首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大兴安岭北部大白山高山林线动态与气候变化的关系   总被引:3,自引:0,他引:3  
高山林线植被对气候变化十分敏感,已成为全球变化研究的热点.研究了大兴安岭北部大白山高山林线的树木生长和群落更新动态及其与气候变化、火干扰等因素的关系.结果表明,林线树木的生长对气候变化十分敏感,但其敏感性随着海拔的降低而减弱;在高海拔,林线树木的径向生长与上年生长季后期(8月)降水负相关,而与上年初秋(9月)温度正相关,这限制作用随着海拔的降低而逐渐消失;与此相反,低海拔树木生长与当年冬末春初(3月)的温度负相关,但随着海拔上升这种限制作用消失.分析结果还表明,本地区的群落更新主要受火干扰驱动,而与气候变化没有显著关系.不同树种在火灾后更新的时间存在差异,这种差异又因海拔的不同而异,反映出不同树种的更新策略及对环境变化适应能力的差异.大兴安岭北部的高山林线在树木生长对气候变化的敏感性、与气候因子的关系及群落更新动态等方面均与干旱区林线有明显的差异,这些差异与气候条件、树种、更新驱动力等方面的不同有密切的关系.  相似文献   

2.
An understanding of the differences in artificial forest between tree species,slope aspects,and management options in arid environments is fundamentally important for efficient management of these artificial systems;however,few studies have quantified the spatial and temporal differences in stem radial growth of trees in the arid western Loess Plateau of China.Using dendrochronology,we assessed the growth of three woody species(the native shrub Reaumuria soongorica,the exotic shrub Tamarix ramosissima and tree Platycladus orientalis)by measuring the annual stem radial increment.We also describe the long-term growth trends and responses to climatic factors on slopes with different aspects during periods with and without irrigation.We found that precipitation during the main growing season was significantly positively correlated with ring growth for all three species and both slope aspects.In addition,supplemental water(e.g.,irrigation,rainwater harvesting)greatly relieved drought stress and promoted radial growth.Our results suggest that as the main afforestation species in the Loess Plateau used for soil and water conservation,P.orientalis is more suitable than T.ramosissima under rain-fed conditions.However,a landscape that combined a tree(P.orientalis)with a shrub(R.soongorica)and grassland appears likely to represent the best means of ecological restoration in the arid western Loess Plateau.  相似文献   

3.
On Niwot Ridge, alpine climatic factors dominate today within the upper part of the forest-alpine tundra ecotone on the east slope of the Colorado Front Range. This study provides evidence that the climatic conditions controlling the distribution of the upper limit of tree species and growth forms within the ecotone have changed through time. It appears that much of the present forest-alpine tundra ecotone is a relict of past warm climate episodes. There is much evidence that, in the past, tree forms were more symmetrical and less deformed, tree trunks with larger diameters existed, and the trees were more extensive in areal coverage. However, no evidence exists to show that the upper limit of tree species growth was more than marginally higher in the past than today. The treeline appears to be stable to historical and Holocene climatic fluctuations, but the altitudinal limits of seedling establishment and survival are not stable. The liming of climatic changes in the Front Range and their possible influence on the distribution of the trees within the ecotone are reviewed. Because of its extreme easterly location, slight but significant climatic variations may be observed within the forest-alpine tundra ecotone of Niwot Ridge, but are not observed elsewhere.  相似文献   

4.
Climate change and climate anomalies are inducing strong variations in the high‐mountain environment, driving the responses of physical and biological systems differently. This paper assesses tree‐ring growth responses to climate for two Norway spruce (Picea abies (L.) Karst.) sites at different altitudes from an Ortles‐Cevedale Group (OCG; internal zones of the Central Italian Alps) valley site and reports some examples of climate impact on glacier dynamics in the OCG in recent decades. Growth–climate relationships between tree‐ring chronologies and meteorological data were established by means of Pearson's correlation and response functions. In the high‐altitude chronology we found a strong signal of July temperatures, whereas the low‐altitude chronology also contained a signal of summer precipitation. Climate anomalies occurring in these months proved to influence tree growth at the two sites differently. In summer 2003 extreme climatic conditions established over Europe and the Alps, strongly affecting physical and biological systems. Spruce responses to the climate anomaly of 2003 were more evident with a one‐year lag. The high‐altitude site profited from the warmer growing season, whereas trees at the low‐altitude site experienced water stress conditions and their growth was strongly inhibited also in the following year. Glacier mass loss in the OCG in 2003 was the highest since yearly measurement started. The examples reported confirm the strong and even divergent variations affecting the Alpine environment, induced by recent climate change.  相似文献   

5.
We examined radial growth rates of locally co-occurring Douglas-fir (PSME – Pseudotsuga menziesii var. glauca) and ponderosa pine (PIPO – Pinus ponderosa var. ponderosa) trees growing within the Northern Rockies to determine if there are differential growth and climatic responses between these species and whether these responses are consistent among topographically and climatologically diverse sites. We developed standardized tree-ring chronologies from seven sites, with each site a matched pair of PSME and PIPO. For each chronology we examined the climate response of radial growth by comparing the standardized ring widths to a suite of climatic variables. We examined temporal changes by comparing 1905–1950 and post-1950 growth rates and climatic conditions. Both conifers experience increased radial growth post-1950. A combination of spring/summer moisture conditions related positively to radial growth and the primary climatic drivers were consistent both between species and within the region. The primary climatic drivers of radial growth remain unchanged during the last century or have trended toward drier conditions unfavorable for growth. We conclude that increases in standardized radial growth rates are unlikely climatically-driven. Other potential vectors of radial growth change, such as atmospheric CO2 enrichment, have affected these co-occurring species on a largely equal basis and positively.  相似文献   

6.
五个中国特有针叶树种树轮宽度对气候变化的敏感性   总被引:8,自引:0,他引:8  
吴普  王丽丽  黄磊 《地理研究》2006,25(1):43-52
本文对采自四川西部的鳞皮冷杉、铁杉、红豆杉、高山松和青海东部的青海云杉等5个中国特有针叶树种树轮宽度对气候变化的敏感性进行了研究。这五5个针叶树种的年轮纹印清晰,伪年轮和丢年轮较少(麦秀云杉0.247%,飞水崖红豆杉0.202%),便于确定年代和量测宽度,用COFECHA程序对定年结果进行检验,证明交叉定年的结果是可靠的。统计分析结果显示,这5个中国特有种差值年表包含丰富的气候信息。相关分析显示,树轮宽度数据和气象数据有着显著的相关关系。5个树种对气候因子较为敏感的响应表明,它们是适于进行树轮气候学分析的树种;在树轮气候学的研究中具有很大的潜力和应用前景。  相似文献   

7.
高山林线对于气候变化的影响非常敏感。气候变化首先从个体的水平影响林线的内部结构,然后才影响到作为整体的林线的推移,因此研究乔木个体生理活动与气候条件之间的关系,对于研究高山林线对气候变化的响应具有重要意义。本文通过对们于中国东部暖温带的五台山、关帝山、太白山森林上限附近白杆(Picea meyeri)、华北落叶松(Larix principis-ruprechtii)和太白红杉(L.chinensis)生理活动与环境因子的野外测定,分析了光合作用与环境因子之间的关系,得出以下初步结论:(1)研究区内林线乔木的光合作用不存在单一的限制因子;(2)有关研究表明,光照与温度共同作用于高山林线乔木的光合作用,在光照较低的情况下,温度成为光合作用的限制因子,本研究进一步证实了这一现象;(3)树线、林缘、郁闭林内三种不同生境条件下乔木光合作用的对比表明,林缘的生境条件最适合植物光合作用。虽然林缘的湿度条件中等,但良好的光照和温度条件对光合作用有促进作用。  相似文献   

8.
ABSTRACT. The range boundaries for many tree species in the southeastern United States correspond to the Fall Line that separates the Coastal Plain from the Appalachian Highlands. Trees in the Coastal Plain with northern range boundaries corresponding to the Fall Line occur exclusively in alluvial valleys created by lateral channel migration. These species grow mostly on lower bottomland sites characterized by a high water table, soils that are often saturated, and low annual water fluctuation. In contrast to the Coastal Plain, the southern Appalachian Highlands are occupied mostly by bedrock streams that have few sites suitable for the regeneration of these species. The Fall Line is also an approximate southern boundary for trees common in the southern Appalachians that typically occur on either dry, rocky ridgetops or in narrow stream valleys, habitats that are uncommon on the relatively flat Coastal Plain. The ranges for many trees in eastern North America are controlled by large‐scale climatic patterns. Tree species with range boundaries corresponding to the Fall Line, however, are not approaching their physiological limits caused by progressively harsher climatic conditions or by competition. Instead, the Fall Line represents the approximate boundary of habitats suitable for regeneration.  相似文献   

9.
《自然地理学》2013,34(3):185-204
This paper investigates the effects of spruce budworm (Choristoneura fumiferana) on balsam fir (Abies balsamea) and white spruce (Picea glauca) at Itasca State Park in northwestern Minnesota. We studied the species composition, age structure, and radial growth patterns in tree rings along five belt transects at sites infested with spruce budworm. Our objectives were to: (1) discover when the latest spruce budworm outbreak started; (2) determine whether tree growth was similarly reduced in earlier decades, suggesting earlier spruce budworm outbreaks; and (3) test whether radial tree growth and the start of the outbreak(s) were correlated with climate. We used the computer program OUTBREAK to determine that the current spruce budworm infestation began to reduce tree growth in the 1990s, before it was detected by park officials in 2001. The tree-ring record indicated that growth of the host-species trees was periodically reduced at all sites prior to the 1990s. We found no consistent relationship between temperature/precipitation and the initiation of spruce budworm outbreaks, as reconstructed by the OUTBREAK program, at the southwestern edge of the distribution of balsam fir. The Palmer Drought Severity Index, however, was positive (i.e., wetter-than-normal conditions) before increased spruce budworm activity at all sites. Outbreaks are related to climatic conditions, but they also depend on other factors such as the availability of sufficient food for the spruce budworm.  相似文献   

10.
Genetic diversity is crucial for plants to respond to global climate change, and exploring relationships between genetic diversity and climatic factors may help predict how global climate change will shape the genetic diversity of plants in the future. So far, however, the extent and magnitude of the impact of climatic factors on the genetic diversity of plants has not been clarified. We collected data from 68 published papers on two widely used measures of genetic diversity of populations (average expected heterozygosity (He) and average observed heterozygosity (Ho)) and on localities of populations of 79 vascular plants, and extracted data on 19 climatic factors from WorldClim. We then explored the relationships between measures of genetic diversity and climatic factors using linear regressions. He of plant populations was significantly correlated with climatic factors in 58.7% (44) of the 75 species that used He as a measure of genetic diversity, and Ho was correlated with climatic factors in 65.1% (41) of the 63 species that used this genetic diversity measure. In general, Mean Temperature of Wettest Quarter, Precipitation Seasonality, Precipitation of Driest Quarter and Temperature Seasonality played a vital role in shaping He, and Ho was mostly correlated with Precipitation of Warmest Quarter, Mean Temperature of Wettest Quarter, Precipitation of Driest Quarter and Precipitation of Driest Month. Also, the proportion of the significant correlations between genetic diversity of populations and climatic factors was higher for woody than for herbaceous species, and different climatic factors played different roles in shaping genetic diversity of these two growth forms. Our results suggest that climate may play an important role in shaping genetic diversity of plant populations, that climatic change in the future may alter genetic diversity of plants, and that genetic diversity of different plant forms may respond to climatic change differently.  相似文献   

11.
腾格里沙漠南缘油松树轮宽度变化及其对气候因子的响应   总被引:1,自引:1,他引:0  
鲁瑞洁  夏虹 《中国沙漠》2006,26(3):399-402
树木年轮定年准确、连续性强、分辨率高,并且易于获取复本,已经成为过去气候变化研究的主要手段之一。在沙漠地区,受气候条件的限制,树轮研究工作开展的较少。通过分析腾格里沙漠南缘油松树木年轮宽度的变化及其对气候因子的响应,发现夏季(6~8月)温度以及年降水量是当地油松生长的重要限制因子。对树木年轮标准化年表的功率谱分析表明,树轮记录具有2.6 a,7.5 a,14 a以及16.5 a的显著周期,其中2.6a以及7.5a周期的树轮指数变化,可能与ENSO的周期有关。  相似文献   

12.
Presented are the dendroclimatic research results on annual growth rings of spruce, fir, pine, birch and aspen growing in the middle taiga subzone of Central Siberia. The study established the general annual growth ring variability patterns for the conifers (spruce and fir) as well as for the hardwoods (birch and aspen), with the correlation coefficients between their chronologies estimated at 0.38 and 0.46 (p < 0.001), respectively. It is shown that under the given conditions the influence of the climatic factors accounts not more than for 53.5% of the variability in radial increment. For pine this influence is less clearly pronounced because of the content of the more mixed (compared with the other species of this territory) climatic signal. It is found that the temperature conditions of June are of first importance for all species under investigation. For birch and aspen the dependence of radial increment on the amount of precipitation in June is explained by moisture depletion at the period of the most active growth.  相似文献   

13.
雪岭云杉树轮宽度对气候变化的响应   总被引:13,自引:0,他引:13  
利用新疆伊犁地区雪岭云杉的6个树轮宽度年表 ,通过相关分析的方法,分析不同地形条件下雪岭云杉树轮宽度对于气候要素的响应。统计分析表明,雪岭云杉对气候变化比较敏感,在北天山南坡的森林下限,雪岭云杉生长与生长季7~8月降水关系显著;在南天山北坡的森林下限,雪岭云杉生长对生长季前11-次年1月最低温度存在显著正相关。地形对雪岭云杉与气候要素之间的关系影响较大,在南天山北坡,由于森林上下限树木抗寒性的差异,森林下限树木生长对温度的响应强于上限树木;南北坡引起的降水量水平的差异,使得天山不同坡向的树木生长响应不同的气候要素。  相似文献   

14.
Seasonal stem radial growth and wood formation of trees have become research hotspots because of their significance for dendroclimatological and dendroecological studies. However, until recently, these studies concentrated on coniferous tree species in high-altitude and high-latitude regions, while detailed information on arid-zone riparian forests is scarce. The main focus of this study is to monitor the intra-annual dynamics of radial growth and tree ring formation in a deciduous species, Populus euphratica. In 2013, we combined the dendrometer and microcoring methods to study this species in the riparian forest of the Ejina Oasis, in arid northwestern China. Vessel enlargement began in early May, and the maximum rate of cell production occurred in early June. The cell division then ceased from early to mid-July. The dendrometer method failed to reliably detect the date of growth initiation and cessation, but succeeded to detect the time of maximum growth rate just like the microcoring method did. We found that weekly stem radial increment data described xylem growth more accurately than daily datasets. Based on correlation analysis among climatic and hydrologic variables, and weekly stem radial increment, weekly ring width increase dataset, the depth to groundwater was the main factor that limited tree ring growth. From a practical perspective, such studies of intra-annual wood formation can provide empirical guidance for seasonal water allocations within a river basin.  相似文献   

15.
Loblolly pines in Texas and Louisiana exhibit different reactions to moisture extremes, as indicated by the susceptibility of weakened individuals to attack by southern pine beetles. In Texas, intense insect outbreaks among pines occur during periods of extreme moisture surplus, whereas extreme moisture deficits render the Louisiana pines susceptible to attack. Intraspecies tree reponse to moisture extremes therefore appears to be spatially variable and partially dependent upon the frequency occurrence of severe climatic conditions.  相似文献   

16.
17.
The formation of tree-rings is closely related to climate variation. This paper establishes the tree-ring chronology of Pinus massoniana for a period of 36 years and examines the relationship between the tree-ring chronology and climatic conditions based on tree-ring width samples from three sites on the northeast slopes of Yangming Mountain. This data is used to study the relationship between the tree-ring width of a young tree and climatic conditions in a moist hilly region of southern China and to understand the general pattern of climate variation and its effects on tree growth in the past in this region. The results indicate that changes in tree-ring widths in these sites are closely related to local climatic conditions. There is a significant positive correlation between the radial growth of Pinus massoniana and the mean temperature of the current year from January to May (coefficient of correlation, R, is 0.596, P<0.01) and the mean temperature of the previous year from June to July (R is 0.639, P<0.01). The radial growth of Pinus massoniana is negatively correlated with the total precipitation of the previous year from January to March and November to December (R is -0.46, P<0.05) and negatively correlated with the total precipitation of the previous year from June to July (R is -0.582, P<0.05). The effect of precipitation on the radial growth of Pinus massoniana is known as the “hysteresis effect”.  相似文献   

18.
The influence of climate associated with El Niño/Southern Oscillation (ENSO) events on tree growth in the central Colorado Front Range is investigated through the analysis of two high altitude tree-ring chronologies. Dendrochronological techniques are used to determine if ENSO-related climatic effects are detectable in tree-ring width patterns in the central Colorado Front Range. The form of the tree-growth response is identified and the variability of the influence of these events on tree growth over time is investigated. Results indicate that tree growth in this area does respond to ENSO events, but the response varies with species and type of event. El Niño-influenced climate tends to result in larger tree rings the year of or year following the event, while La Niña-influenced climate tends to result in smaller rings the year after the event, reflecting spring moisture conditions. Trees have a more consistent response to La Niña events, but El Niño events seem to have a greater effect on extremes in growth. The relationship between the Southern Oscillation Index (SOI) and tree growth has varied over time, probably because of the fact that ENSO events, characterized by the SOI, vary in magnitude and amplitude. [Key words: ENSO, dendrochronology, Colorado Front Range.]  相似文献   

19.
The discussion on climatic instability observed in Greenland ice cores during the Eemian period (substage 5e) resulted in discovery of a pronounced mid-Eemian cooling event. We report that the mid-Eemian cooling is found for the first time in the biogenic silica climatic record and microfossil abundance record of Lake Baikal. Timing of this event in Lake Baikal correlates well with timing of the European pollen records and marine sedimentary records. The presence of the mid-Eemian cooling signal in the Lake Baikal record suggests a much closer link between Asian climate influenced by strong pressure fields over the vast land masses and the climate-controlling processes in the North Atlantic during interglacial periods, than what was generally believed. Furthermore, the Lake Baikal record suggests that after the mid-Eemian cooling, the climatic conditions returned close to the warmth of the 5e optimum and thus argues that the warm conditions of the last interglacial persisted in Siberia throughout 5e, and did not end with the mid-Eemian cooling as suggested by several published marine records.  相似文献   

20.
Global climate change is having marked influences on species distributions, phenology and ecosystem composition and raises questions as to the effectiveness of current conservation strategies. Conservation planning has only recently begun to adequately account for dynamic threats such as climate change. We propose a method to incorporate climate-dynamic environmental domains, identified using specific environmental correlates of floristic composition, into conservation strategies, using the province of KwaZulu-Natal, South Africa as a case study. The environmental domains offer an approach to conservation that conserves diversity under current and future climates, recognising that the species constituting diversity may change through time. We mapped current locations of domains by identifying their positions in a multi-dimensional environmental space using a non-hierarchical iterative k-means clustering algorithm. Their future locations were explored using an ensemble of future climate scenarios. The HadCM2 and GFDL2.1 models represented the extreme ranges of the models. The magnitude of change in each environmental domain was calculated using Euclidean distances to determine areas of greatest and least stability for each future climate projection. Domains occurring in the savanna biome increase at the expense of domains occurring in the grassland biome, which has significant negative consequences for the species rich grasslands. The magnitude of change maps represents areas of changed climatic conditions or edaphic disjunctions. The HadCM2 model predicted the greatest overall magnitude of change across the province. Species with specific soil requirements may not be able to track changing climatic conditions. A vulnerability framework was developed that incorporated climatic stability and habitat intactness indices. The mean magnitude of change informed the potential speed of transition of domains between the vulnerability quadrants. The framework informs appropriate conservation actions to mitigate climate change impacts on biodiversity. The study explicitly links floristic pattern and climate variability and provides useful insights to facilitate conservation planning for climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号