable surface that is developed during the more humid climatic phases; and (ii) the erosional surfaces and the overlying aeolian sediments attest to periods of deflation and subsequent sedimentation, thereby increasing the availability of sediment during the drier climatic phases. The ephemeral fluvial deposits mark the more humid climatic conditions and contribute to the lagged sediment influx caused during the drier periods by the erosion of previously stored sediment.  相似文献   

7.
8.
Sedimentological studies of a 30 m thick coastal cliff section within the Middle Proterozoic Eriksfjord Formation in western South Greenland reveals three distinct types of fluvial sand sheet deposits that reflect perennial streams (Type I), semi-perennial streams (Type II), and ephemeral flash floods (Type III). Perennial river sand sheets are characterised by co-sets of medium-scale trough cross-beds, interbedded with isolated medium- and large-scale, high-angle, tabular cross-beds. Indications of desiccation or subaerial exposure are absent. Semi-perennial fluvial sand sheets consist predominantly of low-angle cross-beds, interbedded with isolated sets of high-angle tabular cross-beds with common reactivation surfaces. Horizontal lamination and climbing ripple lamination form subordinate structures. Associated with the sand sheets are adhesion structures and 0.05–0.4 m thick sets of wind ripple-lamination indicating periods of subaerial exposure and aeolian reworking. High-energy ephemeral flash flood sand sheets consist almost exclusively of planar-parallel lamination and climbing ripple lamination with some isolated sets of low-angle cross-bedding. Scouring and internal truncation surfaces are common. The three types of sand sheets are considered to reflect deposition under changing climatic conditions, varying from humid to arid or semi-arid. Aeolian deposits are preserved within the sand sheets showing characteristics of dominantly perennial flow punctuated by shorter periods of desiccation (Type II), while sand sheets showing features typical of arid and or semi-arid flow conditions (Type III) contain no preserved aeolian deposits. This selective preservation is interpreted to be a result of the combined effect of groundwater table level and fluvial style which in turn are inferred to have been controlled by the climatic regime. The deposits show that during pre-vegetational times the preservation of aeolian deposits, under certain conditions, may be more optimal in fluvial systems formed in a humid climate than in fluvial systems formed under semi-arid or arid circumstances. The occurrence of aeolian deposits within a Precambrian succession of fluvial deposits therefore, need not be an indication of the most arid environmental conditions.  相似文献   

9.
Meltwater flows emanating from the Pyrenees during the Pleistocene constructed a braided outwash plain in the Ebro Basin and led to the karstification of the Neogene gypsum bedrock. Synsedimentary evaporite dissolution locally increased subsidence rates and generated dolines and collapses that enabled the accumulation and preservation of outwash gravels and associated windblown deposits that were protected from erosion by later meltwater flows. In these localized depocentres, maximum rates of wind deceleration resulted from airflow expansion, enabling the accumulation of cross‐stratified sets of aeolian strata climbing at steep angles and thereby preserving up to 5 m thick sets. The outwash plain was characterized by longitudinal and transverse fluvial gravel bars, channels and windblown facies organized into aeolian sand sheets, transverse and complex aeolian dunes, and loess accumulations. Flat‐lying aeolian deposits merge laterally to partly deformed aeolian deposits encased in dolines and collapses. Synsedimentary evaporite dissolution caused gravels and aeolian sand deposits to subside, such that formerly near‐horizontal strata became inclined and generated multiple internal angular unconformities. During episodes when the wind was undersaturated with respect to its potential sand transporting capacity, deflation occurred over the outwash plain and coarse‐grained lags with ventifacts developed. Subsequent high‐energy flows episodically reached the aeolian dune field, leading to dune destruction and the generation of hyperconcentrated flow deposits composed in part of reworked aeolian sands. Lacustrine deposits in the distal part of the outwash plain preserve rhythmically laminated lutites and associated Gilbert‐type gravel deltas, which developed when fluvial streams reached proglacial lakes. This study documents the first evidence of an extensive Pleistocene proglacial aeolian dune field located in the Ebro Basin (41˙50° N), south of what has hitherto been considered to be the southern boundary of Pleistocene aeolian deposits in Europe. A non‐conventional mechanism (evaporite karst‐related subsidence) for the preservation of aeolian sands in the stratigraphic record is proposed.  相似文献   

10.
The Pliocene Norwest Bend Formation is a well‐preserved succession of terrestrial and shallow‐marine deposits in the Murray Basin, South Australia. Sediments in this unit consist of two discrete terrigenous clastic‐rich, decametre‐scale sequences, or informal members, which record episodes of marine incursion during the Early and Late Pliocene respectively. The base of each sequence is a transgressive lag and/or strandline deposit that is transitional upwards into a highstand, subtidal, terrigenous clastic and cool‐water carbonate sediment accumulation. The top of each sequence is incised by fluvial channels that are filled by river deposits which formed as relative sea‐level fell and terrestrial environments prograded basinward. Sedimentological data suggest that gross stratigraphic architecture was primarily determined by glacioeustasy. Differences in sedimentary style between these two sequences, however, reflect a major climatic change that took place in southern Australia during the mid‐Pliocene. The lower quartzose sand member is formed of siliciclastic sediment derived from prolonged, deep, subaerial weathering and contains a bivalve‐dominated, cool‐temperate, open‐marine mollusc assemblage. These sediments accumulated under an equitable, relatively warm, humid climate. The Murray Basin during this time, because of high fluvial discharge, was a salt‐wedge estuary with typical estuarine circulation. In contrast, the upper, oyster‐rich member is typified by large monospecific oyster buildups that grew in restricted coastal environments. Strandline deposits contain a warm‐temperate skeletal assemblage. Contemporaneous aeolian sediments accumulated under warm, semi‐arid climatic conditions. Well‐developed ferricrete, silcrete and calcrete horizons reflect cyclic conditions of rainwater infiltration and evaporation in the seasonally dry climate that typifies southern Australia today. Highly seasonal rainfall produced an estuary that fluctuated annually from being well to partially mixed. These Pliocene sediments support the notion that mollusc‐rich facies are the signature of cool‐water carbonate accumulations in inboard neritic environments. Unlike bryozoans that dominate the outer parts of Cenozoic cool‐water carbonate shelves, molluscs evolved to exploit an array of coastal ecosystems with wide salinity variations and variable sedimentation rates.  相似文献   

11.
Precambrian fluvial deposits have been traditionally described as architecturally simple, forming shallow and wide braidplains with sheet‐like geometry. The varied architecture and morphodynamics of the 1·6 Ga Ellice Formation of Elu Basin, Nunavut, Canada, are examined from detailed studies of section and planform exposures along coastal platforms and stepped cliffs. The Ellice Formation overlies older Proterozoic sandstones and Archean crystalline rocks, recording sedimentation in fluvial, aeolian, coastal and nearshore‐marine environments. The fluvial deposits display palaeoflow towards the west/north‐west, while overlying shallow‐marine deposits record transgression towards the east/south‐east. The Ellice Formation displays dispersed palaeoflow at its base, and also at higher stratigraphic levels, where fluvial and aeolian deposits are associated. Elsewhere, mainly unimodal palaeoflow points to extensive low‐sinuosity fluvial deposition. Within the terrestrial deposits, fluvial, fluvial–aeolian and coastal architectural elements are recognized. Fluvial elements comprise cross‐bedded sandstone and minor conglomerate, exhibiting an overall fining‐upward trend with associated decrease in preservation, dimension and amalgamation of channel bodies. These motifs are interpreted to portray a shift in depositional environment from proximal trunk rivers to distal alluvial plains. Low‐sinuosity fluvial elements are the most common, and include major channel bodies, elongate side bars and mid‐channel bars with well‐developed scroll topography. High‐sinuosity channel‐bar complexes exhibit upbar‐flow rotation and yield evidence of bar expansion coupled with rotation and translation. Fluvial–aeolian elements are composed of aeolian dunes juxtaposed with isolated channel bodies and bank‐attached bars. Minor mixed fluvial–aeolian sheets record local deposition in unconfined settings (possibly floodbasins) or inter‐distributary highlands. Finally, coastal elements comprise small deltaic complexes composed of sand‐rich distributary‐channel bodies feeding heterolithic mouth bars. Overall, the sedimentary record of the Ellice Formation demonstrates an example from the Precambrian where alluvium was locally characterized by a higher geomorphic variability than previously recognized.  相似文献   

12.
The Lower Cretaceous geological record of the intracratonic Paraná Basin in southern Brazil comprises a thick succession of aeolian sandstones and volcanic rocks. The intercalation between aeolian sandstone and volcanic floods allowed the preservation of distinct aeolian genetic units. Each genetic unit represents an accumulation episode, bounded by supersurfaces, that coincides with the base of lava flood events. The entire package can be subdivided into a Lower Genetic Unit, which corresponds to aeolian sandstones preserved below the initial lava flows (Botucatu Formation), and an upper set of genetic units, which comprises interlayered aeolian deposits and lava floods (Serra Geral Formation). The Lower Genetic Unit is up to 100 m thick. Its base is composed of ephemeral stream and aeolian sand sheet deposits that are overlain by cross‐bedded sandstones whose origin is ascribed to simple, locally composite, crescentic and complex linear aeolian dunes. Aeolian accumulation of the lower unit was possible as a result of the existence of a wide topographic basin, which caused wind deceleration, and a large sand availability that promoted a positive net sediment flux. The Upper Genetic Units comprise isolated sand bodies that occur in two different styles: (1) thin lenses (<3 m thick) formed by aeolian sand sheets; and (2) thick sand lenses (3–15 m) comprising cross‐bedded cosets generated by migration and climbing of simple to locally composite crescentic aeolian dunes. Accumulation of the aeolian strata was associated with wind deceleration within depressions on the irregular upper surface of the lava floods. The interruption of sedimentation in the Lower and Upper Genetic Units, and related development of supersurfaces, occurred as a result of widespread effusions of basaltic lava. Preservation of both wind‐rippled topset deposits of the aeolian dunes and pahoehoe lava imprints indicates that lava floods covered active aeolian dunes and, hence, protected the aeolian deposits from erosion, thus preserving the genetic units.  相似文献   

13.
Distinct styles of fluvial deposition in a Cambrian rift basin   总被引:1,自引:0,他引:1  
Process‐based and facies models to account for the origin of pre‐vegetation (i.e. pre‐Silurian) preserved fluvial sedimentary architectures remain poorly defined in terms of their ability to account for the nature of the fluvial conditions required to accumulate and preserve architectural elements in the absence of the stabilizing influence of vegetation. In pre‐vegetation fluvial successions, the repeated reworking of bars and minor channels that resulted in the generation and preservation of broad, tabular, stacked sandstone‐sheets has been previously regarded as the dominant sedimentary mechanism. This situation is closely analogous to modern‐day poorly vegetated systems developed in arid climatic settings. However, this study demonstrates the widespread presence of substantially more complex stratigraphic architectures. The Guarda Velha Formation of Southern Brazil is a >500 m‐thick synrift fluvial succession of Cambrian age that records the deposits and sedimentary architecture of three distinct fluvial successions: (i) an early rift‐stage system characterized by coarse‐grained channel elements indicative of a distributive pattern with flow transverse to the basin axis; and two coeval systems from the early‐ to climax‐rift stages that represent (ii) an axially directed, trunk fluvial system characterized by large‐scale amalgamated sandy braid‐bar elements, and (iii) a distributive fluvial system characterized by multi‐storey, sandy braided‐channel elements that flowed transverse to the basin axis. Integration of facies and architectural‐element analysis with regional stratigraphic basin analysis, palaeocurrent and pebble‐provenance analysis demonstrates the mechanisms responsible for preserving the varied range of fluvial architectures present in this pre‐vegetation, rift‐basin setting. Identified major controls that influenced pre‐vegetation fluvial sedimentary style include: (i) spatial and temporal variation in discharge regime; (ii) the varying sedimentological characteristics of distinct catchment areas; (iii) the role of tectonic basin configuration and its direct role in influencing palaeoflow direction and fluvial style, whereby both the axial and transverse fluvial systems undertook a distinctive response to syn‐depositional movement on basin‐bounding faults. Detailed architectural analyses of these deposits reveal significant variations in geometry, with characteristics considerably more complex than that of simple, laterally extensive, stacked sandstone‐sheets predicted by most existing depositional models for pre‐vegetation fluvial systems. These results suggest that the sheet‐braided style actually encompasses a varied number of different pre‐vegetation fluvial styles. Moreover, this study demonstrates that contemporaneous axial and transverse fluvial systems with distinctive architectural expressions can be preserved in the same overall tectonic and climatic setting.  相似文献   

14.
Abstract Accumulation within the unconformity‐based Hauterivian Avilé Sandstone of the Neuquén Basin, Argentina, was characterized by a close interaction between fluvial and aeolian processes developed after a major relative sea‐level drop that almost completely desiccated the entire basin and juxtaposed these non‐marine deposits on shallow‐ and deep‐marine facies. Aeolian deposits within the Avilé Member include dune (A1) and sand sheet (A2) units that characterize the lower part of the unit. Fluvial deposits comprise distal flood units (F1) interbedded with aeolian dune deposits in the middle part of the succession, and low‐ (F2) and high‐sinuosity (F3) channels associated with floodplain deposits (F4) towards the top. The internal characteristics of the aeolian system indicate that its accumulation was strongly controlled by water‐table dynamics, with the development of multiple horizontal deflation super surfaces that truncate dune deposits and form the basal boundary of flood deposits and sand sheet units. A long‐term wetting‐upward trend is recorded throughout the entire unit, with an increase in fluvial activity towards the top and the development of a more permanent fluvial system overlying a major erosion surface interpreted as a sequence boundary. The upward increase in water‐table influence might be related to relative sea‐level rise, which controlled the position of the water table and allowed the accumulation of tabular aeolian units bounded by horizontal deflation surfaces. This high‐frequency, eustatically driven process acted together with a long‐term climatic change towards wetter conditions.  相似文献   

15.
The Hornby Bay Group is a Middle Proterozoic 2.5 km-thick succession of terrestrial siliciclastics overlain by marine siliciclastics and carbonates. A sequence of conglomeratic and arenaceous rocks at the base of the group contains more than 500 m of mature hematitic quartz arenite interpreted to have been deposited by migrating aeolian bedforms. Bedforms and facies patterns of modern aeolian deposits provided a basis for recognizing two sequences of aeolian arenite. Both sequences interfinger with alluvial—wadi fan conglomerates and arenites deposited by braided streams. Depositional processes, facies patterns and paleotopographic position of the arenites are consistent with modern sand sea dynamics.Distal aeolian facies in both sequences are composed of trough crossbed megasets deposited by climbing, sinuous-crested, transverse dunes. Megasets comprise a gradational assemblage of tabular to wedge-planar cosets formed by deflation/reactivation of dune lee slopes and migration of smaller superposed aeolian bedforms (small dunes and wind ripples). Megasets in the proximal facies are thinner, display composite internal stratification and have a tabular-planar geometry which suggests that they were formed by smaller, straight-crested transverse dunes. Most stratification within the crossbeds is inferred to have formed by the downwind climbing of aeolian ripples across the lee slopes of dunes.Remarkably few Precambrian aeolian deposits have been reported previously. This seems anomalous, because most Precambrian fluvial sediments appear to have been deposited by low sinuosity (braided) streams, the emergent parts of which are prime areas for aeolian deflation. Frequent floods and rapid lateral migration of Precambrian humid climate fluvial systems probably restricted aeolianite deposition to arid paleoclimates. Thus the apparent anomaly may reflect non-recognition and/or non-preservation of aeolianites and/or variations in some aspect of sand sea formation and migration unique to the Precambrian. Reconstruction of the Hornby Bay Group aeolianites using recently developed criteria for their recognition suggests that the latter reason did not exert a strong influence.  相似文献   

16.
塔里木盆地喀什凹陷侏罗系沉积特征及其演化   总被引:2,自引:2,他引:2  
野外地质调查和室内地震解释认为,喀什凹陷侏罗系为陆相河流—湖泊沉积,整个侏罗纪代表了一个水体由浅—深—浅的沉积演化,早侏罗世莎里塔什组属干燥、氧化环境中的冲积扇沉积,到康苏组时演化为潮湿气候条件下的辫状河流沉积;中侏罗世盆地沉积范围扩大,出现湖泊和扇三角洲沉积,晚侏罗世盆地又演化为干燥—半干燥环境下的河流与冲积扇沉积。  相似文献   

17.
《Quaternary Science Reviews》2007,26(19-21):2661-2673
Extensive areas in the southern part of the Duero Tertiary Basin (Central Spain) are covered by aeolian sands. Presently, the aeolian system is relict but in its origin and development it can be described as a “wet aeolian system”. Climatic and environmental changes during the Holocene are typified by alternating humid and arid periods. These are recorded in the sedimentary record as either organic-rich sandy palaeosols or clean aeolian sand, respectively. Palaeosol dating (12 radiocarbon dated samples) and stratigraphical and sedimentological analysis of several dunefields in quarries and boreholes allow the distinction of four periods of palaeosol development since the Allerød.Aeolian sediments commonly rest on fluvial deposits, which were themselves the major source area for aeolian sands. These fluvial deposits have an age of about 14,000 cal yr BP. The first phase of aeolian activity postdates these fluvial sediments and has an upper age of about 12,000–11,700 cal yr BP, probably corresponding to the last cold oscillation of the Lateglacial (Younger Dryas). The second phase ranges from about 11,500 to 9500 cal yr BP, during which period the majority of dunes in the Tierra de Pinares area formed. This is also a major phase of aeolian activity in other areas of the Iberian Peninsula. A third and probably discontinuous phase of aeolian activity took place between 6800 and about 3000 cal yr BP. The age for this phase is supported by the presence of Visigothic burial sites covered by aeolian sands. The presence of charred material and degraded slipfaces clearly indicate stabilisation by vegetation and the final degradation of the aeolian system at the end of the fourth aeolian phase (990–540 cal yr BP). Minor aeolian activity has also occurred subsequently in this area, since aeolian sand movement was even reported in the 20th century.The aeolian phases can be tentatively correlated with aeolian phases in Europe. Aeolian activity tends to occur regionally during specific time-intervals, especially in dunefields with little human disturbance. This argues for a broad climatic forcing in Holocene aeolian accumulation, such has been previously suggested for the little ice age. The precise timing of these phases, however, is not strictly coincident, probably due to the delayed responses of aeolian environments to climatic and subsequent vegetation change.  相似文献   

18.
The continental Upper Triassic Tadrart Ouadou Sandstone Member was deposited in an extensional setting on the Pangaean continent, strongly influenced by a low‐latitude climatic regime (10° to 20° north). Complex interaction of basin subsidence and climatically driven processes led to high facies variability and a lack of correlatable units across the Argana Valley exposures. A process‐orientated approach integrating detailed facies with architectural element analysis was undertaken, which resulted in a multistage depositional model for the Tadrart Ouadou Sandstone Member. The basin‐scale model shows that basal alluvial fan and braided river systems are confined to the centre of the Argana Valley exposures. Aeolian deposits occur throughout the sequence, but dominate in the north. After a phase of playa deposition, prominent basin‐wide fluvial incision of up to 8 m marks the onset of perennial fluvial flow. These well‐sorted, internally complex and locally highly amalgamated fluvial sandstones are widespread throughout the basin and are focused in a north to south (south‐west) flowing channel system. After a final stage of aeolian sedimentation, sandstone deposition of the Tadrart Ouadou Sandstone Member in the Argana Valley is terminated rapidly by the onlap of lacustrine mudstones of the Sidi Mansour Member. The study revealed that, except for one pronounced period of perennial conditions, sedimentation is controlled largely by ephemeral fluvial flow, alternating ground water tables, deflation processes and periods with limited periodic local run‐off. The study highlights that facies architecture in the basin is the result of complex interaction of local syn‐sedimentary tectonics and the climatic regime within the basin, but also the climate of the catchment area to the east. The data suggest a proximal to mid‐distal basin setting in the rain‐shadow to the west of a mountain range (Massif Ancien), which exerted a strong control on the depositional environments of Triassic deposits exposed in this part of South‐west Morocco.  相似文献   

19.
The Pennsylvanian to Permian lower Cutler beds comprise a 200 m thick mixed continental and shallow marine succession that forms part of the Paradox foreland basin fill exposed in and around the Canyonlands region of south‐east Utah. Aeolian facies comprise: (i) sets and compound cosets of trough cross‐bedded dune sandstone dominated by grain flow and translatent wind‐ripple strata; (ii) interdune strata characterized by sandstone, siltstone and mudstone interbeds with wind‐ripple, wavy and horizontal planar‐laminated strata resulting from accumulation on a range of dry, damp or wet substrate‐types in the flats and hollows between migrating dunes; and (iii) extensive, near‐flat lying wind‐rippled sandsheet strata. Fluvial facies comprise channel‐fill sandstones, lag conglomerates and finer‐grained overbank sheet‐flood deposits. Shallow marine facies comprise carbonate ramp limestones, tidal sand ridges and bioturbated marine mudstones. During episodes of sand sea construction and accumulation, compound transverse dunes migrated primarily to the south and south‐east, whereas south‐westerly flowing fluvial systems periodically punctuated the dune fields from the north‐east. Several vertically stacked aeolian sequences are each truncated at their top by regionally extensive surfaces that are associated with abundant calcified rhizoliths and bleaching of the underlying beds. These surfaces record the periodic shutdown and deflation of the dune fields to the level of the palaeo‐water‐table. During episodes of aeolian quiescence, fluvial systems became more widespread, forming unconfined braid‐plains that fed sediment to a coastline that lay to the south‐west and which ran approximately north‐west to south‐east for at least 200 km. Shallow marine systems repeatedly transgressed across the broad, low‐relief coastal plain on at least 10 separate occasions, resulting in the systematic preservation of units of marine limestone and calcarenite between units of non‐marine aeolian and fluvial strata, to form a series of depositional cycles. The top of the lower Cutler beds is defined by a prominent and laterally extensive marine limestone that represents the last major north‐eastward directed marine transgression into the basin prior to the onset of exclusively non‐marine sedimentation of the overlying Cedar Mesa Sandstone. Styles of interaction between aeolian, fluvial and marine facies associations occur on two distinct scales and represent the preserved expression of both small‐scale autocyclic behaviour of competing, coeval depositional systems and larger‐scale allocyclic changes that record system response to longer‐term interdependent variations in climatic and eustatic controlling mechanisms. The architectural relationships and system interactions observed in the lower Cutler beds demonstrate that the succession was generated by several cyclical changes in both climate and relative sea‐level, and that these two external controls probably underwent cyclical change in harmony with each other in the Paradox Basin during late Pennsylvanian and Permian times. This observation supports the hypothesis that both climate and eustasy were interdependent at this time and were probably responding to a glacio‐eustatic driving mechanism.  相似文献   

20.
The repetitive sedimentology of many Precambrian sheet‐dominated fluvial sandstones favoured their attribution to unconfined depositional processes. This article presents outcrop evidence for deep‐channelled drainage in the 1·9 Ga Burnside River Formation of Kilohigok Basin, Arctic Canada. On the ground, sheet‐like sandbodies with ubiquitous cross‐bedding are at first consistent with classic, unconfined depositional models. However, satellite and oblique‐aerial imagery of sections up to 15 km wide and 500 m thick reveals the occurrence of incised palaeovalleys hosting clustered, kilometre‐scale, channel bodies with attached large foreset bars pointing to downstream‐lateral accretion, sand sheets with aspect ratios (i.e. width to thickness) as high as 2500, and scattered aeolian intervals. The genetic association of these architectural elements points to aggradational fluvial piedmonts composed of low‐relief unit bars generated by braidplain channels several metres deep. Preservation of aeolianites was facilitated by fluctuating groundwater table and accommodation. Fluvial piedmonts were transected by weakly sinuous channel belts up to 25 m deep and characterized by through‐going or tributary planform. Aspect ratios comparable with those of late Palaeozoic to modern braided channels disprove the inference that all Precambrian streams readily widened in response to increased discharge. Previous facies models for large‐scale Precambrian sheet‐braided rivers failed to depict entire channel forms, possibly because they could not be resolved by ground‐based observations. Based on their limited geomorphic variability and abundance of architectural elements with very high aspect ratios, this study recommends that large sheet‐braided fluvial systems should still be considered separately from their post‐Silurian (i.e. vegetated) braided counterparts. Parallels between sheet‐braided and modern dryland rivers do not, however, reconcile with the deep, perennial, channelized processes described here. Yet, distal sand‐bed and perennial reaches of modern sandur plains remain the closest analogue to sheet‐braided rivers. This conjecture contradicts the assumption that all Precambrian rivers were prone to simulate seasonal behaviours independently from their actual climate regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号