首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Apatite fission track analysis is used as a tectonic tool to unravel the evolution of the Sierra de Guadarrama, an mountain range in central Spain, and the far-field effects of the Alpine plate tectonics, expressed by reactivation of NE-SW trending lineaments in the Hercynian basement. 18 basement samples were analysed, and 4 sediments of Mesozoic and Tertiary age. Thermal histories were modelled for most samples and conversion to resultant amounts of denudation and rock uplift was possible for the Tertiary history, because of constraints on the paleo-topography and -elevation in Upper Cretaceous to Paleocene times. Accelerated cooling (up to 100 °C in 5 Ma) occurred around 100 Ma in the entire Sierra de Guadarrama. In the northern part, this cooling was preceded by reheating of Lower Triassic sediments up to 110 °C, suggesting sedimentation of about 3 km of, now eroded, Upper Triassic to Jurassic. The period of greatest erosion occurred in the Pliocene and Quaternary and affected almost the entire Sierra de Guadarrama. It was preceded by a Middle-Miocene cooling event that correlates with the beginning of the neo-tectonic setting of central Spain. The greatest Tertiary rock uplift occurred in the central part of the Sierra de Guadarrama: 5.9 ± 11.6 km. The Pliocene to recent event constitutes most of the Tertiary denudation. It is accommodated by active NE-SW trending reverse faults, and attended by about 3.2 km of denudation. These data fit as far-field effects in the plate tectonic setting of ongoing NW-SE oriented convergence between the European and African plate.  相似文献   

2.
在对沁水盆地北端发育的中生代褶皱、断层和节理等构造研究的基础上,分析并总结了区内的构造变形及构造应力场特征,。结果表明:研究区西部构造线以NE-SW向为主;东部构造线以近SN或NW-SE向为主;两者之间的构造线方向主要表现为近EW向。研究区内的褶皱、断裂、节理以及水系的发育特征均表明:本区在晚古生代—中生代经历过一期近SN向的挤压作用,其最大主应力方位为161°~174°,倾角在10°以内,这期挤压作用可能是对印支期构造活动的响应;此外,在距今165±5 Ma至136 Ma期间,本区可能还经历过一期NW–SE向的挤压作用,其最大主应力方位为152°,倾角1°。   相似文献   

3.
The Glikson structure is an aeromagnetic and structural anomaly located in the Little Sandy Desert of Western Australia (23°59'S, 121°34′E). Shatter cones and planar microstructures in quartz grains are present in a highly deformed central region, suggesting an impact origin. Circumferential shortening folds and chaotically disposed bedding define a 19 km-diameter area of deformation. Glikson is located in the northwestern Officer Basin in otherwise nearly flat-lying sandstone, siltstone and conglomerate of the Neoproterozoic Mundadjini Formation, intruded by dolerite sills. The structure would not have been detected if not for its strong ring-shaped aeromagnetic anomaly, which has a 10 km inner diameter and a 14 km outer diameter. We interpret the circular magnetic signature as the product of truncation and folding of mafic sills into a ring syncline. The sills most likely correlate with dolerites that intrude the Boondawari Formation ~25 km to the north, for which we report a SHRIMP U?–?Pb baddeleyite and zircon age of 508?±?5 Ma, providing a precise older limit for the impact event that formed the Glikson structure.  相似文献   

4.
Locally recorded data for eighteen aftershocks of a magnitude(mb) 4.6 earthquake occurring near Ukhimath in the Garhwal Himalaya were analysed. A master event technique was adopted to locate seventeen individual aftershock hypocentres relative to the hypocentre of the eighteenth aftershock chosen as the master event. The aftershock epicentres define an approximately 30 km2 rupture zone commensurate with the magnitude of the earthquake. The distribution of epicentres within this zone and the limited amount of first motion data support the view that a group of parallel, sub-vertical, sinistral strike-slip faults oriented N46°, transverse to the regional NW-SE trend of the Garhwal Himalaya, was involved in this seismic episode. Since the estimated focal depth range for aftershocks of this sequence is 3–14 km, we infer that this transverse fault zone extends through the upper crustal layer to a depth of 14 km at least.  相似文献   

5.
The aim of the present study is to investigate the lineaments of Kolli hills of Tamil Nadu State for which CARTOSAT-1 satellite’s DEM output has been made use of. The extracted lineaments were analysed using ArcGIS and Rockworks software. The total number and length of lineaments are 523 and 943.81 km, respectively. Shorter lineaments constitute about 3/4th of the total number of lineaments. The density of the lineaments varies from 0 to 7.41 km/km2, and areas of very high to high density are restricted to the south central, central and north eastern parts, and these areas reflect the high degree of rock fracturing and shearing which makes these areas unsuitable for the construction of dams and reservoirs. However, these areas could be targeted for groundwater exploitation as they possess higher groundwater potential. The lineaments are oriented in diverse directions. However, those orienting in ENEWSW, NE-SW and NW-SE are predominating followed by those oriented in sub E-W and sub N-S directions. These orientations corroborate with results of previous regional studies and with orientations of prominent geological structures and features of the study area. Distinct variation in the predominant orientations of lineaments of varied sizes is observed, while the shorter ones are oriented in either NW-SE or NNW-SSE directions, the longer ones are oriented in either NE-SW or ENE-WSW. A comparative analysis of lineament datasets of the eight azimuth angles and the final lineament map underlines the need to extract lineaments from various azimuth angles to get a reliable picture about the lineaments.  相似文献   

6.
The aim of this paper is to characterize the geological setting of tin-bearing mineralization at the Bou El Jaj (BLJ) sector, located in the NE termination of the Moroccan Central Massif, South of Meknes city, along the NE-SW-striking shear zone. The main tin mineralization corresponds to a NNE-SSW altered corridor of tourmaline, about 10 to 12 km long, from BLJ to Achmmach mount. The geological structures are affected by three ductile deformation phases D1, (E-W shortening), D2 (NW-SE shortening), and D3 (N-S shortening), overprinting folds, and one brittle deformation event D4 (NW-SE shortening), which was synchronous with alteration and mineralization. The tourmaline-altered sediments occur in two parallel veins, about 2.5 km long and 200 m wide for each one, and are controlled by structures such as bedding, main cleavage, thrusts, and joints. Tin mineralization as cassiterite is always associated with tourmaline alteration and is controlled by the different structures.  相似文献   

7.
Semi-detailed gravity investigations were carried out over an area of approximately 2750 sq km with maximum N-S and E-W extents of 55 and 50 km respectively in the Gadag region in the Dharwar craton with a view to obtain a clearer perception of the structural configuration of the region. From qualitative analysis of the gravity data, several tectonic features are inferred: the high density Gadag schist belt is characterized by a gravity high and occurs in two discontinuous segments — the main N-S trending segment, and its thinner NW-SE trending extension, the two separated by a NE-SW trending deep seated fault. While the N-S trend of the Gadag schist belt is bounded on its east by the NW-SE trending Chitradurga thrust fault and on its west by another major NNWSSE trending fault, the NW-SE extension is likewise bounded by two other NW-SE major faults. Quantitative evaluation from forward modeling/inversion of five profiles in the region, assuming a density contrast of 0.29gm/cc of the anomalous schistose body with the gneissic host rocks indicated a synclinal structure plunging to the southeast along its axis for the Gadag schist belt. The maximum width and depth from surface of the schist belt are 22 km and 5.6 km respectively.  相似文献   

8.
The formation and distribution of fractures are controlled by paleotectonic stress field,and their preservative status and effects on development are dominated by the modern stress field. Since Triassic,it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N,NE-SW,E-W,and NW-SE directions respectively. At the end of Triassic,under the horizontal compression tectonic stress field,for which the maximum principal stress direction was NW-SE,the fractures were well developed near the S-N faults and at the end of NE-SW faults,because of their stress concentration. At the end of Cretaceous,in the horizontal compression stress fields of the NE-SW direction,the stress was obviously lower near the NE-SW faults,thus,fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene,under the horizontal compression tectonic stress fields of E-W direction,stress concentrated near the NE-SW faults and fractures developed at these places,especially at the end of the NE-SE faults,the cross positions of NE-SW,and S-N faults. Therefore,fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults,the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction,the NW-SE fractures were mainly the seepage ones with tensional state,the best connectivity,the widest aperture,the highest permeability,and the minimum opening pressure.  相似文献   

9.
唐渊  刘俊来 《岩石学报》2010,26(6):1925-1937
青藏高原隆升、周边地貌形成是新生代时期印度-欧亚板块碰撞后的重要响应。在滇西北地区发育了一系列由晚新生代(上新世以来)活动断裂所控制的盆地,例如宾川盆地、洱海盆地、鹤庆盆地、弥渡盆地等。宾川盆地是近南北向程海左行走滑断裂在走滑剪切作用下产生的北西向正断层和北东向走滑断层共同作用而形成的一个较大的拉分盆地。洱海盆地是由两组陡立的共轭张剪性(Transtensional)断层组限定的,为一伸展断陷盆地,总体上反映了近E-W向的区域伸展。滇西北地区发育的其它晚新生代盆地,如弥渡盆地、鹤庆盆地、剑川盆地等,也为区域走滑断裂及其分支断裂所控制,并且这些分支断裂在区域上为一组NE-SW和NW-SE向的共轭正断裂,反映了该区域近E-W向的伸展。将藏东南三江地区发育的活动断裂按照其走向分为三组:(1)NW-SE走向的断裂,如红河断裂、无量山-营盘山断裂等;(2)近N-S向断裂系,以程海断裂、小江断裂等为代表;(3)NE-SW走向的断裂,如丽江-剑川断裂、鹤庆-洱源断裂和南定河断裂等。这些断裂的震源机制解表明地震断裂活动性或者是走滑性质或者是伸展属性,它们的组合型式也揭示出藏东南三江地区在上新世以来表现为近E-W向的伸展。区域上,在藏东北部地区发育的断层构造组合普遍反映了以近E-W向挤压为主导的应力场。推测这一现象为上新世以来藏东地区上地壳围绕喜马拉雅东构造结做顺时针旋转所致,区域上受印度-欧亚会聚过程中印度板块顺时针旋转诱发的差异性应力场制约。  相似文献   

10.
New structural and tectonophysical data, combined with the published geophysical and seismological evidence, were used to map the Late Cenozoic fault pattern and crustal stress in the Barguzin rift. Faults striking in the NE direction are the most abundant elements of the rift structure. A special part in the Late Cenozoic patterns of faults and stresses belongs to an over 400 km long N-S lineament which shows up as a system of separate fault segments between 110° and 110°30′ E. The Late Cenozoic evolution of the rift has been controlled mainly by extension punctuated with local shear stresses derived from the regional extension stress and accommodated by strike slip, combined with the dominant normal motion, along NE or N-NE faults and/or along their cross faults. Extension was of a relatively stable NW-SE direction, almost rift-orthogonal. The obtained fault pattern and stress maps can be used for reference in mapping seismic hazard associated with ongoing faulting in an active and changeable stress field.  相似文献   

11.
The Geological Survey of India (GSI) established a twelve-station temporary microearthquake (MEQ) network to monitor the aftershocks in the epicenter area of the Bhuj earthquake (M w7.5) of 26th January 2001. The main shock occurred in the Kutch rift basin with the epicenter to the north of Bhachao village, at an estimated depth of 25 km (IMD). About 3000 aftershocks (M d ≥ 1.0), were recorded by the GSI network over a monitoring period of about two and half months from 29th January 2001 to 15th April 2001. About 800 aftershocks (M d ≥ 2.0) are located in this study. The epicenters are clustered in an area 60 km × 30 km, between 23.3‡N and 23.6‡N and 70‡E and 70.6‡E. The main shock epicenter is also located within this zone. Two major aftershock trends are observed; one in the NE direction and other in the NW direction. Out of these two trends, the NE trend was more pronounced with depth. The major NE-SW trend is parallel to the Anjar-Rapar lineament. The other trend along NW-SE is parallel to the Bhachao lineament. The aftershocks at a shallower depth (<10km) are aligned only along the NW-SE direction. The depth slice at 10 km to 20 km shows both the NE-SW trend and the NW-SE trend. At greater depth (20 km–38 km) the NE-SW trend becomes more predominant. This observation suggests that the major rupture of the main shock took place at a depth level more than 20 km; it propagated along the NE-SW direction, and a conjugate rupture followed the NW-SE direction. A N-S depth section of the aftershocks shows that some aftershocks are clustered at shallower depth ≤ 10 km, but intense activity is observed at 15–38 km depth. There is almost an aseismic layer at 10–15 km depth. The activity is sparse below 38 km. The estimated depth of the main shock at 25 km is consistent with the cluster of maximum number of the aftershocks at 20–38 km. A NW-SE depth section of the aftershocks, perpendicular to the major NE-SW trend, indicates a SE dipping plane and a NE-SW depth section across the NW-SE trend shows a SW dipping plane. The epicentral map of the stronger aftershocksM ≥ 4.0 shows a prominent NE trend. Stronger aftershocks have followed the major rupture trend of the main shock. The depth section of these stronger aftershocks reveals that it occurred in the depth range of 20 to 38 km, and corroborates with a south dipping seismogenic plane.  相似文献   

12.
A 100 km long balanced structural transect is presented for the Patagonian Andes at 50° S Latitude. The area studied is characterized by a fold belt in the eastern Andean foothills and basement-involved thrusts in a western-basement thrust zone. The basement thrust zone exposes pre-Jurassic, polydeformed sedimentary and layered metamorphic rocks emplaced over Lower Cretaceous rocks above an E-vergent thrust located at the western end of the fold belt.

The fold belt is developed in a 3 km thick deformed Cretaceous–Paleogene sedimentary cover with few basement outcrops and scarce calc-alkaline magmatism. Cover structures related to shallow décollements have a N-S to NW-SE strike, with fold wavelengths from 1100 to 370 m in the east to 20 to 40 m in the west. However, long-wavelength basement-involved structures related to deeper décollements have a dominant N-S to NE-SW trend along the eastern and western parts of the fold belt. Field evidence showing different degrees of inversion of N-S–trending normal faults suggests that the orientation of the Cenozoic compressive basement structures was inherited partially from the original geometry of Mesozoic normal faults.

The deformation propagated toward the foreland in at least two events of deformation. The effects of Paleogene (Eocene?) compressive episode are observed in the western fold belt and a Neogene (Late Miocene) compressive episode is present in the eastern fold belt. Basement-involved structures typically refold older cover structures, producing a mixed thick and thin-skinned structural style. By retrodeforming a regional balanced cross section in the fold belt, a minimum late Miocene shortening of 35 km (26%) was calculated.  相似文献   

13.
The sedimentary basins that dominate the north-eastern Mediterranean (Adana-Cilicia basins in the west and Iskenderun basin in the east) are located on the flanks of a partly submerged positive structure (a part of the Africa-Eurasia convergence zone) along which strike-slip faults are evident. This study summarizes the findings of two seismic surveys carried out in the Alanya-Mersin offshore region. Some 850 km of geophysical survey lines were compiled on these cruises. Based on the results determined from these surveys, the north and central part of Adana-Cilicia basin can be subdivided into eastern, central and western structural sub-basins separated by the Ecemiş fault complex in the east and the Anamur-Kormakiti structural high in the west at the same time. Results of this study also indicate that Ecemiş and Anamur-Kormakiti faults are active. Late Miocene regional compression was responsible for the compartmentation of this complex into the present arrangement and has initiated the rotational regime which has governed subsequent tectonic developments, notably the extensional behaviour of the NE-SW trending Ecemiş and Anamur-Kormakiti faults and the transpressive behaviour of the NNE-SSW trending border fault complex.  相似文献   

14.
Bouficha–Grombalia region shows complex tectonic deformations and is affected by faults and folds of different geometry. A structural study has allowed to determine that Bouficha–Grombalia region is affected by significant faults of EW, NE-SW and NW-SE directions. These faults divide Bouficha–Grombalia region into several compartments. We distinguish three important structures whose first is in the SW which corresponds to Zaghouan–Bouficha trough. The second structure is situated in the NE, which corresponds to the Grombalia trough. The third structure occupies a central position; it consists in the Bouficha–Grombalia high structure. The last structure is composed by three blocks. Each block is characterised by particular folds geometry. These structures were outlined at least from middle Miocene, and they have undergone the effect of subsequent compressive tectonic events which have led to folds building above or counter the pre-existing NE-SW faults.  相似文献   

15.
The Amelia Creek impact structure is located in Australia's Northern Territory in folded Palaeoproterozoic strata of the Davenport Ranges (20°51'S, 134°53′E). An impact origin is confirmed by presence of unequivocal shatter cones with apices that point upwards, and by planar microstructures in quartz grains from target sandstones of the Hatches Creek Group. Aeromagnetic, advanced spaceborne thermal emission and reflection radiometer (ASTER), and X-band synthetic aperture radar (X-SAR) images show an area of anomalous deformation in which smooth regional trends are disrupted by arcuate features at a 10 km radius to the north and south of the shock-metamorphosed rocks. However, no arcuate forms are apparent to the east and west of these shocked rocks, and instead, large south-southwest-trending faults are present about 6 km away on both sides. Despite pervasive shatter coning, typical of the central region of complex impact structures, no structural uplift is apparent, but instead the shocked rocks lie at the southern toe of a north-northeast-trending syncline. These shatter cones overprint and post-date the Palaeoproterozoic regional deformation, and thus, the impact structure has not been refolded and its abnormal form is likely due to pre-existing structure in the target rocks and/or an oblique impact. Small pockets of undeformed Late Neoproterozoic and Middle Cambrian strata are exposed in palaeovalleys in the central region of the structure, constraining the time of the impact to the Proterozoic.  相似文献   

16.
塔藏构造混杂岩带特征   总被引:2,自引:1,他引:2       下载免费PDF全文
运用大陆造山带构造岩片填图方法,首次对九寨沟塔藏构造带进行了系统研究。认为塔藏构造带为-构造混杂岩带。其南北边界断裂清楚,北界为牙扎沟断裂,呈北西-南东向展布;南界为荷叶断裂,也呈北西-南东向展布,边界断裂内部为塔藏构造混杂岩带,呈北西-南东向延伸长16-24km,宽7-8km,由上古生界与三叠系的多个大小不同,形态各异的构造岩片(或岩块)混杂堆积组成,与塔藏岩组砂板岩呈断层接触,总体表现为块体之间无序,块内有序,微观变形特征清楚,三维有限应变测量显示为北东-南西向,近南北向两个方向压缩,结合测区构造地质环境分析有4期变形。  相似文献   

17.
An earthquake of 6.8 magnitude struck the eastern Shan State in Myanmar at 20:29:30 Myanmar Standard Time (01:55:12 PM UTC) on 24 March 2011. It is one of the earthquakes in plate-interior setting. Six after-shocks occurred the same year. The nucleation point of this earthquake was defined by an epicenter at 20 km west of Tarlay (20.705°N, 99.949°E) at a depth of 10 km and its magnitude was 6.8. The earthquake damage was disastrous. The geological disasters were linearly distributed along the surface rupture zone. The earthquake produced cracks, arch bend, erupting sand, gush water, etc. in many places. As a result of this strong earthquake, 224-305 houses were seriously damaged, 74 people were killed, 124 injured. The event was named after the nearest village Tarlay and the NE-or ENE-striking Nan Ma fault was responsible for it. A detailed morphotectonic study was carried out in the area using satellite image 1:24,000 scale aerial photographs and 1:63360 scale topographic maps, to correlate the seismicity with tectonics. It is found that there are two prominent lineaments striking in NE-or ENE- and N-S or NNE- SSW direction. The present-day deformation of the Than Lwin suture zone is consistent with roughly NW-SE extension and NE-SW striking compression, but with more conjugate strike-slip faulting and only minor normal faulting.  相似文献   

18.
刘阵  何登发  李涤 《地质科学》2013,48(3):592-608
维马克背斜构造带位于孔雀河斜坡的东部,该背斜构造带西段发育北西走向断裂,东段发育北东东走向断裂,是孔雀河斜坡两大断裂系统的构造转换地带,解析该背斜构造带的构造特征对于认识孔雀河斜坡成因演化和塔里木盆地东北缘早古生代以来的地球动力学背景都具有重要的意义。本文利用断层相关褶皱理论,通过对过孔雀河斜坡维马克背斜构造带地震剖面的精细解释,分析了该背斜构造的构造特征并讨论了其形成演化。维马克背斜构造带西段受北西走向的断裂组Fw1 和Fw2 控制,维马克1号背斜呈北西-南东向展布,东段受北东东走向的断裂组Fw3 和Fw4 控制,维马克2号背斜呈北东-南西向展布,维马克背斜卷入变形的地层为中-上奥陶统、志留系、侏罗系和白垩系,控制背斜形态的断裂系统具有挤压扭动的动力学特征,维马克背斜构造带及其南北两侧盆山系统构造演化大致经历了5期构造运动,维马克背斜构造带至库鲁克塔格山前带地壳缩短37.4 km,南段英吉苏凹陷南缘斜坡带缩短4.31 km,缩短率为25.32%。研究认为,维马克背斜断裂系统是北西向和北东东向两大断裂系统相互影响下的特定构造样式,来自南北不同方向的构造应力在维马克背斜构造带产生走滑效应,使得维马克背斜构造断裂系统具有挤压扭动的特征。  相似文献   

19.
As a result of a phase of extensional tectonics in the western Tethyan region, a horst and graben topography formed during the Middle Triassic (Ladinian) in northern Italy. Horsts were sites of shallow water carbonate sedimentation, while pelagic and volcaniclastic sediments were deposited in the grabens. Two carbonate platforms approximately 500 m thick can be distinguished in the Marmolada area of the Dolomites: the Marmolada platform proper, which covered an area of 6 km2, and the Costabella platform, which extended for about 12 km in a NW-SE direction and was about 3 km across. The facies of these isolated platforms reflect the influence of storms from the SW. Windward platform margins were characterized by a marine sand belt of skeletal and aggregate grainstones with a dominant platform directed cross-stratification. The central portions of the platforms were occupied by supratidal sand cays which are made up of storm washovers. Leeward parts of the platforms are composed of shallow subtidal sand flat deposits. Laterally discontinuous reefs chiefly composed of various calcareous algae are developed at the outer margins of the platforms. Along windward margins, reefs may form a belt several hundred metres wide; along leeward margins their width is commonly reduced to some tens of metres. Foreslope talus breccias surround the platforms. Clinoform bedding showing basinward dips of 30°-40° is typical of this facies belt, which is approximately 2 km wide. Basinal sediments, only some tens of metres thick, are radiolarian micrites. Abundant sediment-gravity-flow deposits expand the basinal sequence at the toes of windward margins and were probably triggered by storm return flows. Synsedimentary faults striking both NNE-SSW and NW-SE separate the bedded platform limestones from flank deposits and reefs. They account for the stationary nature of the platforms. Neptunian dykes show preferred NNE-SSW and E-W trends. Sinistral displacements are associated with NW-SE trending faults. Depressions in the basins, filled with red, turbiditic pelagic sediments, show N-S trends and are probably compressional in origin. The structural pattern may have resulted from oblique, NW-SE oriented extension of the E-W trending Middle Triassic graben zone of the Dolomites. In the Ladinian of the Dolomites, the stationary platform type can be distinguished from a retrograding type, whereas continuously prograding platforms apparently did not develop.  相似文献   

20.
童家院锑矿床广泛发育地下空洞,影响矿山开采。本文根据矿田构造和矿化特征研究,认为本区至少经受过两期构造应力作用。成矿前,在左旋水平扭动作用下,形成NE向锡矿山复式背斜、纵向逆断层和矿化空洞,成矿后,在NE向挤压应力下,产生了NW向叠加褶皱以及正断层。同时,该应力场所控制的层间破碎带和背斜,大大影响了地下空洞的成生和分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号