首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the potential impacts of climate change on water resources in northern Tuscany, Italy. A continuous hydrological model for each of the seven river basins within the study area was calibrated using historical data. The models were then driven by downscaled and bias‐corrected climate projections of an ensemble of 13 regional climate models (RCMs), under two different scenarios of representative concentration pathway (RCP4.5 and RCP8.5). The impacts were examined at medium term (2031–2040) and long term (2051–2060) in comparison with a reference period (2003–2012); the changes in rainfall, streamflow, and groundwater recharge were investigated. A high degree of uncertainty characterized the results with a significant intermodel variability, the period being equal. For the sake of brevity, only the results for the Serchio River basin were presented in detail. According to the RCM ensemble mean and the RCP4.5, a moderate decrease in rainfall, with reference to 2003–2012, is expected at medium term (?0.6%) and long term (?2.8%). Due to the warming of the study area, the reduction in the streamflow volume is two times the precipitation decrease (?1.1% and ?6.8% at medium and long term, respectively). The groundwater recharge is mainly affected by the changes in climate with expected percolation volume variations of ?3.3% at 2031–2040 and ?8.1% at 2051–2060. The impacts on the Serchio River basin water resources are less significant under the RCP8.5 scenario. The presence of artificial structures, such as dam‐reservoir systems, can contribute to mitigate the effects of climate change on water resources through the implementation of appropriate regulation strategies.  相似文献   

2.
Climatic and hydrological changes will likely be intensified in the Upper Blue Nile (UBN) basin by the effects of global warming. The extent of such effects for representative concentration pathways (RCP) climate scenarios is unknown. We evaluated projected changes in rainfall and evapotranspiration and related impacts on water availability in the UBN under the RCP4.5 scenario. We used dynamically downscaled outputs from six global circulation models (GCMs) with unprecedented spatial resolution for the UBN. Systematic errors of these outputs were corrected and followed by runoff modelling by the HBV (Hydrologiska ByrånsVattenbalansavdelning) model, which was successfully validated for 17 catchments. Results show that the UBN annual rainfall amount will change by ?2.8 to 2.7% with a likely increase in annual potential evapotranspiration (in 2041–2070) for the RCP4.5 scenario. These changes are season dependent and will result in a likely decline in streamflow and an increase in soil moisture deficit in the basin.  相似文献   

3.
This study aimed to quantify possible climate change impacts on runoff for the Rheraya catchment (225 km2) located in the High Atlas Mountains of Morocco, south of Marrakech city. Two monthly water balance models, including a snow module, were considered to reproduce the monthly surface runoff for the period 1989?2009. Additionally, an ensemble of five regional climate models from the Med-CORDEX initiative was considered to evaluate future changes in precipitation and temperature, according to the two emissions scenarios RCP4.5 and RCP8.5. The future projections for the period 2049?2065 under the two scenarios indicate higher temperatures (+1.4°C to +2.6°C) and a decrease in total precipitation (?22% to ?31%). The hydrological projections under these climate scenarios indicate a significant decrease in surface runoff (?19% to ?63%, depending on the scenario and hydrological model) mainly caused by a significant decline in snow amounts, related to reduced precipitation and increased temperature. Changes in potential evapotranspiration were not considered here, since its estimation over long periods remains a challenge in such data-sparse mountainous catchments. Further work is required to compare the results obtained with different downscaling methods and different hydrological model structures, to better reproduce the hydro-climatic behaviour of the catchment.
EDITOR M.C. Acreman

ASSOCIATE EDITOR R. Hirsch  相似文献   

4.

The source region of Yellow river is an alpine river sensitive to climate changes, but the potential effects of climate change on hydrological regime characteristics and ecological implications are less understood. This study aims to assess the response of the alterations in the flow regimes over the source region of Yellow river to climate change using Soil and Water Integrated Model driven by different Global Circulation Models (GFDL-ESM2M, IPSL-CM5A-LR and MIROC-ESM-CHEM) under three Representative Concentration Pathway emission scenarios (RCP2.6, RCP4.5 and RCP8.5). Indicators of hydrological alteration and River impact index are employed to evaluate streamflow regime alterations at multiple temporal scales. Results show that the magnitude of monthly and annual streamflow except May, the magnitude and duration of the annual extreme, and the number of reversals are projected to increase in the near future period (2020–2049) and far future period (2070–2099) compared to the baseline period (1971–2000). The timing of annual maximum flows is expected to shift backwards. The source region of Yellow river is expected to undergo low change degree as per the scenarios RCP2.6 for both two future periods and under the scenarios RCP4.5 for the near future period, whereas high change degree under RCP4.5 and RCP8.5 in the far period on the daily scale. On the monthly scale, climate changes mainly have effects on river flow magnitude and timing. The basin would suffer an incipient impact alteration in the far period under RCP4.5 and RCP8.5, while low impact in other scenarios. These changes in flow regimes could have several positive impacts on aquatic ecosystems in the near period but more detrimental effects in the far period.

  相似文献   

5.
ABSTRACT

This study investigated the impacts of changes in land cover and climate on runoff and sediment yield in a river basin in India. Land Change Modeler was used to derive the future land cover and its changes using the Sankey diagram approach. The future climatic parameters were derived from five general circulation models for two emission scenarios with representative concentration pathways (RCPs) 4.5 and 8.5. The land cover and climate change impacts on runoff and sediment yield were estimated using SWAT model. The results show important changes in land cover and indicate that urban and agricultural areas strongly influence the runoff and sediment yield. Among the land cover and climate change impacts, climate has more predominant (70%–95%) impact. Runoff and sediment yield are likely to decrease in both RCP scenarios in the future period. The impacts of land cover changes are more prominent on sediment yield than runoff.  相似文献   

6.
Climate changes brought on by increasing greenhouse gases in the atmosphere are expected to have a significant effect on the Pacific Northwest hydrology during the 21st century. Many climate model simulations project higher mean annual temperatures and temporal redistribution of precipitation. This is of particular concern for highly urbanized basins where runoff changes are more vulnerable to changes in climate. The Rock Creek basin, located in the Portland metropolitan area, has been experiencing rapid urban growth throughout the last 30 years, making it an ideal study area for assessing the effect of climate and land cover changes on runoff. A combination of climate change and land cover change scenarios for 2040 with the semi‐distributed AVSWAT (ArcView Soil and Water Assessment Tool) hydrological model was used to determine changes in mean runoff depths in the 2040s (2030–2059) from the baseline period (1973–2002) at the monthly, seasonal, and annual scales. Statistically downscaled climate change simulation results from the ECHAM5 general circulation model (GCM) found that the region would experience an increase of 1·2 °C in the average annual temperature and a 2% increase in average annual precipitation from the baseline period. AVSWAT simulation shows a 2·7% increase in mean annual runoff but a 1·6% decrease in summer runoff. Projected climate change plus low‐density, sprawled urban development for 2040 produced the greatest change to mean annual runoff depth (+5·5%), while climate change plus higher‐density urban development for 2040 resulted in the smallest change (+5·2%), when compared with the climate and land cover of the baseline period. This has significant implications for water resource managers attempting to implement adaptive water resource policies to future changes resulting from climate and urbanization. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Land-cover change significantly influences hydrologic processes at the watershed level. The mountainous Duoyingping watershed in upstream Yangtze River, China, has undergone dramatic land-cover change in the past three decades. It is likely to maintain this trend in the future, inevitably altering hydrologic processes in the region to a certain degree. Therefore, the effects of land-cover change on runoff, evapotranspiration (ET), and soil moisture in the watershed were assessed using a large-scale Variable Infiltration Capacity (VIC) hydrologic model.To minimize the effect of climate change on simulation results, we used detrended climate data over the period 1980–2005 in forcing the VIC model. The dynamics in the spatial distribution of land-cover types in the Duoyingping watershed from 1980 to 2000 were first examined, revealing that reforestation and deforestation were the major change patterns. On the basis of various land-use policies, potential land-cover scenarios for 2030 were established using an integrated land-use change model (CLUE-S). The scenarios were developed using 2000 land-use data as bases. Finally, the calibrated VIC model was applied in the scenarios to assess land-cover effects on hydrology. Hydrologic simulations showed that the effects of historical land-cover change on hydrology were discernible in the sub-watersheds of Nanba, Yingjing, and Yuxi. The annual ET was projected to decrease by 0.8–22.3% because of deforestation, and increase by 2.3–27.4% because of shrubland–forest conversion. Different potential land-cover scenarios play various roles in the effect on hydrology because of various land-use policies. In the scenario concerning forest protection policy, annual ET increased by more than 15%, while annual runoff decreased by 6%. However, a negligible effect on hydrology was found under the scenario involving cropland expansion. On the basis of the results, it is concluded that ET is more sensitive to land-cover change than are other hydrologic components. Hydrologic alteration caused by reforestation and deforestation during the dry season was more significant than that during wet season. Generally, the proposed approach in the study can be a useful means of assessing hydrologic responses to land-cover change.  相似文献   

8.
Climate warming is having profound effects on the hydrological cycle by increasing atmospheric demand, changing water availability, and snow seasonality. Europe suffered three distinct heat waves in 2019, and 11 of the 12 hottest years ever recorded took place in the past two decades, which will potentially change seasonal streamflow patterns and long-term trends. Central Europe exhibited six dry years in a row since 2014. This study uses data from a well-documented headwater catchment in Central Europe (Lysina) to explore hydrological responses to a warming climate. We applied a lumped parameter hydrologic model Brook90 and a distributed model Penn State Integrated Hydrologic Model (PIHM) to simulate long-term hydrological change under future climate scenarios. Both models performed well on historic streamflow and in agreement with each other according to the catchment water budget. In addition, PIHM was able to simulate lateral groundwater redistribution within the catchment validated by the groundwater table dynamics. The long-term trends in runoff and low flow were captured by PIHM only. We applied different EURO-CORDEX models with two emission scenarios (Representative Concentration Pathways RCP 4.5, 8.5) and found significant impacts on runoff and evapotranspiration (ET) for the period of 2071–2100. Results from both models suggested reduced runoff and increased ET, while the monthly distribution of runoff was different. We used this catchment study to understand the importance of subsurface processes in projection of hydrologic response to a warming climate.  相似文献   

9.
The hydrological response to the potential future climate change in Yangtze River Basin (YRB), China, was assessed by using an ensemble of 54 climate change simulations. The Coupled Model Intercomparison Project 5 simulations under two new Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios were downscaled and used to drive the Variable Infiltration Capacity hydrological model. This study found that the range of temperature changes is homogeneous for almost the entire region, with an average annual increase of more than 2 °C under RCP4.5 and even more than 4 °C under RCP8.5 in the end of the twenty first century. The warmest period (June–July–August) of the year would experience lower changes than the colder ones (December–January–February). Overall, mean precipitation was projected to increase slightly in YRB, with large dispersion among different global climate models, especially during the dry season months. These phenomena lead to changes in future streamflow for three mainstream hydrological stations (Cuntan, Yichang, and Datong), with slightly increasing annual average streamflows, especially at the end of twenty first century. Compared with the percentage change of mean flow, the high flow shows (90th percentile on the probability of no exceedance) a higher increasing trend and the low flow (10th percentile) shows a decreasing trend or lower increasing trend. The maximum daily discharges with 5, 10, 15, and 30-year return periods show an increasing trend in most sub-basins in the future. Therefore, extreme hydrological events (e.g., floods and droughts) will increase significantly, although the annual mean streamflow shows insignificant change. The findings of this study would provide scientific supports to implement the integrated adaptive water resource management for climate change at regional scales in the YRB.  相似文献   

10.
In this study, we evaluate uncertainties propagated through different climate data sets in seasonal and annual hydrological simulations over 10 subarctic watersheds of northern Manitoba, Canada, using the variable infiltration capacity (VIC) model. Further, we perform a comprehensive sensitivity and uncertainty analysis of the VIC model using a robust and state-of-the-art approach. The VIC model simulations utilize the recently developed variogram analysis of response surfaces (VARS) technique that requires in this application more than 6,000 model simulations for a 30-year (1981–2010) study period. The method seeks parameter sensitivity, identifies influential parameters, and showcases streamflow sensitivity to parameter uncertainty at seasonal and annual timescales. Results suggest that the Ensemble VIC simulations match observed streamflow closest, whereas global reanalysis products yield high flows (0.5–3.0 mm day−1) against observations and an overestimation (10–60%) in seasonal and annual water balance terms. VIC parameters exhibit seasonal importance in VARS, and the choice of input data and performance metrics substantially affect sensitivity analysis. Uncertainty propagation due to input forcing selection in each water balance term (i.e., total runoff, soil moisture, and evapotranspiration) is examined separately to show both time and space dimensionality in available forcing data at seasonal and annual timescales. Reliable input forcing, the most influential model parameters, and the uncertainty envelope in streamflow prediction are presented for the VIC model. These results, along with some specific recommendations, are expected to assist the broader VIC modelling community and other users of VARS and land surface schemes, to enhance their modelling applications.  相似文献   

11.
Five General Circulation Model(GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity(VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21 st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project(ISIMIP). Results showed much larger fractional changes of annual mean Evapotranspiration(ET) per unit warming than the corresponding fractional changes of Precipitation(P) per unit warming across the country, especially for South China, which led to a notable decrease of surface water variability(P-E). Specifically, negative trends for annual mean runoff up to -0.33%/ year and soil moisture trends varying between -0.02% to -0.13%/year were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 0.41%/year and 0.90%/year, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks(e.g., floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with a steady increase of interannual variability throughout the 21 st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide a multi-scale guidance for assessing effective adaptation strategies for China on a river basin, regional, or as a whole.  相似文献   

12.
A number of uncertainties of forecasts of changes in the annual runoff depths at global scale, obtained using information on results of integration of 21 IPCC climate models is studied. Following possible errors of these forecasts are calculated: errors of models; differences between main (IPCC) scenarios of emission of greenhouse gases in the atmosphere and resultant changes of global temperatures; mistakes in estimates of average long-term observed values of the runoff depths for the “control” period. Global maps of a “significance index” of forecasted changes in the runoff depths (estimations of changes in the annual runoff depths divided by mean square root values of errors of these estimations) for 2025, 2050, 2075 and 2100 are presented. It is shown that the most significant global changes of the runoff depths (growth in the north of Eastern Siberia, of the Russian Far East, of North America, falling in the “Greater Mediterranean Region”) are predicted for the second quarter of 21st century. Further changes of the runoff amplify only in the Amazon basin (reduction, by 2075). Almost everywhere else (including almost all European territory of Russia, Western Siberia, south of Eastern Siberia and of the Far East) the significance of changes in the runoff depths during 21st century is negligible.  相似文献   

13.
Groundwater resources are typically the main fresh water source in arid and semi‐arid regions. Natural recharge of aquifers is mainly based on precipitation; however, only heavy precipitation events (HPEs) are expected to produce appreciable aquifer recharge in these environments. In this work, we used daily precipitation and monthly water level time series from different locations over a Mediterranean region of Southeastern Spain to identify the critical threshold value to define HPEs that lead to appreciable aquifer recharge in this region. Wavelet and trend analyses were used to study the changes in the temporal distribution of the chosen HPEs (≥20 mm day?1) over the observed period 1953–2012 and its projected evolution by using 18 downscaled climate projections over the projected period 2040–2099. The used precipitation time series were grouped in 10 clusters according to similarities between them assessed by using Pearson correlations. Results showed that the critical HPE threshold for the study area is 20 mm day?1. Wavelet analysis showed that observed significant seasonal and annual peaks in global wavelet spectrum in the first sub‐period (1953–1982) are no longer significant in the second sub‐period (1983–2012) in the major part of the ten clusters. This change is because of the reduction of the mean HPEs number, which showed a negative trend over the observed period in nine clusters and was significant in five of them. However, the mean size of HPEs showed a positive trend in six clusters. A similar tendency of change is expected over the projected period. The expected reduction of the mean HPEs number is two times higher under the high climate scenario (RCP8.5) than under the moderate scenario (RCP4.5). The mean size of these events is expected to increase under the two scenarios. The groundwater availability will be affected by the reduction of HPE number which will increase the length of no aquifer recharge periods (NARP) accentuating the groundwater drought in the region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
陶纯苇  姜超  孙建新 《地球物理学报》2016,59(10):3580-3591
应用CN05观测资料,以及参与国际耦合模式比较计划第5阶段(CMIP5)中的26个模式,评估了新一代全球气候模式对东北三省气候变化模拟能力并选出4个较优模式,发现经过筛选得出的较优模式集合平均模拟结果的可靠性得到进一步加强,尤其体现在对气温的模拟上.在此基础上着重分析了多模式集合在不同典型浓度路径(RCPs)下对未来气候变化特征的预估.结果表明:21世纪的未来阶段,东北三省将处于显著增温的状态,且RCP8.5情景下的增温速率(0.53℃/10a)明显高于RCP4.5情景下的速率(0.22℃/10a);空间上,北部地区将成为增温幅度最大、增温速率最高的区域.未来降水将会相对增加,但波动较大,21世纪末期RCP4.5和RCP8.5情景下的降水增加幅度分别为11.24%和15.95%;空间上,辽宁省西部地区将成为降水增加最为显著的区域.根据水分盈亏量,21世纪未来阶段,RCP4.5情景下的东北三省绝大多数地区未来将相对变湿,尤其到了中后期;RCP8.5情景下则是中西部地区将相对变干,其余地区则会相对变湿.  相似文献   

15.
《水文科学杂志》2013,58(3):556-570
Abstract

Forest growth unfavourably reduces low flows and annual runoff in a basin in Japan. Annual precipitation and runoff of the watershed are summarized from observed daily rainfall and discharge, and annual evapotranspiration is estimated from the annual water balance. The water balance analysis shows obvious trends: reduced annual runoff and increased evapotranspiration over a 36-year period when forest growth increased the leaf area index. Between two periods, 1960–1969 and 1983–1992, mean annual runoff decreased 11%, from 1258 to 1118 mm, due to a 37% increase in evapotranspiration (precipitation minus runoff) from 464 to 637 mm. This increase in evapotranspiration cannot be attributed to changed evaporative demand, based on climatic variability over the 36-year period of record. Flow duration curves show reduced flows in response to forest growth. In particular, they suggest stronger absolute changes for higher flows but stronger proportional changes for medium and lower flows. A distributed model is applied to simulate the influences of five scenarios based on a 30% change in leaf area index and 5% change in soil storage capacity. From the simulation results, canopy growth appears to contribute much more to flow reduction than changes in soil storage capacity.  相似文献   

16.
Climate change has significant impacts on water availability in larger river basins. The present study evaluates the possible impacts of projected future daily rainfall (2011–2099) on the hydrology of a major river basin in peninsular India, the Godavari River Basin, (GRB), under RCP4.5 and RCP8.5 scenarios. The study highlights a criteria-based approach for selecting the CMIP5 GCMs, based on their fidelity in simulating the Indian Summer Monsoon rainfall. The nonparametric kernel regression based statistical downscaling model is employed to project future daily rainfall and the variable infiltration capacity (VIC) macroscale hydrological model is used for hydrological simulations. The results indicate an increase in future rainfall without significant change in the spatial pattern of hydrological variables in the GRB. The climate-change-induced projected hydrological changes provide a crucial input to define water resource policies in the GRB. This methodology can be adopted for the climate change impacts assessment of larger river basins worldwide.  相似文献   

17.
D. Raje  P. Priya  R. Krishnan 《水文研究》2014,28(4):1874-1889
In climate‐change studies, a macroscale hydrologic model (MHM) operating over large scales can be an important tool in developing consistent hydrological variability estimates over large basins. MHMs, which can operate at coarse grid resolutions of about 1° latitude by longitude, have been used previously to study climate change impacts on the hydrology of continental scale or global river basins. They can provide a connection between global atmospheric models and water resource systems on large spatial scales and long timescales. In this study, the variable infiltration capacity (VIC) MHM is used to study large scale hydrologic impacts of climate change for Indian river basins. Large‐scale changes in runoff, evapotranspiration and soil moisture for India, as well as station‐scale changes in discharges for three major river basins with distinct climatic and geographic characteristics are examined in this study. Climate model projections for meteorological variables (precipitation, temperature and wind speed) from three general circulation models (GCMs) and three emissions scenarios are used to drive the VIC MHM. GCM projections are first interpolated to a 1° by 1° hydrologic model grid and then bias‐corrected using a quantile–quantile mapping. The VIC model is able to reproduce observed statistics for discharges in the Ganga, Narmada and Krishna basins reasonably well, even at the coarse grid resolution employed using a calibration period for years 1965–1970 and testing period from 1971–1973/1974. An increasing trend is projected for summer monsoon surface runoff, evapotranspiration and soil moisture in most central Indian river basins, whereas a decrease in runoff and soil moisture is projected for some regions in southern India, with important differences arising from GCM and scenario variability. Discharge statistics show increases in mid‐flow and low flow at Farakka station on Ganga River, increased high flows at Jamtara station upstream of Narmada, and increased high, mid‐flow and low flow for Vijayawada station on Krishna River in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, the impacts of climate change on crop water requirements and irrigation water requirements on the regional cropping pattern were evaluated using two climate change scenarios and combinations of 20 GCM models. Different models including CROPWAT, MODFLOW, and statistical models were used to evaluate the climate change impacts. The results showed that in the future period (2017 to 2046) the temperature in all months of the year will increase at all stations. The average annual precipitation decline in Isfahan, Tiran, Flavarjan, and Lenj stations for RCP 4.5 and RCP 8.5 scenarios are 18.6 and 27.6%, 15.2 and 18%, 22.5 and 31.5%, and 10.5 and 12.1%, respectively. The average increase in the evapotranspiration for RCP 4.5 and RCP 8.5 scenarios are about 2.5 and 4.1%, respectively. The irrigation water demands increases considerably and for some crops, on average 18%. Among the existing crops in the cropping pattern, barley, cumin, onion, wheat, and forage crops are more sensitive and their water demand will increase significantly. Results indicate that climate change could have a significant impact on water resources consumption. By considering irrigation efficiency in the region, climate change impacts will result in about 35 to 50 million m3/year, over-extraction from the aquifer. This additional exploitation causes an extra drop of 0.4 to 0.8 m in groundwater table per year in the aquifer. Therefore, with regard to the critical condition of the aquifer, management and preventive measures to deal with climate change in the future is absolutely necessary.  相似文献   

19.
ABSTRACT

Uncertainty in climate change impacts on river discharge in the Upper Awash Basin, Ethiopia, is assessed using five MIKE SHE hydrological models, six CMIP5 general circulation models (GCMs) and two representative concentration pathways (RCP) scenarios for the period 2071–2100. Hydrological models vary in their spatial distribution and process representations of unsaturated and saturated zones. Very good performance is achieved for 1975–1999 (NSE: 0.65–0.8; r: 0.79–0.93). GCM-related uncertainty dominates variability in projections of high and mean discharges (mean: –34% to +55% for RCP4.5, – 2% to +195% for RCP8.5). Although GCMs dominate uncertainty in projected low flows, inter-hydrological model uncertainty is considerable (RCP4.5: –60% to +228%, RCP8.5: –86% to +337%). Analysis of variance uncertainty attribution reveals that GCM-related uncertainty occupies, on average, 68% of total uncertainty for median and high flows and hydrological models no more than 1%. For low flows, hydrological model uncertainty occupies, on average, 18% of total uncertainty; GCM-related uncertainty remains substantial (average: 28%).  相似文献   

20.
The Tibetan Plateau (TP) is the “water tower of Asia” and it plays a key role on both hydrology and climate for southern and eastern Asia. It is critical to explore the impact of climate change on runoff for better water resources management in the TP. However, few studies pay attention to the runoff response to climate change in large river systems on the TP, especially in data-sparse upstream area. To complement the current body of work, this study uses two rainfall-runoff models (SIMHYD and GR4J) to simulate the monthly and annual runoff in the upstream catchments of the Yarlung Tsangpo River basin (YTR) under historical (1962–2002) and future (2046–2065 A1B scenario) climate conditions. The future climate series are downscaled from a global climate model (MIROC3.2_hires) by a high resolution regional climate model (RegCM3). The two rainfall-runoff models successfully simulate the historical runoff for the eight catchments in the YTR basin, with median monthly runoff Nash–Sutcliffe Efficiency of 0.86 for SIMHYD and 0.83 for GR4J. The mean annual future temperature in eight catchments show significant increase with the median of +3.8 °C. However, the mean annual future precipitation shows decrease with the median of ?5.8 % except in Lhatse (+2.0 %). The two models show similar modeling results that the mean annual future runoff in most of catchments (seven in eight) shows decrease with the median of ?13.9 % from SIMHYD and ?15.2 % from GR4J. The results achieved in this study are not only helpful for local water resources management, but also for future water utilization planning in the lower reaches region of the Brahmaputra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号