首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subcritical crack growth plays an important role in evaluating the long-term stability of structures in rocks. By applying the constant-displacement-relax method, two groups of test specimens that one immersed in groundwater and the other in air were tested to get the parameters of subcritical crack growth in double torsion test. The relations of the stress intensity factor K I versus the subcritical crack growth velocity V were obtained under the two different environments, and the behavior of subcritical crack growth was also analyzed. The results showed: the relations of lg K I  ? lg V accorded with linear rules, which is in good agreement with Charles theory; Compared with specimens in nature state, the lg K I  ? lg V curves of saturated water specimens locate top left comer of those of air specimens. The slope of curve is smaller, and the intercept is bigger, which shows that the water–rock interaction speeds up the subcritical crack growth. And A increases 2.9 × 1018 folds but n decreases from 85.12 to 40.83 because of the water–rock interaction. Meanwhile, the fracture toughness K IC also decreases obviously from 2.55 in air to 2.26 in water due to water rock interaction. The testing results provide a basis for time-dependence of rock engineering stability.  相似文献   

2.
Arc fissure is one of the basic forms of defective rock, where the expansion and evolution mechanism plays an important role in the stability of engineering rock mass under the external load action. Uniaxial compression experiments of sandstone samples that contained various angles of arc fissures (sandstone sample was 80 mm?×?160 mm?×?30 mm) were performed in order to investigate the effect that arc angle α had on the mechanical properties, the failure mode, and the fracture evolution process of sandstone. The results showed that when arc angle α was increased, the peak strength and the strain of the sandstone samples initially decreased before increasing and the minimum peak strength and strain were reached when α?=?15°. The deterioration of the bearing capacity and the number of cracks that appeared during the sandstone loading process decreased as the arc angle of the fissure increased. The arc fissure destruction was primarily initiated from the fragile area of the arch tip. The tensile cracks appeared on the fissure tip and non-tip as the axial force increased. The various arc angle α played an important role in the initiation stress and the rupture evolution of the specimen.  相似文献   

3.
DEM simulations of sandstone under true triaxial compressive tests   总被引:1,自引:0,他引:1  
Numerically simulated true triaxial compression tests (σ 1 ≥ σ 2 ≥ σ 3) are conducted in this study to elucidate the failure mechanism of sandstone using 3D discrete element method (DEM), in particular the effect of the intermediate principal stress (σ 2). Eight series of tests (σ 3 = 0, 10, 20, 30, 40, 50, 70, and 100 MPa) are conducted. Within each series, σ 2 is varied from σ 2 = σ 3 to σ 2 = σ 1 from test to test. For each test, σ 1 is raised monotonically to failure while keeping σ 2 and σ 3 constant. The DEM simulations reveal the effect of σ 2 on the variations of peak stress, Young’s modulus, failure plane angles, the brittle–ductile transition, and the evolution of failure modes, the effect beyond the well-understood effect of σ 3. The simulation is in qualitative agreement with the results obtained experimentally. Detailed analyses performed on the particle-scale responses further the understanding of the microscopic mechanisms. The distribution of contact force becomes more homogeneous with the increase of σ 3, which leads to the resulting damage being more localized rather than diffused. The interaction between contact force distribution and coalescence of cracks determines the processes and patterns of fracturing in the sample scale. σ 2 is found to affect the microscopic stress distribution as well as structure evolution, and this effect weakens with the increase of σ 3.  相似文献   

4.
The rock mass failure process can be divided into several distinct deformation stages: the compaction stage, elastic stage, stable failure stage, accelerated failure stage, and post-peak stage. Although each stage has been well studied, the relationship among the stages has not been established. Here, we establish two models which are the Strain model Q and Energy density model S by using the renormalization group theory and investigate the mechanical relationship between the volume dilatant point and peak stress point on the rock stress-strain curve. Our models show that the strain ratio (ε f /ε c ) and energy ratio (E f /E c ) at the volume dilatant point and peak stress point are solely functions of the shape parameter m. To verify our models, we further studied the failure process of rock specimens through several uniaxial compression experiments and found that the relationship between ε f /ε c or E f /E c and m shares a notably similar pattern to that from our theoretical model. However, the ε f /ε c and E f /E c values in our experiments are slightly smaller than those predicted by the models. In brief, we demonstrate that our models can be used to predict the failure process of the laboratory-scale hard brittle rock samples.  相似文献   

5.
Dam failure constitutes a grave threat to human life. However, there is still a lack of systematic and comprehensive research on the loss of life (L) caused by dam break in China. From the perspective of protecting human life, a new calculation method for L occurred in dam break floods is put forward. Fourteen dam failure cases in China are selected as the basic data by three-dimensional stratified sampling, balancing spatial, vertical elevation and temporal representations, as well as considering various conditions of the dam collapse. The method includes three progressive steps: Firstly, some impact factors of loss of life (IFL) are selected by literature survey, i.e., severity of dam break flood (S F), population at risk (P R), understanding of dam break (U B), warning time (T W) and evacuation condition (E C). And the other IFL of weather during dam break (W B), dam break mode (M B), water storage (S W), building vulnerability (V B), dam break time (T B) and average distance from affected area to dam (D D) are also taken into account to get a more comprehensive consideration. According to disaster system and disaster risk, these eleven IFL are divided into four categories. Through the improved entropy method, eight key IFL are further selected out of the eleven. Secondly, four L modules are built based on four categories, which are L-causing factor module (M 1), L-prone environment module (M 2), affected body module (M 3) and rescue condition module (M 4). Eventually, by using two methods of multivariate nonlinear regression and leave-one-out cross-validation in combination with coupled four modules, the calculation method for L is established. Compared with the results of Graham method and D&M method, the result of the proposed one is much closer to the actual value and performs better in fitting effect and regional applicability. In the application, L calculation and consequence assessment are carried out in the example of Hengjiang reservoir that has already broken down. At the same time, L calculation and risk prediction are used in the analysis of Yunshan reservoir, which is under planning. The proposed method can not only be applied to estimate L and its rate (f L ) under various types of dam break conditions in China, but also provide a reliable consequence assessment and prediction approach to reduce the risk of L.  相似文献   

6.
This paper investigates, using the random field theory and Monte Carlo simulation, the effects of random field discretization on failure probability, p f, and failure mechanism of cohesive soil slope stability. The spatial sizes of the discretized elements in random field Δx, Δy in horizontal and vertical directions, respectively, are assigned a series of combinational values in order to model the discretization accuracy. The p f of deterministic critical slip surface (DCSS) and that of the slope system both are analyzed. The numerical simulation results have demonstrated that both the ratios of Δy/λ y (λ y  = scale of fluctuation in vertical direction) and Δx/λ x (λ x  = scale of fluctuation in horizontal direction) contribute in a similar manner to the accuracy of p f of DCSS. The effect of random field discretization on the p f can be negligible if both the ratios of Δx/λ x and Δy/λ y are no greater than 0.1. The normalized discrepancy tends to increase at a linear rate with Δy/λ y when Δx/λ x is larger than 0.1, and vice versa for p f of DCSS. The random field discretization tends to have more considerable influence on the p f of DCSS than on that of the slope system. The variation of p f versus λ x and λ y may exhibit opposite trends for the cases where the limit state functions of slope failure are defined on DCSS and on the slope system as well. Finally, the p f of slope system converges in a more rapid manner to that of DCSS than the failure mechanism does to DCSS as the spatial variability of soil property grows from significant to negligible.  相似文献   

7.
AIA/SDO data in the 193 Å channel preceding a coronal mass ejection observed at the solar limb on June 13, 2010 are used to simultaneously identify and examine two different shock fronts. The angular size of each front relative to the CME center was about 20°, and their propagation directions differed by ≈25° (≈4° in position angle). The faster front, called the blast shock, advanced the other front, called the piston shock, by R ≈ (0.02-0.03)R⊙ (R⊙ is the solar radius) and had a maximum initial speed of VB ≈ 850 km/s (with VP ≈ 700 km/s for the piston shock). The appearance and motion of these shocks were accompanied by a Type II radio burst observed at the fundamental frequency F and second harmonic H. Each frequency was split into two close frequencies f1 and f2 separated by Δf = f2 - f1 ? F, H. It is concluded that the observed frequency splitting Δf of the F and H components of the Type II burst could result from the simultaneous propagation of piston and blast shocks moving with different speeds in somewhat different directions displaying different coronal-plasma densities.  相似文献   

8.
Rock slope instabilities are a major hazard for human activities often causing economic losses, property damages and maintenance costs, as well as injuries or fatalities. For slope stability analysis of open pit mines, series of studies must be carried out in order to identify the criteria which should take into consideration. In this research geotechnical parameters; Geological Strength Index (GSI), Rock Quality Designation (RQD), Cohesion (C), angle of internal friction (φ), uniaxial compressive strength (UCS) and Rock mass deformation modulus (Em) which are obtained from data measured within geotechnical boreholes and pore pressure (U) are considered as the criteria to evaluate stability of pit No.1 of the Gole Gohar iron mine, located in Kerman province, south east of Iran. Since human judgments and preferences are often vague and complex and decision makers cannot estimate their preferences with an exact scale, we can only give linguistic assessments instead of exact ones. So fuzzy set theory introduced into Analytical Hierarchy Process (AHP). Fuzzy AHP (FAHP) is put forward to solve such uncertain problems. In this paper, FAHP method is used to determine the weights of the criteria by decision makers and then classification of the stability of blocks are determined by TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method by the shortest distance to positive ideal solution (PIS) and the longest distance to negative ideal solution (NIS).  相似文献   

9.
This study evaluates the failure modes and the bearing capacity of soft ground reinforced by a group of floating stone columns. A finite difference method was adopted to analyze the performance of reinforced ground under strip footings subjected to a vertical load. The investigation was carried out by varying the aspect ratio of the reinforced zone, the area replacement ratio, and the surface surcharge. General shear failure of the reinforced ground was investigated numerically without the surcharge. The results show the existence of an effective length of the columns for the bearing capacity factors N c and N γ. When certain surcharge was applied, the failure mode of the reinforced ground changed from the general shear failure to the block failure. The aspect ratio of the reinforced zone and the area replacement ratio also contributed to this failure mode transition. A counterintuitive trend of the bearing capacity factor N q can be justified with a shift in the critical failure mode. An upper-bound limit method based on the general shear failure mode was presented, and the results agree well with those of the previous studies of reinforced ground. Equivalent properties based on the area-weighted average of the stone columns and clay parameters were used to convert the individual column model to an equivalent area model. The numerical model produced reasonable equivalent properties. Finally, a theoretical method based on the comparison of the analytical equations for different failure modes was developed for engineering design. Good agreement was found between the theoretical and numerical results for the critical failure mode and its corresponding bearing capacity factors.  相似文献   

10.
This paper presents a new analytical criterion for brittle failure of rocks and heavily over-consolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as half of the critical distance. This fracture criterion is known as the point method, and is part of the theory of critical distances, which is utilised in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, σ 0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, σ c and σ t. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (σ c/σ t = 3–50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low-confining stresses.  相似文献   

11.
A technique for IR spectroscopic determination of the total nitrogen content N S in the form of A-and B 1-defects is suggested. It provides for the computer processing and decomposition of IR spectra into constituent bands, calculation of the total absorption band area S N and individual areas S A and S B1 and their normalization with respect to the total area of the diamond intrinsic absorption S 0, with the normalization coefficients K S , K A , and K B1 being calculated. Based on the analysis of the IR spectra of 60 octahedral diamond crystals from the Mir and Yubileinaya pipes (Sakha-Yakutiya), the empirical functions N S = 911.85 K S 0.9919 ppm (R 2 = 0.9859), N A = 1185.6 K A 1.1511 ppm (R 2 = 0.8703), and N B1 = 911.85 K S 0.9919 ? 1185.6 K A 1.1511 ppm have been defined.  相似文献   

12.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

13.
This study analyzed 267 landslide landforms (LLs) in the Kumamoto area of Japan from the database of about 0.4 million LLs for the whole of Japan identified from aerial photos by the National Research Institute for Earth Science and Disaster Resilience of Japan (NIED). Each LL in the inventory is composed of a scarp and a moving mass. Since landslides are prone to reactivation, it is important to evaluate the sliding-recurrence susceptibility of LLs. One possible approach to evaluate the susceptibility of LLs is slope stability analysis. A previous study found a good correlation (R 2 = 0.99) between the safety factor (F s ) and slope angle (α) of F s  = 17.3α ?0.843. We applied the equation to the analysis of F s for 267 LLs in the area affected by the 2016 Kumamoto earthquake (M j  = 7.3). The F s was calculated for the following three cases of failure: scarps only, moving mass only, and scarps and moving mass together. Verification with the 2016 Kumamoto earthquake event shows that the most appropriate method for the evaluation of LLs is to consider the failure of scarps and moving mass together. In addition, by analyzing the relationship between the factors of slope of entire landslide and slope of scarp for LLs and comparing the results with the Aso-ohashi landslide, the largest landslide caused by the 2016 Kumamoto earthquake, we also found that morphometric analysis of LLs is useful for forecasting the travel distance of future landslides.  相似文献   

14.
Ab initio calculations of thermo-elastic properties of beryl (Al4Be6Si12O36) have been carried out at the hybrid HF/DFT level by using the B3LYP and WC1LYP Hamiltonians. Static geometries and vibrational frequencies were calculated at different values of the unit cell volume to get static pressure and mode-γ Grüneisen’s parameters. Zero point and thermal pressures were calculated by following a standard statistical-thermodynamics approach, within the limit of the quasi-harmonic approximation, and added to the static pressure at each volume, to get the total pressure (P) as a function of both temperature (T) and cell volume (V). The resulting P(V, T) curves were fitted by appropriate EoS’, to get bulk modulus (K 0) and its derivative (K′), at different temperatures. The calculation successfully reproduced the available experimental data concerning compressibility at room temperature (the WC1LYP Hamiltonian provided K 0 and K′ values of 180.2 Gpa and 4.0, respectively) and the low values observed for the thermal expansion coefficient. A zone-centre soft mode \( P6/mcc \to P\bar{1} \) phase transition was predicted to occur at a pressure of about 14 GPa; the reduction of the frequency of the soft vibrational mode, as the pressure is increased, and the similar behaviour of the majority of the low-frequency modes, provided an explanation of the thermal behaviour of the crystal, which is consistent with the RUM model (Rigid Unit Model; Dove et al. in Miner Mag 59:629–639, 1995), where the negative contribution to thermal expansion is ascribed to a geometric effect connected to the tilting of rigid polyhedra in framework silicates.  相似文献   

15.
The recent development of the coalbed methane (CBM) industry has a significant role in advancing hydraulic fracturing theory and technology. However, further development requires a better understanding of how fractures influence reservoir permeability. In situ stress data from 54 CBM wells in the southern Qinshui Basin, China, were obtained by the injection/falloff test method to analyse the effect of in situ stress on the permeability of the CBM reservoir. The types of in situ stress states were classified, and the coal reservoir permeability under different in situ stress states was analysed. The results indicate that the maximum horizontal principal stress (σH), minimum horizontal principal stress (σh) and vertical principal stress (σv) all have positive linear relationships with the coal seam burial depth. Three in situ stress states were observed from the shallow to deep regions of the CBM reservoir in the study area: σH?>?σh?>?σv, σH?>?σv?>?σh and σv?>?σH?>?σh, which account for 9, 76 and 15% of the test wells, respectively. Coal reservoir permeability decreases with increasing horizontal principal stress, whereas it first decreases with increasing σv, then increases and finally decreases. The variation in permeability with σv is due to the conversion of the in situ stress states. Coal reservoir permeability has obvious differences under different in situ stress states. The permeability is the largest when σv?>?σH?>?σh, followed by σH?>?σh?>?σv and smallest when σH?>?σv?>?σh. The permeability differences are caused by the fracture propagation shape of the rock strata under different in situ stress states.  相似文献   

16.
We analyzed macroseismic data and considered the effect of extremely long range propagation of sensible shocks during the deep-focus earthquake in the Sea of Okhotsk on May 24, 2013 (Mw = 8.3). In order to explain this effect, we formulated and qualitatively solved the problem of superposition of P-waves over the radial mode 0S0 of the natural oscillations of the Earth during this earthquake. Our results confirmed the possibility of such an interpretation of the observed macroseismic effect and also allowed us to explain the fact of anomalously low decay of seismic disturbances with distance.  相似文献   

17.
This paper presents the creep behaviour of intact and remoulded specimens of fibrous peat obtained from a field site near Anzac, Alberta, Canada. The creep behaviour was investigated by means of long-term drained and undrained triaxial tests. The development of volumetric, axial, and undrained axial strain and strain rate during drained and undrained creep tests under variable stress conditions is presented. The stress strain strain rate (p′ε v\(\dot{\varepsilon }_{\text{v}}\)) relationship is found to be unique for different stress and loading durations. The p′ε v\(\dot{\varepsilon }_{\text{v}}\) relationship is analysed and represented by creep isotaches. The applicability of different creep models developed for normally consolidated clay is discussed and applied to define the development of creep strain in fibrous peat under varying isotropic and deviator stresses. The secondary consolidation coefficient for evaluating the volumetric strain rate of peat is found to be applicable with some limits. The drained creep behaviour of remoulded peat specimens differs from the behaviour shown by Shelby tube specimens, whereas the undrained creep behaviour in remoulded and Shelby tube specimens is similar.  相似文献   

18.
Random finite element method (RFEM) provides a rigorous tool to incorporate spatial variability of soil properties into reliability analysis and risk assessment of slope stability. However, it suffers from a common criticism of requiring extensive computational efforts and a lack of efficiency, particularly at small probability levels (e.g., slope failure probability P f ?<?0.001). To address this problem, this study integrates RFEM with an advanced Monte Carlo Simulation (MCS) method called “Subset Simulation (SS)” to develop an efficient RFEM (i.e., SS-based RFEM) for reliability analysis and risk assessment of soil slopes. The proposed SS-based RFEM expresses the overall risk of slope failure as a weighed aggregation of slope failure risk at different probability levels and quantifies the relative contributions of slope failure risk at different probability levels to the overall risk of slope failure. Equations are derived for integrating SS with RFEM to evaluate the probability (P f ) and risk (R) of slope failure. These equations are illustrated using a soil slope example. It is shown that the P f and R are evaluated properly using the proposed approach. Compared with the original RFEM with direct MCS, the SS-based RFEM improves, significantly, the computational efficiency of evaluating P f and R. This enhances the applications of RFEM in the reliability analysis and risk assessment of slope stability. With the aid of improved computational efficiency, a sensitivity study is also performed to explore effects of vertical spatial variability of soil properties on R. It is found that the vertical spatial variability affects the slope failure risk significantly.  相似文献   

19.
High pressure in situ synchrotron X-ray diffraction experiment of strontium orthophosphate Sr3(PO4)2 has been carried out to 20.0 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the PV data yields a volume of V 0 = 498.0 ± 0.1 Å3, an isothermal bulk modulus of K T  = 89.5 ± 1.7 GPa, and first pressure derivative of K T ′ = 6.57 ± 0.34. If K T ′ is fixed at 4, K T is obtained as 104.4 ± 1.2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a  = 79.6 ± 3.2 GPa) is more compressible than the c-axis (K c  = 116.4 ± 4.3 GPa). Based on the high pressure Raman spectroscopic results, the mode Grüneisen parameters are determined and the average mode Grüneisen parameter of PO4 vibrations of Sr3(PO4)2 is calculated to be 0.30(2).  相似文献   

20.
As soft rocks are likely to soften, slime and swell while contacting water, the existence of soft rocks is harmful for stability of surrounding rocks and supporting structures of tunnels. Through uniaxial and triaxial tests under dry condition and triaxial test with different moisture contents, the mechanical properties and failure modes of soft rocks were studied under conditions that the schistosity plane of the rock samples was vertical to, presented an oblique angle with, and paralleled to the loading direction. The results showed that peak strengths in natural and water-bearing states increased with increasing confining pressures, while those in water-bearing state were 40% lower than those in natural state. The samples were mainly subjected to ductile failure in both natural and water-bearing states while the samples in natural state exhibited a certain brittle failure characteristic in post-peak phase. With the increase of confining pressures, the post-peak curve gradually became gentle after certain brittle failure while the post-peak stresses had an insignificant change. In comparison, the samples in water-bearing state showed significant post-peak disparity, that is, exhibited strong ductile failure characteristic. Moreover, the fitting relationship between triaxial compressive strength and moisture of soft rocks can be expresses as σ 1 =  + B (A < 0, B > 0) while that between elasticity modulus and moisture can be expresses as E =  + B (A < 0, B > 0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号