首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In this paper, a novel model reference adaptive controller with anti-windup compensator (MRAC_AW) is proposed for an autonomous underwater vehicle (AUV). Input saturations and parametric uncertainties are among the practical problems in the control of autonomous vehicles. Hence, utilizing a proper adaptive controller with the ability to handle actuator saturations is of a particular value. The proposed technique of this paper incorporates the well-posed model reference adaptive control with integral state feedback and a modern anti-windup scheme to present an appropriate performance in practical conditions of an AUV. Stability of the proposed method is analyzed by Lyapunov theory. Then, the proposed controller is implemented in the hardware in the loop simulation of AUV. For this purpose, the introduced method is implemented in an onboard computer to be checked in a real-time dynamic simulation environment. Obtained results in the presence of real hardware of system, actuators, computational delays and real-time execution verify the effectiveness of proposed scheme.  相似文献   

2.
This paper presents a discrete-time quasi-sliding mode controller for an autonomous underwater vehicle (AUV) in the presence of parameter uncertainties and a long sampling interval. The AUV, named VORAM, is used as a model for the verification of the proposed control algorithm. Simulations of depth control and contouring control are performed for a numerical model of the AUV with full nonlinear equations of motion to verify the effectiveness of the proposed control schemes when the vehicle has a long sampling interval. By using the discrete-time quasi-sliding mode control law, experiments on depth control of the AUV are performed in a towing tank. The controller makes the system stable in the presence of system uncertainties and even external disturbances without any observer nor any predictor producing high rate estimates of vehicle states. As the sampling interval becomes large, the effectiveness of the proposed control law is more prominent when compared with the conventional sliding mode controller  相似文献   

3.
A Variable Buoyancy Control System for a Large AUV   总被引:1,自引:0,他引:1  
A large autonomous undersea vehicle (AUV), the Seahorse, has been designed, constructed, and tested by the Applied Research Laboratory at Pennsylvania State University (ARL/PSU, University Park, PA) for the U.S. Naval Oceanographic Office (NAVOCEANO, Stennis Space Center, MS). The vehicle is required to launch in shallow water (<10 m) and to hover without propulsion. Additionally, due to the very large size of the vehicle, low operating speeds and very long missions, small changes in vehicle trim resulting from battery replacement, sensor exchanges, and water temperature variations can result in significant drag-induced energy penalties over the duration of a mission. It is, therefore, important to continually maintain the AUV in fore-aft trim over the course of the mission. The vehicle is equipped with a two tank variable buoyancy system (VBS) to meet these requirements. The resulting control problem is one where the control variable, pump rate, is proportional to the third derivative of the sensed variable, depth; there are significant delays, and forces are nonlinear (including discontinuous) and highly uncertain. This paper describes the design of the VBS and the control software operating in two modes: depth control mode and trim control mode. In-water test data and simulation results are presented to illustrate the performance of the VBS controller. The benefits of the presented approach lie in the intuitiveness and simplicity of the design and the robustness as evidenced by the performance in both fresh and salt water. This paper provides practical insight into the operation of a VBS with an AUV and discusses actual operational experience. To our knowledge, no previous work considers the significance of an observed surface capture phenomenon to the design of a VBS control system, especially in very shallow water.  相似文献   

4.
A discrete time-delay control (DTDC) law for a general six degrees of freedom unsymmetric autonomous underwater vehicle (AUV) is presented. Hydrodynamic parameters like added mass coefficients and drag coefficients, which are generally uncertain, are not required by the controller. This control law cancels the uncertainties in the AUV dynamics by direct estimation of the uncertainties using time-delay estimation technique. The discrete-time version of the time-delay control does not require the derivative of the system state to be measured or estimated, which is required by the continuous-time version of the controller. This particularly provides an advantage over continuous-time controller in terms of computational effort or availability of sensors for measuring state derivatives, i.e., linear and angular accelerations. Implementation issues for practical realization of the controller are discussed. Experiments on a test-bed AUV were conducted in depth, pitch, and yaw degrees of freedom. Results show that the proposed control law performs well in the presence of uncertainties.  相似文献   

5.
The NDRE-AUV flight control system   总被引:1,自引:0,他引:1  
The flight control system of an autonomous underwater vehicle (AUV) developed at the Norwegian Defence Research Establishment (NDRE) is presented. A mathematical model of the vehicle is derived and discussed. The system is separated into lightly interacting subsystems, and three autopilots are designed for steering, diving, and speed control. The design of the separate controllers is based on PID techniques. Results from extensive sea testing show robust performance and stability for the autopilot  相似文献   

6.
The authors focus on demonstrating a simple design procedure for the Odyssey III autonomous underwater vehicle (AUV) flight control system. This procedure can be carried out quickly and routinely to maximize vehicle effectiveness. A hydrodynamic model of the vehicle was first developed from theory and bench-top laboratory tests. Using this initial model, a controller was developed from basic principles. Then, using this initial controller to reach a desired typical operating condition, a very compact set of open-loop maneuvers was performed in the field. The vehicle model was optimized using the Nelder-Mead simplex method, and a revised controller was then implemented and tested successfully.  相似文献   

7.
Robust Nonlinear Path-Following Control of an AUV   总被引:3,自引:0,他引:3  
This paper develops a robust nonlinear controller that asymptotically drives the dynamic model of an autonomous underwater vehicle (AUV) onto a predefined path at a constant forward speed. A kinematic controller is first derived, and extended to cope with vehicle dynamics by resorting to backstepping and Lyapunov-based techniques. Robustness to vehicle parameter uncertainty is addressed by incorporating a hybrid parameter adaptation scheme. The resulting nonlinear adaptive control system is formally shown and it yields asymptotic convergence of the vehicle to the path. Simulations illustrate the performance of the derived controller .   相似文献   

8.
Central to the successful operation of an autonomous undersea vehicle (AUV) is the capability to return from a mission, in that there is consistent recovery or docking of the AUV. In addition, some missions may require communication with and power transfer to the AUV after docking. This paper describes an inductive system that provides a nonintrusive power and communications interface between the dock and the AUV. The system makes up to 200 W of AC or DC power available to the AUV. The communications interface is 10BaseT Ethernet and is platform- and protocol-independent. The overall design of the system is given as well as results from wet laboratory and field tests  相似文献   

9.
水下滑翔机器人(AUG)是一种将浮标技术与传统水下机器人技术相结合的新型水下机器人,可用于长时间、大范围的海洋环境测量和监测,具有较高的可控性和机动性。在欧洲地区海洋环境安全(MERSEA)中水下滑翔机器人扮演了重要的角色,未来其应用领域将更加广泛,性能更加先进。  相似文献   

10.
In this paper, we examine the issues associated with docking autonomous underwater vehicles (AUVs) operating within an Autonomous Ocean Sampling Network (AOSN). We present a system based upon an acoustic ultrashort baseline system that allows the AUV to approach the dock from any direction. A passive latch on the AUV and a pole on the dock accomplish the task of mechanically docking the vehicle. We show that our technique for homing is extremely robust in the face of the two dominant sources of error-namely the presence of currents and the presence of magnetic anomalies. Our strategy for homing is independent of the initial bearing of the dock to the AUV, includes a method for detecting when the vehicle has missed the dock, and automatically ensures that the AUV is in a position to retry homing with a greater chance of success. Our approach is seen to be extremely successful in homing the vehicle to the dock, mechanically attaching itself to the dock, aligning inductive cores for data and power transfer, and undocking at the start of a fresh mission. Once the AUV is on the dock, we present a methodology that allows us to achieve the complex tasks with ensuring that the AUV is securely docked, periodically checking vehicle status, reacting to a vehicle that requires charging, tracking it when it is out on a mission, archiving and transmitting via satellite the data that the AUV collects during its missions, as well as providing a mechanism for researchers removed from the site to learn about vehicle status and command high-level missions. The dock is capable of long-term deployments at a remote site while respecting the constraints - low power, small size, low computational energy, low bandwidth, and little or no user input - imposed by the amalgamation of acoustic, electronic and mechanical components that comprise the entire system  相似文献   

11.
A neural-network-based learning control scheme for the motion control of autonomous underwater vehicles (AUV) is described. The scheme has a number of advantages over the classical control schemes and conventional adaptive control techniques. The dynamics of the controlled vehicle need not be fully known. The controller with the aid of a gain layer learns the dynamics and adapts fast to give the correct control action. The dynamic response and tracking performance could be accurately controlled by adjusting the network learning rate. A modified direct control scheme using multilayered neural network architecture is used in the studies with backpropagation as the learning algorithm. Results of simulation studies using nonlinear AUV dynamics are described in detail. The robustness of the control system to sudden and slow varying disturbances in the dynamics is studied and the results are presented  相似文献   

12.
This paper introduces an underwater docking procedure for the test-bed autonomous underwater vehicle (AUV) platform called ISiMI using one charge-coupled device (CCD) camera. The AUV is optically guided by lights mounted around the entrance of a docking station and a vision system consisting of a CCD camera and a frame grabber in the AUV. This paper presents an image processing procedure to identify the dock by discriminating between light images, and proposes a final approach algorithm based on the vision guidance. A signal processing technique to remove noise on the defused grabbed light images is introduced, and a two-stage final approach for stable docking at the terminal instant is suggested. A vision-guidance controller was designed with conventional PID controllers for the vertical plane and the horizontal plane. Experiments were conducted to demonstrate the effectiveness of the vision-guided docking system of the AUV.  相似文献   

13.
The motion of an autonomous underwater vehicle (AUV) is controllable even with reduced control authority such as in the event of an actuator failure. In this paper we describe a technique for synthesizing controls for underactuated AUV's and show how to use this technique to provide adaptation to changes in control authority. Our framework is a motion control system architecture which includes both feed-forward control as well as feedback control. We confine ourselves to kinematic models and exploit model nonlinearities to synthesize controls. Our results are illustrated for two examples, the first a yaw maneuver of an AUV using only roll and pitch actuation, and the second a “parking maneuver” for an AUV. Experimental results for the yaw maneuver example are described  相似文献   

14.
The Advanced Marine Systems Lab at Florida Atlantic University has developed a new ultramodular plastic mini autonomous underwater vehicle (AUV), called the Morpheus, for littoral military and coastal oceanographic sampling, survey, and mapping. The name Morpheus was chosen because the Greek god Morpheus could change shape or "morph." The higher degree of modularity of the Morpheus AUV allows it to "morph" or change its size and components for different applications. This vehicle is composed of modular injection-molded plastic pressure vessels and a cabling system that allow the modules to be rearranged without rewiring bulkheads. The plastic pressure vessels are inexpensive, inherently mass-producible, extremely corrosion-resistant, and have low magnetic signatures. The pressure vessels are small but are sized to fit most standard electronic board standards. The mini AUV can be anywhere from 4 to 10 ft in length, depending on its mission. The vehicle architecture is an adaptation of the Ocean Explorer AUV system and uses an ANSI 709.1 (LonTalk) distributed control network for connecting all sensors and actuator subsystems as smart nodes. The modularity in containers, control, and power makes this vehicle rapidly reconfigurable and easy to repair or upgrade. This paper will present details of the motivation, design, and construction of the new mini AUV. The Morpheus was deployed during the summer of 2000 in field exercises for very shallow and shallow water mine counter measures. Some results from these tests will be presented  相似文献   

15.
Kihun  Hang S.   《Ocean Engineering》2007,34(8-9):1138-1150
This paper describes the estimation of hydrodynamic coefficients and the control algorithm based on a nonlinear mathematical modeling for a test bed autonomous underwater vehicle (AUV) named by SNUUV I (Seoul National University Underwater Vehicle I).A six degree of freedom mathematical model for SNUUV I is derived with linear and nonlinear hydrodynamic coefficients, which are estimated with the help of a potential code and also the system identification using multi-variable regression.A navigation algorithm is developed using three ranging sonars, pressure sensor and two inclinometers keeping towing tank applications in mind. Based on the mathematical model, a simulation program using a model-based control algorithm is designed for heading control and wall following control of SNUUV I.It is demonstrated numerically that the navigation system together with controller guides the vehicle to follow the desired heading and path with a sufficient accuracy. Therefore the model-based control algorithm can be designed efficiently using the system identification method based on vehicle motion experiments with the appropriate navigation system.  相似文献   

16.
Autonomous underwater vehicles (AUVs) have many scientific, military, and commercial applications because of their potential capabilities and significant cost-performance improvements over traditional means for performing search and survey. The development of a reliable sampling platform requires a thorough system design and many costly at-sea trials during which systems specifications can be validated. Modeling and simulation provides a cost-effective measure to carry out preliminary component, system (hardware and software), and mission testing and verification, thereby reducing the number of potential failures in at-sea trials. An accurate simulation can help engineers to find hidden errors in the AUV embedded software and gain insights into the AUV operations and dynamics. This paper reviews our research work on real-time physics-based modeling and simulation for our AUVs. The modeling component includes vehicle dynamics, environment and sensor characteristics. The simulation component consists of stand-alone versus hardware-in-the-loop (HIL) implementation, for both single as well as multiple vehicles. In particular, implementation issues with regard to multitasking system resources will be addressed. The main contribution of this paper is to present the rationale for our simulation architecture and the lessons learned.  相似文献   

17.
The purpose of this study is to develop maneuvering models and systems of a simulator to improve the motion performance of autonomous underwater vehicles (AUVs) at the preliminary design stages in advance. The AUVs simulation systems based on the standard submarine equations of motion in six-degree-of-freedom (6-DOF) integrated with the Euler-Rodriguez quaternion method for representing singularity-free AUV attitude and time-saving calculation, and with a nonlinear control model for maneuvering and depth control simulations, time-marching in the fourth-order Runge-Kutta scheme. For validation of the simulation codes, results of the ISiMI AUV open-loop tests including turning test and zigzag test as well as an AUV simulator on the basis of Euler-angle method were used to compare with the quaternion-based AUV simulator. The computational results from the proposed simulator agree well with those from both the ISiMI AUV experiments and the Euler-angle based simulations. Additionally, a new maneuvering procedure, namely "put-out" was implemented to test directional stability for a large-scale AUV in the proposed AUV simulator that can be considered for vehicles in space as well as in constrained planes.  相似文献   

18.
This paper is concerned with the robust control synthesis of autonomous underwater vehicle(AUV) for general path following maneuvers.First,we present maneuvering kinematics and vehicle dynamics in a unified framework.Based on H∞ loop-shaping procedure,the 2-DOF autopilot controller has been presented to enhance stability and path tracking.By use of model reduction,the high-order control system is reduced to one with reasonable order,and further the scaled low-order controller has been analyzed in both the frequency and the time domains.Finally,it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.  相似文献   

19.
The design of an autonomous underwater vehicle (AUV) involves complex tradeoffs among various design variables and mission requirements. Particularly important are the selection of a suitable energy source and the sensitivity of vehicle dimensional characteristics to mission requirements. A method of comparison based on an approximate but comprehensive approach which refers to specific parameters derivable from known designs or literature is suggested. Specific energy and energy density of candidate systems are derived with due consideration to depth-resistant vessels. The impact of the energy system choice is highlighted, going beyond simply comparing the former parameters. A design model has been developed, allowing quick sensitivity and mass-volume breakdown of alternative configurations under varying mission requirements; these are exemplified with reference to a design case. The procedure allows the correct specification of power, energy, and surface-handling systems for more detailed comparative analyses, given a common project goal and a basis for realistic cost comparison. The results show wide differences in the energy capacity of AUVs complying with identical mission data, but using with different energy systems. It is concluded that rechargeable electric batteries, even of high energy density, result in unacceptably heavy vehicles for ranges around 1000 km unless very low drag characteristics are achieved. Closed-cycle diesel and fuel cell systems allow the AUV mass to be kept below 10 t  相似文献   

20.
The problem of controlling an autonomous underwater vehicle (AUV) in a diving maneuver is addressed. Having a simple controller which performs satisfactorily in the presence of dynamical uncertainties calls for a design using the sliding mode approach, based on a dominant linear model and bounds on the nonlinear perturbations of the dynamics. Nonadaptive and adaptive techniques are considered, leading to the design of robust controllers that can adjust to changing dynamics and operating conditions. The problem of using the observed state in the control design is addressed, leading to a sliding mode control system based on input-output signals in terms of drive-phase command and depth measurement. Numerical simulations using a full set of nonlinear equations of motion show the effectiveness of the proposed techniques  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号