首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The paper examines the annual cycle of the mid-tropospheric easterly jet (MTJ) over West Africa against the background of many reviews indicating different locations and characteristics of the jet and considering it as a summer feature. NCEP–NCAR reanalysis zonal wind datasets for the period 1971–2000 and upper air datasets over the region are used. The results exhibit realistic spatial structure of the easterly jet. The long-term mean of the datasets suggests that the jet over West Africa is not only a summer feature but can also be found in winter with the same order of magnitude in the wind velocity at the core. The jet axis is located at about lat. 2° N close to the Guinean Coast in winter and at lat. 14° N in summer. The meridional oscillation of the jet suggests that as it advances northward, it maintains an altitude of 700 hPa in winter and transits in mid-spring to 650 hPa and reaches 600 hPa in summer. In the retreat, it displaces to 650 hPa at the end of September rather sharply to reach 700 hPa in October. The jet’s core has been observed to have a northeast–southwest orientation from season to season, covering a longitude of 29° from its southernmost to the northernmost positions.  相似文献   

2.
Simulation of Indian summer monsoon circulation and rainfall using RegCM3   总被引:5,自引:2,他引:5  
Summary The Regional Climate Model RegCM3 has been used to examine its suitability in simulating the Indian summer monsoon circulation features and associated rainfall. The model is integrated at 55 km horizontal resolution over a South Asia domain for the period April–September of the years 1993 to 1996. The characteristics of wind at 850 hPa and 200 hPa, temperature at 500 hPa, surface pressure and rainfall simulated by the model over the Indian region are examined for two convective schemes (a Kuo-type and a mass flux scheme). The monsoon circulation features simulated by RegCM3 are compared with those of the NCEP/NCAR reanalysis and the simulated rainfall is validated against observations from the Global Precipitation Climatology Centre (GPCC) and the India Meteorological Department (IMD). Validation of the wind and temperature fields shows that the use of the Grell convection scheme yields results close to the NCEP/NCAR reanalysis. Similarly, the Indian Summer Monsoon Rainfall (ISMR) simulated by the model with the Grell convection scheme is close to the corresponding observed values. In order to test the model response to land surface changes such as the Tibetan snow depth, a sensitivity study has also been conducted. For such sensitivity experiment, NIMBUS-7 SMMR snow depth data in spring are used as initial conditions in the RegCM3. Preliminary results indicate that RegCM3 is very much sensitive to Tibetan snow. The model simulated Indian summer monsoon circulation becomes weaker and the associated rainfall is reduced by about 30% with the introduction of 10 cm of snow over the Tibetan region in the month of April.  相似文献   

3.
Multi-stage onset of the summer monsoon over the western North Pacific   总被引:9,自引:1,他引:9  
R. Wu  B. Wang 《Climate Dynamics》2001,17(4):277-289
 The climatological summer monsoon onset displays a distinct step wise northeastward movement over the South China Sea and the western North Pacific (WNP) (110°–160°E, 10°–20°N). Monsoon rain commences over the South China Sea-Philippines region in mid-May, extends abruptly to the southwestern Philippine Sea in early to mid-June, and finally penetrates to the northeastern part of the domain around mid-July. In association, three abrupt changes are identified in the atmospheric circulation. Specifically, the WNP subtropical high displays a sudden eastward retreat or quick northward displacement and the monsoon trough pushes abruptly eastward or northeastward at the onset of the three stages. The step wise movement of the onset results from the slow northeastward seasonal evolution of large-scale circulation and the phase-locked intraseasonal oscillation (ISO). The seasonal evolution establishes a large-scale background for the development of convection and the ISO triggers deep convection. The ISO over the WNP has a dominant period of about 20–30 days. This determines up the time interval between the consecutive stages of the monsoon onset. From the atmospheric perspective, the seasonal sea surface temperature (SST) change in the WNP plays a critical role in the northeastward advance of the onset. The seasonal northeastward march of the warmest SST tongue (SST exceeding 29.5 °C) favors the northeastward movement of the monsoon trough and the high convective instability region. The seasonal SST change, in turn, is affected by the monsoon through cloud-radiation and wind-evaporation feedbacks. Received: 19 October 1999 / Accepted: 5 June 2000  相似文献   

4.
A typical active–break cycle of the Asian summer monsoon is taken as beginning with maximum SST (pentad 0) over the north Bay of Bengal when the oceans to its west and east from longitude 40°–160°E, and between latitudes 10° and 25°N (area A) also has maximum SST. During this pentad the recently found “Cold Pool” of the Bay of Bengal (between latitudes 3°N and 10°N) has its minimum SST. An area of convection takes genesis over the Bay of Bengal immediately after pentad 0 in the zone of large SST gradient north of the Cold Pool and it pulls the monsoon Low Level Jetstream (LLJ) through peninsular India. Convection and the LLJ westerlies then spread to the western Pacific Ocean during pentads 1–4 taken as the active phase of the monsoon during which convection and LLJ have grown in a positive feed back process. The cyclonic vorticity to the north of the LLJ axis is hypothesized to act as a flywheel maintaining the convection during the long active phase against the dissipating effect of atmospheric stabilization by each short spell of deep convection. By the end of pentad 4 the SST over area A has cooled and the convection weakens there, when the LLJ turns clockwise over the Arabian Sea and flows close to the equator in the Indian ocean. A band of convection develops at pentad 5 between the equator and latitude 10°S over the Indian ocean and it is nourished by the cyclonic vorticity of the LLJ now near the equator and the moisture supply through it. This is taken as the break monsoon phase lasting for about three to four pentads beginning from pentad 5 of a composite active–break cycle of 40 day duration. With reduced wind and convection over the area A during the break phase, solar radiation and light winds make the SST there warm rapidly and a new active–break cycle begins. SST, convection, LLJ and the net heat flux at the ocean surface have important roles in this new way of looking at the active–break cycle as a coupled ocean–atmosphere phenomenon.  相似文献   

5.
利用1979—2013年ERA-interim再分析资料,通过均方差分析、功率谱分析、带通滤波及合成分析等统计方法系统地分析了东亚季风区冬季经向风的季节内变化及其可能机理。结果表明,东亚季风区冬季经向风异常在我国华南一带变化显著,振荡周期为10~20 d(准双周振荡)。在准双周尺度上,水平方向上,850 h Pa异常北风主要呈现从高纬向低纬传播的特点,60°N附近异常经向风向东南方向传播,副热带30°N附近弱的异常经向风向东传播,二者在华南汇合,随后分为两支中心,分别向南和向东继续传播,我国华南一带存在基本气流向准双周尺度波动的能量转换,因此异常经向风在华南会显著增强;垂直方向上,对流层上层、中层、下层的经向风呈现强—弱—强的异常中心特征,对流层下层850 h Pa和上层200~300 h Pa均存在经向风大值中心;我国东部上空300 h Pa上,副热带地区波动比850 h Pa更明显,60°N附近波动向东南方向移动,同样在我国东部地区合并,波动辐合导致波动能量增强。  相似文献   

6.
Summary  The interannual variability of the Indian summer monsoon (June–September) rainfall is examined in relation to the stratospheric zonal wind and temperature fluctuations at three stations, widely spaced apart. The data analyzed are for Balboa, Ascension and Singapore, equatorial stations using recent period (1964–1994) data, at each of the 10, 30 and 50 hPa levels. The 10 hPa zonal wind for Balboa and Ascension during January and the 30 hPa zonal wind for Balboa during April are found to be positively correlated with the subsequent Indian summer monsoon rainfall, whereas the temperature at 10 hPa for Ascension during May is negatively correlated with Indian summer monsoon rainfall. The relationship with stratospheric temperatures appears to be the best, and is found to be stable over the period of analysis. Stratospheric temperature is also significantly correlated with the summer monsoon rainfall over a large and coherent region, in the north-west of India. Thus, the 10 hPa temperature for Ascension in May appears to be useful for forecasting summer monsoon rainfall for not only the whole of India, but also for a smaller region lying to the north-west of India. Received July 30, 1999 Revised March 17, 2000  相似文献   

7.
东亚夏季风指数的年际变化与东亚大气环流   总被引:66,自引:9,他引:66  
文中从夏季东亚热带、副热带环流系统特点出发 ,定义了能较好表征东亚夏季风环流年际变化的特征指数 ,并分析了东亚夏季风指数的年际变化与东亚大气环流及夏季中国东部降水的关系。文中定义的东亚夏季风指数既反映了夏季东亚大气环流风场的变化特征 ,也较好地反映了夏季中国东部降水的年际变化特征。此外 ,还探讨了东亚夏季风指数变化的先兆信号  相似文献   

8.
Janicot and Sultan (Geophys Res Lett 28(3):523–526, 2001) and Sultan et al. (J Clim 16(21):3389–3406, 2003) showed evidence of an intraseasonal signal of Sahelian rainfall corresponding to wet and dry sequences of the West African Monsoon. Using NCEP/NCAR reanalysis, NOAA outgoing longwave radiation (OLR) and observed daily rainfall over West Africa from 1968 to 1990, this paper investigates the variability of 3 to 5-day African Easterly Waves (AEWs), convection and their relationship with rainfall in these wet and dry sequences. The mean daily value rainfall during wet sequences is twice the mean value during dry sequences but the number of dry or wet sequences per year is not correlated with the annual rainfall. Wet sequences account for 39% of the annual accumulated rainfall while dry sequences account for 22%. The number of 3 to 5-day AEWs increases during wet years in wet sequences and the activity tends to be larger during wet years in both wet and dry sequences. These AEWs explain 40% of the accumulated rainfall during wet sequences whereas they contribute to 26% of the accumulated rainfall observed during dry sequences. Generally, they contribute to the increase of rainfall during these sequences. Mean convection is stronger and there are twice as many low OLR days (<225W/m2) during wet than dry sequences. The mean rainfall for days with high convective activity (convective days) is also twice as great during wet sequences. Rainfall that occurs during days without low OLR (weak convection with warm cloud tops or isolated deep convection) contributes to 69% of the total rainfall during dry sequences and 45% during wet sequences. A composite study was performed from day D 0−10 to day D 0+10 in each sequence. Wet (dry) sequences of the African monsoon start with a decrease (slight increase) of the negative meridional Ertel Potential Vorticity (PV) gradient at 700 hPa, associated with an increase (decrease) of the spectral density of AEWs. During the wet sequence, the African Easterly Jet (AEJ), detected by 700 hPa zonal wind, decreases and moves northward, whereas the Tropical Easterly Jet (TEJ), detected at 200 hPa, increases and shifts southward. Convective activity increases from D 0−6 to D 0−3 and remains high for 4 days in wet sequences. The daily rainfall increases (decreases) between D 0−6 and D 0 and returns to the mean value at D 0+4 for wet (dry) sequences.  相似文献   

9.
 NCEP/NCAR and ECMWF daily reanalyses are used to investigate the synoptic variability of easterly waves over West Africa and tropical Atlantic at 700 hPa in northern summer between 1979–1995 (1979–1993 for ECMWF). Spectral analysis of the meridional wind component at 700 hPa highlighted two main periodicity bands, between 3 and 5 days, and 6 and 9 days. The 3–5-day easterly wave regime has already been widely investigated, but only on shorter datasets. These waves grow both north and south of the African Easterly Jet (AEJ). The two main tracks, noted over West Africa at 5 °N and 15 °N, converge over the Atlantic on latitude 17.5 °N. These waves are more active in August–September than in June–July. Their average wavelength/phase speed varies from about 3000 km/8 m s-1 north of the jet to 5000 km/12 m s-1 south of the jet. Rainfall, convection and monsoon flux are significantly modulated by these waves, convection in the Inter-Tropical Convergence Zone (ITCZ) being enhanced in the trough and ahead of it, with a wide meridional extension. Compared to the 3–5-day waves, the 6–9-day regime is intermittent and the corresponding wind field pattern has both similar and contrasting characteristics. The only main track is located north of the AEJ along 17.5 °N both over West Africa and the Atlantic. The mean wavelength is higher, about 5000 km long, and the average phase speed is about 7 m s-1. Then the wind field perturbation is mostly evident at the AEJ latitude and north of it. The perturbation structure is similar to that of 3–5-days in the north except that the more developed circulation centers, moving more to the north, lead to a large modulation of the jet zonal wind component. South of the AEJ, the wind field perturbation is weaker and quite different. The zonal wind core of the jet appears to be an almost symmetric axis in the 6–9-day wind field pattern, a clockwise circulation north of the AEJ being associated with a counter-clockwise circulation south of the jet, and vice versa. These 6–9-day easterly waves also affect significantly rainfall, convection and monsoon flux but in a different way, inducing large zonal convective bands in the ITCZ, mostly in the trough and behind it. As opposed to the 3–5-day wave regime, these rainfall anomalies are associated with anomalies of opposite sign over the Guinea coast and the Sahelian regions. Over the continent, these waves are more active in June–July, and in August–September over the ocean. GATE phase I gave an example of such an active 6–9-day wave pattern. Considered as a sequence of weak easterly wave activity, this phase was also a sequence of high 6–9-day easterly wave activity. We suggest that the 6–9-day regime results from an interaction between the 3–5-day easterly wave regime (maintained by the barotropic/baroclinic instability of the AEJ), and the development of strong anticyclonic circulations, north of the jet over West Africa, and both north and south of the jet over the Atlantic, significantly affecting the jet zonal wind component. The permanent subtropical anticyclones (Azores, Libya, St Helena) could help initiation and maintenance of such regime over West Africa and tropical Atlantic. Based on an a priori period-band criterion, our synoptic classification has enabled us to point out two statistical and meteorological easterly wave regimes over West Africa and tropical Atlantic. NCEP/NCAR and ECMWF reanalyses are in good agreement, the main difference being a more developed easterly wave activity in the NCEP/NCAR reanalyses, especially for the 3–5-day regime over the Atlantic. Received: 28 May 1998 / Accepted: 2 May 1999  相似文献   

10.
Boreal summer quasi-monthly oscillation in the global tropics   总被引:1,自引:0,他引:1  
The boreal summer intraseasonal oscillation (ISO) in the global tropics is documented here using a 7-year suite (1998–2004) of satellite measurements. A composite scenario was made of 28 selected events with reference to the oscillation in the eastern equatorial Indian Ocean (EIO), where the oscillation is most regular and its intensity is indicative of the strength of the subsequent northward propagation. The average oscillation period is about 32 days, and this quasi-monthly oscillation (QMO) is primarily confined to the tropical Indian and Pacific Oceans. Topics that were investigated are the partition of convective versus stratiform clouds, the vertical structure of precipitation rates, and the evolution of cloud types during the initial organization and the development of intraseasonal convective anomalies in the central Indian Ocean. During the initiation of the convective anomalies, the stratiform and convective rains have comparable rates; the prevailing cloud type experiences a trimodal evolution from shallow to deep convection, and finally to anvil and extended stratiform clouds. A major northwest/southeast-slanted rainband forms as the equatorial rainfall anomalies reach Sumatra, and the rainband subsequently propagates northeastward into the west Pacific Ocean. The enhanced precipitation in the west Pacific then rapidly traverses the Pacific along the Intertropical Convergence Zone, meanwhile migrating northward to the Philippine Sea. A seesaw teleconnection in rainfall anomalies is found between the southern Bay of Bengal (5–15°N, 80–100°E) and the eastern Pacific (5–15°N, 85–105°W). Local sea-surface temperature (SST)-rainfall anomalies display a negative simultaneous correlation in the off-equatorial regions but a zero correlation (quadrature phase relationship) near the equator. We propose that atmosphere–ocean interaction and the vertical monsoon easterly shear are important contributors to the northeastward propagation component of the intraseasonal rainband. The observed evidence presented here provides critical information for validating the numerical models, and it supports the self-induction mechanism theory for maintenance of the boreal summer ISO.  相似文献   

11.
Intraseasonal (30–80 days) variability in the equatorial Atlantic-West African sector during March–June is investigated using various recently-archived satellite measurements and the NCEP/DOE AMIP-II reanalysis daily data. The global connections of regional intraseasonal signals are first examined for the period of 1979–2006 through lag-regression analyses of convection (OLR) and other dynamic components against a regional intraseasonal convective (OLR) index. The eastward-propagating features of convection can readily be seen, accompanied by coherent circulation anomalies, similar to those for the global tropical intraseasonal mode, i.e., the Madden–Julian oscillation (MJO). The regressed TRMM rainfall (3B42) anomalies during the TRMM period (1998–2006) manifest similar propagating features as for the regressed OLR anomalies during 1979–2006. These coherent features hence tend to suggest that the regional intraseasonal convective signals might be mostly a regional response to, or closely associated with the MJO, and probably contribute to the MJO’s global propagation. Atmospheric and surface intraseasonal variability during March–June of 1998–2006 are further examined using the high-quality TRMM Microwave Imager (TMI) sea surface temperature (SST), columnar water vapor, and cloud liquid water, and the QuikSCAT oceanic winds (2000–2006). Enhanced (suppressed) convection or positive (negative) rainfall anomalies approximately cover the entire basin (0°–10°N, 30°W–10°E) during the passage of intraseasonal convective signals, accompanied by anomalous surface westerly (easterly) flow. Furthermore, a unique propagating feature seems to exist within the tropical Atlantic basin. Rainfall anomalies always appear first in the northwestern basin right off the coast of South America, and gradually extend eastward to cover the entire basin. A dipolar structure of rainfall anomalies with cross-equatorial surface wind anomalies can thus be observed during this evolution, similar to the anomaly patterns on the interannual time scale discovered in past studies. Coherent intraseasonal variations and patterns can also be found in other physical components.
Guojun GuEmail:
  相似文献   

12.
    
The wavelet analysis is performed of the mid- and low-latitude circulation index at 850 hPa over East Asia, the East Asian monsoon index and the precipitation over the middle and lower reaches of the Yangtze River during 1998 South China Sea Monsoon Experiment (SCSMEX) from May to August. Analysis shows that distinct 30–60 day low-frequency oscillation (LFO) exists in all of the above elements during the exper-iment period. Analysis of low-frequency wind field at 850 hPa from May to August with 5 days interval is performed in this paper. Analysis results reveal that: (1) A low-frequency monsoon circulation system over East Asia, characterized by distinct 30–60 day low-frequency oscillation, exists over 100°-150°E of East Asian area from the middle and eastern parts of China continent and the South China Sea to the western Pacific in both the Northern and Southern Hemisphere. The activity of East Asian monsoon is mainly af-fected by the low-frequency systems in it; (2) All of the tropical monsoon onset over the South China Sea in the fifth pentad of May, the beginning of the Meiyu period and heavy rainfall over the middle and lower reaches of the Yangtze River in mid-June and the heavy rainfall after mid-July are related to the activity of low-frequency cyclone belt over the region, whereas the torrential rainfall over the upper reaches of the Yangtze River in August is associated with the westward propagation of low-frequency anticyclone into the mainland; (3) There are two sources of low-frequency oscillation system over East Asia during SCSMEX. i.e. the equatorial South China Sea (SCS) and mid-high latitudes of the middle Pacific in the Northern Hemisphere. The low-frequency system over SCS propagates northward while that in mid-high latitudes mainly propagates from northeast to southwest. Both of the heavy rainfall over the middle and lower reaches of the Yangtze River in June and July are associated with the northward propagation of the above-mentioned SCS low-frequency systems from the tropical region and the southwestward propagation from mid-high latitudes respectively and their convergence in the middle and lower reaches of the Yangtze River; (4) There are two activities of low-frequency cyclone and anticyclone belt each in the East Asian monsoon system during May to August. However the activity of these low-frequency circulation systems is not clearly relevant to the low-frequency circulation system in the Indian monsoon system. This means that the low-frequency circulation systems in Indian monsoon and East Asian monsoon are independent of each other. The concept previously put forward by Chinese scholars that the East Asian monsoon circulation sys-tem (EAMCS) is relatively independent monsoon circulation system is testified once more in the summer 1998. This work was supported by the key project A of the State Ministry of Science and Technology “South China Sea Monsoon Experiment” and the fruit of it.  相似文献   

13.
Using the NCEP/NCAR reanalysis wind and temperature data (1948–2011) and India Meteorological Department (IMD) rainfall data, a long-term trend in the tropical easterly jet stream and its effect on Indian summer monsoon rainfall has been explained in the present study. A decreasing trend in zonal wind speed at 100 mb (maximum decrease), 150 mb, and 200 mb (minimum) is observed. The upper-level (100, 150, and 200 mb) zonal wind speed has been correlated with the surface air temperature anomaly index (ATAI) in the month of May, which is taken as the difference in temperature anomaly over land (22.5°N–27.5°N, 80°E–90°E) and Ocean (5°S–0°S, 75°E–85°E). Significant high correlation is observed between May ATAI and tropical easterly jet stream (TEJ) which suggests that the decreasing land–sea temperature contrast could be one major reason behind the decreasing trend in TEJ. The analysis of spatial distribution of rainfall over India shows a decreasing trend in rainfall over Jammu and Kashmir, Arunachal Pradesh, central Indian region, and western coast of India. Increasing trend in rainfall is observed over south peninsular and northeastern part of India. From the spatial correlation analysis of zonal wind with gridded rainfall, it is observed that the correlation of rainfall is found to be high with the TEJ speed over the regions where the decreasing trend in rainfall is observed. Similarly, from the analysis of spatial correlation between rainfall and May ATAI, positive spatial correlation is observed between May ATAI and summer monsoon rainfall over the regions such as south peninsular India where the rainfall trend is positive, and negative correlation is observed over the places such as Jammu and Kashmir where negative rainfall trend is observed. The decreased land–sea temperature contrast in the pre-monsoon month could be one major reason behind the decreased trend in TEJ as well as the observed spatial variation in the summer monsoon rainfall trend. Thus, the study explained the long-term trend in TEJ and its relation with May month temperature over the Indian Ocean and land region and its effect on the trend and spatial distribution of Indian summer monsoon rainfall.  相似文献   

14.
By using the NCEP/NCAR pentad reanalysis data from 1968 to 2009, the variation characteristics of Middle East jet stream(MEJS) and its thermal mechanism during seasonal transition are studied. Results show that the intensity and south-north location of MEJS center exhibit obvious seasonal variation characteristics. When MEJS is strong, it is at 27.5°N from the 67 th pentad to the 24 th pentad the following year; when MEJS is weak, it is at 45°N from the 38 th pentad to the 44 th pentad. The first Empirical Orthogonal Function(EOF) mode of 200-hPa zonal wind field shows that MEJS is mainly over Egypt and Saudi Arabia in winter and over the eastern Black Sea and the eastern Aral Sea in summer. MEJS intensity markedly weakens in summer in comparison with that in winter. The 26th-31 st pentad is the spring-summer transition of MEJS, and the 54th-61 st pentad the autumn-winter transition. During the two seasonal transitions, the temporal variations of the 500-200 hPa south-north temperature difference(SNTD) well match with 200-hPa zonal wind velocity, indicating that the former leads to the latter following the principle of thermal wind. A case analysis shows that there is a close relation between the onset date of Indian summer monsoon and the transition date of MEJS seasonal transition. When the outbreak date of Indian summer monsoon is earlier than normal, MEJS moves northward earlier because the larger SNTD between 500-200 hPa moves northward earlier, with the westerly jet in the lower troposphere over 40°-90°E appearing earlier than normal, and vice versa.  相似文献   

15.
Based on calculations of data from FGGE Level III b, a discussion is made of the energy balance in the 40-50 day periodic oscillation over the Asian monsoon region during the 1979 summer. It is found that the main source of 40-50 day periodic perturbation is the monsoon region extending from central South Asia to Southeast Asia. In the upper layer over the North Pacific subtropical area (10-20oN, 150oE-150oW) pres-sure work turns into kinetic energy that maintains 40-50 day periodic perturbation associated with the variation in position and intensity of the mid-Pacific trough. The mean energy budget in the three-dimensional space (0-30oE, 30oE-150oW, 100-1000 hPa) indicates that the 40-50 day periodic perturbation transports kinetic energy to a seasonal mean and a transient perturbation wind field.  相似文献   

16.
Summary The evolution of geophysical parameters over Indian Ocean during two contrasting monsoon years 2002 (drought) and 2003 (normal) were studied using TRMM/TMI satellite data. Analysis indicates that there was a lack of total water vapour (TWV) build up over Western Indian Ocean (WIO) during May 2002 (drought) when compared to 2003 (normal). Negative (positive) TWV anomalies were found over the WIO in May 2002 (2003). In 2002, negative SST anomaly of ∼1.5 °C is found over entire WIO when compared to 2003. Anomalously high sea surface wind speed (SWS) anomaly over the South West Indian Ocean (SWIO) and WIO would have resulted in cooling of the sea surface in May 2002 in comparison to 2003. In 2003 the wind speed anomaly over entire WIO and Arabian Sea (AS) was negative, whereas sea surface temperature (SST) anomaly was positive over the same region, which would have resulted in higher moisture availability over these regions. A negative (positive) TWV anomaly over Eastern Arabian Sea (EAS) and positive (negative) anomaly over WIO forms a dipole structure. In the month of June no major difference is seen in all these parameters over the Indian Ocean. In July 2002 the entire WIO and AS was drier by 10–15 mm as compared to 2003. The pentad (5 day) average TWV values shows high (>55 mm) TWV convergence over EAS and Bay of Bengal (BoB) during active periods of 2003, which gives high rainfall over these regions. However, during 2002 although TWV over BoB was >55 mm but it was ∼45–55 mm over EAS during entire July and hence less rainfall. The evaporation has been calculated from the bulk aerodynamic formula using TRMM/TMI geophysical products. It has been seen that the major portion of evaporative moisture flux is coming from southern Indian Ocean (SIO) between 15 and 25° S. Evaporation in June was more over AS and SIO in 2003 when compared to 2002 which may lead to reduce moisture supply in July 2002 and hence less rainfall compared to July 2003.  相似文献   

17.
2010年西北太平洋与南海热带气旋活动异常的成因分析   总被引:1,自引:0,他引:1  
利用中国气象局热带气旋(TC)资料、NCEP/NCAR 再分析资料和美国 NOAA 向外长波辐射(OLR)等资料,分析了2010年西北太平洋(WNP)及南海(SCS)热带气旋活动异常的可能成因,讨论了同期大气环流配置和海温外强迫对TC生成和登陆的动力和热力条件的影响。结果表明,2010年生成TC频数明显偏少,生成源地显著偏西,而登陆TC频数与常年持平。导致7~10月TC频数明显偏少的大尺度环境场特征为:副热带高压较常年异常偏强、西伸脊点偏西,季风槽位置异常偏西,弱垂直风切变带位置也较常年偏西且范围偏小,南亚高压异常偏强,贝加尔湖附近对流层低高层均为反气旋距平环流,这些关键环流因子的特征和配置都不利于 TC 在WNP的东部生成。影响TC活动的外强迫场特征为:2010年热带太平洋经历了El Ni?o事件于春末夏初消亡、La Ni?a事件于7月形成的转换;7~10月,WNP海表温度维持正距平,140°E以东为负距平且对流活动受到抑制;暖池次表层海温异常偏暖,对应上空850 hPa为东风距平,有利于季风槽偏西和TC在WNP的西北侧海域生成。WNP海表温度和暖池次表层海温的特征是2010年TC生成频数偏少、生成源地异常偏西的重要外强迫信号。有利于7~10月热带气旋西行和登陆的500 hPa风场特征为:北太平洋为反气旋环流距平,其南侧为东风异常,该东风异常南缘可到25°N,并向西扩展至中国大陆地区;南海和西北太平洋地区15°N以南的低纬也为东风异常;在这样的风场分布型下,TC容易受偏东气流引导西行并登陆我国沿海地区。这是2010年生成TC偏少但登陆TC并不少的重要环流条件。  相似文献   

18.
Using a database of spectra collected with an airborne infrared spectrometer between 1978 and 2005, the longest record of this type, we have searched for a temporal trend in the stratospheric OCS amount. The total column above 200 hPa, in latitudes from 30° to 60°N, shows a change of about 0.77 ± 0.80% per year relative to the 2010 value which is 1.34 × 1015 molecules cm−2; thus not a significant change. Observations are made from the base of the stratosphere and are uniquely suited to determining the stratospheric OCS abundance.  相似文献   

19.
利用NCEP/DOE再分析资料,通过EOF分解、合成分析和线性回归等多种统计学方法,对年际时间尺度上冬季中东副热带西风急流(Middle East subtropical westerly Jet stream,MEJ)中心位置的变化进行研究,分析了MEJ中心位置的年际变化与大气环流的联系,找到了与MEJ中心位置相联系...  相似文献   

20.
使用NCEP/NCAR再分析资料对2019年高度场、OLR场和风场进行了环流分析,计算假相当位温、西南风和垂直风切变等物理量,并且使用Lanczos滤波器滤波后进行分位相讨论了ISO与2019年南海夏季风爆发的关系。结果表明,2019年南海夏季风爆发的日期为5月6日,其爆发偏早。在5月6日后具体特征表现为:200 hPa高空急流范围扩大,强度增强;副热带高压不断东撤,南海地区不再盛行西南风;850 hPa上南海地区盛行西南风且对流大面积爆发;假相当位温随高度变化的特征显示出对流增强的趋势。为了探讨2019年南海夏季风爆发与ISO的关系,进一步研究发现2019年存在10~25 d大气季节内振荡。一方面,ISO有利于2019年爆发时间偏早,另一方面,南海夏季风爆发后从孟加拉湾—印度洋东部低频对流多次随时间向东北传播,经历发展—最强—减弱—抑制—最弱—恢复的6个阶段,有利于南海地区偏西风增强以及对流活动的爆发维持,使得其爆发强度增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号