首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In western Peru kaolin-alunite deposits occur in Lower Cretaceous and Tertiary clastic, volcaniclastic and volcanic, mostly rhyolitic, rocks. Alunites from␣hypogene kaolin deposits yield  K /Ar ages of 11.5 ±␣0.7␣Ma and 13.3 ± 0.4 Ma. In addition to kaolin and alunite, the following minerals are present: white mica, smectite, barite, pyrophyllite, tridymite, cristobalite, α- and β-quartz, chamosite, gibbsite, and aluminum-phosphate-sulphate minerals (APS). APS mineralizations with REE-bearing svanbergite and florencite originate from supergene alteration. Woodhouseite, goyazite, crandallite and pure svanbergite develop in hypogene and supergene kaolin deposits. The distinction between hypogene and supergene kaolinization can be made using various element ratios in kaolin (P vs. S, Zr vs. Ti, Cr + Nb vs. Ti + Fe, and Ce + Y + La vs. Ba + Sr). S,␣Ba, and Sr are considerably enriched in kaolin during hydrothermal alteration, whereas Cr, Nb, Ti and lanthanide elements are concentrated mainly during weathering. Au and Ag become enriched during hypogene kaolinization (advanced argillitization). Kaolinization is associated with the evolution of the Central Andes as follows: (1) during the Lower Cretaceous kaolinization characterizes phases of relative tectonic quiescence during mountain building and took place in a miogeosynclinal back-arc basin. The kaolin-bearing sediments were laid down in flood plain to delta plain environments; (2) in the magmatic arc/back-arc basin (eugeosyncline) kaolinization was mainly associated with uplift and peneplanation; (3) in the magmatic arc proper, late Miocene kaolinization of volcanic and volcaniclastic rocks has many features in common with the high sulphidation epithermal Au deposits. Received: 11 August 1995 / Accepted: 8 May 1996  相似文献   

2.
The Meiduk deposit possesses three different Cu reservoirs each with a unique Cu isotope signature. δ65Cu for the leached cap minerals ranges from ?2.5 to +0.49‰ to ?0.45 to +0.3‰ for hypogene minerals and from +1.3 to +4.4‰ for supergene enrichment minerals. Oxidation of hypogene sulphides and effective trapping of copper (from solutions derived from the leached cap) in the supergene enrichment zone caused this relationship. A systematic pattern of low Cu isotope values close to the surface and higher isotope values with depth reveals a palaeo‐fluid pathway in the northwest–southeast direction over the deposit. Thus, the copper isotope data from leached cap and enrichment minerals can be used to monitor copper migration during supergene weathering at the Meiduk deposit.  相似文献   

3.
对大同盆地典型高砷地下水开展了稀土元素地球化学研究.研究表明: 高砷地下水具有低∑REE含量及富集重稀土(HREEs)特征.地下水中低含量∑REE与含水层沉积物中Fe-Mn氧化物/氢氧化物对REEs的吸附有关.地下水中重稀土元素相对于轻稀土元素的富集可能是吸附作用和碳酸根离子同REEs发生络合作用的共同结果.采用平均大陆上地壳标准化的地下水稀土元素分布表现出显著的Ce及Eu正异常.地下水Ce/Ce*值及Eu含量与Fe+Mn具有显著相关性, 表明铁锰氧化物还原性溶解是控制Ce/Ce*值及Eu含量特征的主要因素.Ce/Ce*值及Eu含量与As浓度的关系表明, Ce异常及Eu含量特征能对地下水中As的富集进行有效指示.   相似文献   

4.
Laterite deposit at Sheikh-Marut(NW Mahabad,West-Azarbaidjan province,Iran) occurred within middle-upper Permian carbonate rocks.It consists of seven stratiform and/or discontinuous lenticular layers extending over 4.2 km in length and having thicknesses ranging from 3 to 14 m.Mineralogical data show that the ores contain kaolinite and hematite as major and boehmite, diaspore,halloysite,amesite,anatase,and muscovite-illite as minor mineral phases.The computed Ce anomaly values in the ores range from 0.05 to 20.84.Conservative index(e.g.,Eu/Eu) suggests that this deposit is a product of alteration and weathering of basaltic rocks.Rhythmic increment ofΣREE values of the ores with approaching to the carbonate bedrocks shows an in-situ occurrence of lateritization processes.Mass change calculations of elements indicate that two competing processes namely leaching and fixation were the major regulating factors in concentration variation of REEs (La-Lu) in this deposit.The obtained results show that pH increase of weathering solutions by carbonate bedrocks,existence of organic matters,and the degree of comlexation with organic ligands played remarkable role in distribution of REEs during lateritization.Further geochemical considerations revealed that secondary phosphates,Mn-oxides and -hydroxides,diaspore,and anatase were the potential hosts for REEs in this deposit.  相似文献   

5.
江西金山矿区硅质岩的发现及其地质意义   总被引:7,自引:4,他引:3  
刘志远  金成洙 《现代地质》2005,19(1):147-151
通过野外地质调查和系统的岩石学及常量元素、微量元素、稀土元素地球化学特征的研究,探讨了金山矿区硅质岩的成因和大地构造环境。通过测试分析,显示区内硅质岩贫Al2O3、TiO2,富As、Sb、Hg、Au、Ag、W、Pb,贫∑REE,δ(Eu)为负异常,δ(Ce)为弱正异常,HREE相对富集等热水沉积物的特征,同时也表明在硅质岩的形成过程中有陆源物质的介入。在判别硅质岩的形成与作用的一系列图解上,样品均落在热水沉积作用和形成于大陆边缘环境的范围内,这与一些特征值w(Fe)/w(Ti)、w(Fe+Mn)/ w(Ti)、w(Al)/w(Al+Fe+Mn)、w(MnO)/w(TiO2)、δ(Ce)等的分析结果相吻合。这种硅质岩的发现与对比结果说明了该区域构造演化的复杂性。在晚古生代加里东运动使赣东北地区壳体断裂拉张,形成断陷盆地,并发生了热水喷流沉积成岩成矿作用。金山金矿床在形成过程中还经历了古生代热水成矿作用的叠加改造。  相似文献   

6.
目前对松辽盆地南部钱家店铀矿床成因的认识存在明显争议.本文利用偏光显微镜、扫描电镜、XRD等分析测试方法对该矿床后生蚀变作用进行了系统的研究,发现该矿床不同类型砂岩中矿物蚀变作用类型有:赤铁矿化、褐铁矿化、黄铁矿化、粘土化、碳酸盐化和铀矿化,其中黄铁矿化包括胶状黄铁矿化、草莓状黄铁矿化和粒状黄铁矿化,粘土化主要包括水云母化、高岭石化和伊利石化,碳酸盐化包括方解石化、铁白云石化和菱铁矿化.红色砂岩和黄色砂岩以赤铁矿化、褐铁矿化、水云母化、高岭石化、伊利石化和方解石化为主,但黄色砂岩中赤铁矿化、褐铁矿化及水云母化程度略低;灰色不含矿砂岩以微弱赤铁矿化、黄铁矿化、高岭石化、伊利石化、铁白云石化和菱铁矿化为主;灰色含矿砂岩中以黄铁矿化、高岭石化、伊利石化、铁白云石化、铀矿化和菱铁矿化为主;原生灰色砂岩以黄铁矿化和菱铁矿化为主.钱家店铀矿床演化历史和矿物之间的穿插关系分析显示,成岩期矿物蚀变以菱铁矿为代表,形成于中性-弱碱性环境;成矿早期矿物蚀变以赤铁矿、针铁矿、黄铁矿、水云母和高岭石等为代表,形成于酸性环境;成矿晚期矿物蚀变以伊利石和铁白云石为代表,形成于弱碱-碱性环境;成矿期后矿物蚀变以方解石为代表,形成于碱-强碱性环境.因此,钱家店铀矿床经历了成岩期中性-弱碱性环境→成矿早期酸性环境→成矿晚期弱碱-碱性环境→成矿期后碱-强碱性环境的转变.   相似文献   

7.
Dalli Cu–Au porphyry deposit was occurred in the igneous diorite, quartz diorite porphyry (QDP), and volcanic rocks such as porphyritic amphibole andesite, andesite (AND), dacite, and pyroclastics during the late Miocene to Pliocene. Regolith investigations and Advanced Spaceborne Thermal Emission and Reflection Radiometer images were used to identify the anomalous areas. According to lithogeochemical survey (from boreholes and trenches) in Northern Dalli Cu–Au porphyry, the potassic, chlorite, sericite, propylitic, and argillic alterations have been found and mineralization was basically associated with potassic and quartz–sericite alterations. The alteration is dominantly moderate quartz chlorite?±?sericite magnetite with 1–10 mm wide quartz?±?magnetite veinlets. The elevated copper–gold values are correlated with density of stockworking and mineralization. The intensity of the mineralization is high in the contact of QDP and AND with increases in pyrite and chalcopyrite values. Malachite, native Cu, and bornite were used to identify supergene, transition, and hypogene zone. In addition, molybdenum increased near to the center of granodiorite intrusion. And besides, from depth to surface in DDH03 and wall rock to mineralization zones, a sequence of Mo→Cu (Au)→Au (Cu) was recorded and the mineralization temperature cooled down (from high to low). The alteration is characterized by specific pattern and structure in Dalli Cu–Au porphyry deposit. The alteration model was followed from the modified Lowell and Gilbert model. The porphyry is stockworked by quartz veins and by quartz magnetite veins. Vein distribution and ore mineralogy vary between the different alteration zones. Due to the formation of an iron cap in the supergene, especially in the southern hills, supergene grade was higher than hypogene zone. Also, hematite, as a dominant Fe oxide in DDH03 borehole with minor limonite, jarosite, and goethite created thickness about 150–270 m in supergene zone; finally, this finding show a possibility of an extensive mineralization.  相似文献   

8.
北一、南六矿体是海南石碌铁矿床最主要的2个铁矿体,赋矿围岩同为二透岩,铁矿石主要为赤铁矿加少量磁铁矿.研究两矿体赋矿围岩和富铁矿石的地球化学特征,比较其物质组成差异性,可以为本矿床深部和外围找矿提供有用信息.研究表明,北一、南六2个矿体二透岩、富铁矿的主量元素、微量元素及稀土元素配分曲线差异明显;北一矿体二透岩除CaO和Co含量低于南六矿体样品外,其余氧化物及微量元素含量均高于南六矿体样品;北一矿体二透岩及富铁矿有Eu弱负异常,南六矿体二透岩及富铁矿Eu正异常;所有样品均表现Ce的弱负异常和轻稀土相对亏损、重稀土相对富集的特征.研究结果表明两矿体成矿环境或受后期热液影响不同.  相似文献   

9.
The Madoonga iron ore body hosted by banded iron formation (BIF) in the Weld Range greenstone belt of Western Australia is a blend of four genetically and compositionally distinct types of high-grade (>55 wt% Fe) iron ore that includes: (1) hypogene magnetite–talc veins, (2) hypogene specular hematite–quartz veins, (3) supergene goethite–hematite, and (4) supergene-modified, goethite–hematite-rich detrital ores. The spatial coincidence of these different ore types is a major factor controlling the overall size of the Madoonga ore body, but results in a compositionally heterogeneous ore deposit. Hypogene magnetite–talc veins that are up to 3 m thick and 50 m long formed within mylonite and shear zones located along the limbs of isoclinal, recumbent F1 folds. Relative to least-altered BIF, the magnetite–talc veins are enriched in Fe2O3(total), P2O5, MgO, Sc, Ga, Al2O3, Cl, and Zr; and depleted in SiO2 and MnO2. Mafic igneous countryrocks located within 10 m of the northern contact of the mineralised BIF display the replacement of primary igneous amphibole and plagioclase, and metamorphic chlorite by hypogene ferroan chlorite, talc, and magnetite. Later-forming, hypogene specular hematite–quartz veins and their associated alteration halos partly replace magnetite–talc veins in BIF and formed during, to shortly after, the F2-folding and tilting of the Weld Range tectono-stratigraphy. Supergene goethite–hematite ore zones that are up to 150 m wide, 400 m long, and extend to depths of 300 m replace least-altered BIF and existing hypogene alteration zones. The supergene ore zones formed as a result of the circulation of surface oxidised fluids through late NNW- to NNE-trending, subvertical brittle faults. Flat-lying, supergene goethite–hematite-altered, detrital sediments are concentrated in a paleo-topographic depression along the southern side of the main ENE-trending ridge at Madoonga. Iron ore deposits of the Weld Range greenstone belt record remarkably similar deformation histories, overprinting hypogene alteration events, and high-grade Fe ore types to other Fe ore deposits in the wider Yilgarn Craton (e.g. Koolyanobbing and Windarling deposits) despite these Fe camps being presently located more than 400 km apart and in different tectono-stratigraphic domains. Rather than the existence of a synchronous, Yilgarn-wide, Fe mineralisation event affecting BIF throughout the Yilgarn, it is more likely that these geographically isolated Fe ore districts experienced similar tectonic histories, whereby hypogene fluids were sourced from commonly available fluid reservoirs (e.g. metamorphic, magmatic, or both) and channelled along evolving structures during progressive deformation, resulting in several generations of Fe ore.  相似文献   

10.
富乐铅锌矿床位于川滇黔铅锌矿集区东南部,该区域是我国重要的铅锌银及分散元素成矿带。该矿床的形成分为早成矿期、主成矿期和晚成矿期。应用电子探针和LA-ICPMS原位分析技术,测定了不同期次白云石和方解石的主-微量元素组成。研究表明,白云石和方解石具有不显著的Eu异常向正Eu异常和强负Ce异常向弱负Ce异常演化的趋势,表明硫化物和白云石的沉淀是由于流体氧逸度和温度降低,成矿时流体环境从碱性变为中性再到弱酸性导致的。从成矿早期到成矿晚期,Fe和Mn呈下降趋势,碱性环境下Fe和Mn进入到碳酸盐矿物中,而在酸性环境下Fe和Mn会被释放到流体中,说明由于交代作用的由强变弱,其成矿环境是从碱性为主向以酸性为主演变的;从早到晚Sr呈上升趋势,可能表示热液-围岩不断的反应使得围岩中的Sr不断的被释放到流体中。Fe-Sr图解和Mn-Sr图解表明,成矿过程存在两种流体的混合。综合以上研究,本文认为富乐铅锌矿床可能是由氧化、酸性的富含金属的流体与还原、碱性的亏损金属的流体混合导致矿质沉淀形成的。  相似文献   

11.
新疆东天山玉带斑岩铜(金)矿床产于卡拉塔格西段,其含矿围岩是一套火山岩-火山碎屑岩和大南湖组(D1d)含生物碎屑灰岩的碎屑沉积岩,矿体产于石英闪长玢岩体内及与围岩接触带,以石英-硫化物细网脉状矿化为主,矿石矿物以黄铁矿和黄铜矿为主,及少量磁铁矿、闪锌矿、方铅矿、辉钼矿等,矿区发育Cu-Au-Ag-Mo-Pb-Zn-As-Sb-Hg-Ba元素异常。矿床蚀变(5km2)包括钠长石化、钾长石化、硅化、绿泥石化、绢云母化、水白云母化、高龄土化等蚀变类型,以含矿斑岩为中心向外可划分出钾(钠)化-绢云母化-硅化带、硅化-绢云母化(水云母+高岭土)-黄铁矿带和青磐岩化带(绿泥石-绿帘石化-碳酸盐化带)。围岩接触关系和同位素年代学研究显示玉带斑岩铜矿成矿时代为中泥盆世(391Ma),有别于土屋斑岩铜矿带,扩大了卡拉塔格地区及区域找矿空间。  相似文献   

12.
The upper 25 m of Bandelier Tuff at Pajarito Mesa, New Mexico, include soils, shallow fractures, deeper fractures, and tuff matrices in which clays provide a record of transport and alteration. The principal pathways within this system are fractures that penetrate the tuff. Large fractures that host deep root penetration provide a setting in which clay deposits accumulate through particulate or colloidal migration from the soil zone. Clays throughout the system are predominantly expandable interstratified illite/smectites (I/S), but clays of the tuff matrix at depth are distinctly Fe-rich and are not mixed with clays transported from the surface into fractures. Chemical alteration superimposed on clay particles transported into fractures results in clays with lower Al : Si ratios, higher Na, and higher lanthanide content with increasingly negative Eu anomalies with depth. These changes are accompanied by invasion and precipitation of Mn oxides, principally birnessite, within clay bodies. Investigation of the Mn oxides by synchrotron X-ray fluorescence (SXRF) shows that Mn is associated with Ba, Ce, Ni, and Pb. In addition, synchrotron X-ray absorption near-edge structure (XANES) spectra show that Ce in Mn oxides occurs as Ce3+ and Ce4+, with average Ce oxidation state of ∼3.75. The Mn oxides intergrown with clays actively participate in removal of Ce from solution, accompanied by oxidation of Ce3+ to Ce4+. Other lanthanides are accumulated by the clays but are not concentrated along with Ce in the Mn oxides. Extraction of Ce from solution by Mn oxides is more effective than lanthanide accumulation in clay, a process that is variable and likely influenced by defects, extent of recrystallization, and particle sizes. This dichotomy in lanthanide interaction results in locally constant Ce content but either negative or positive Ce anomalies in the clay-Mn oxide system as a consequence of variability in the abundance of the other lanthanides. Nevertheless, the net lanthanide pattern for the sum of all clay-Mn oxide samples in either shallow or deep fractures has no Ce anomaly, indicating that other lanthanides segregated from Ce are not transported beyond the range of either the shallow or deep fracture systems. Evidence from Eu anomalies indicates that lanthanides accumulated in the fracture clays are acquired from the local tuff. The clay-Mn oxide assemblage is more effective than clay alone in accumulating of a wide variety of heavy metals.  相似文献   

13.
西藏列廷冈矿床是林周盆地Fe-Mo-Cu-Pb-Zn矿集区内近年来新发现不久、规模较大的矽卡岩型铁多金属矿床。矿区磁铁矿发育,主要包括块状、浸染状和脉状3种类型。基于详细的野外地质调查和室内矿相学研究,将矿床成矿期划分为矽卡岩期和热液期2期,进而划分为5个成矿阶段:早期矽卡岩阶段、退化蚀变阶段、早期热液阶段、石英-硫化物阶段和碳酸盐阶段,其中,块状磁铁矿主要形成于退化蚀变阶段,浸染状和脉状磁铁矿主要形成于早期热液阶段。以磁铁矿为主要研究对象,采用电子探针(EPMA)和单矿物微量稀土元素ICP-MS分析实验,重点对磁铁矿元素地球化学特征、成因矿物学进行系统研究。研究结果表明,3种不同类型磁铁矿内均含Ti、Si、Ca等次要元素以及Na、K、Cr、Ni、Co、Pb、Ba、Sn、Sr、Sb、Cu等多种可检测到的微量元素,且矿物内主要发生了Al、Mg、Mn等元素的类质同像置换,综合TiO_2-Al_2O_3-MgO、TiO_2-Al_2O_3-(MgO+Mn O)和(Ca+Al+Mn)-(Ti+V)、Ni/(Cr+Mn)-(Ti+V)等多种磁铁矿成因判别图解投图结果及矿体野外宏观地质特征,表明矿区磁铁矿均为热液成因。块状磁铁矿具明显的Eu正异常,浸染状和脉状磁铁矿具Eu负异常,均无明显Ce异常特征,表明富Eu成矿流体在矽卡岩期的高温氧化环境下形成了矽卡岩型块状磁铁矿体,在热液期则逐渐转变为低温还原环境,形成浸染状和脉状磁铁矿及多种金属硫化物,且铁的物质来源主要与矿区花岗闪长岩和花岗斑岩紧密相关。  相似文献   

14.
新疆赞坎铁矿床位于西昆仑塔什库尔干地块西段,是近年新发现的一个大型沉积变质型磁铁矿床。赋矿岩系布伦阔勒群主要由黑云母石英片岩、斜长角闪片岩、变粒岩、硅质岩及磁铁石英岩等组成。目前探明工业矿体4条,单个矿体长度大于2.5km,矿体厚10~70m;局部见高品位铁矿段(mFe50%),长度达900m,厚度40m左右。矿石类型主要为2种,一种为原生的条纹-条带状磁铁矿(为主);另一种为热液改造形成的块状(高品位铁矿石)及浸染状磁铁矿。矿石稀土元素配分(PAAS)表明,原生条纹-条带状铁矿石Ce和Y元素异常不明显(~1.15、~0.94),Eu具正异常(~1.69),Y/Ho平均值为25,稀土配分模式与沉积变质型铁矿相似。而受改造的矿石中,浸染状矿石具有较高的稀土总量,明显富集轻稀土,La和Ce显示正异常(~1.46、~1.17),Y显示负异常(=0.66~0.72),Eu表现为强烈的正异常(~4.37),稀土配分模式明显不同于原生条纹-条带状铁矿石。矿体围岩斜长角闪片岩(变沉积岩)中的碎屑锆石U-Pb年龄为591±1Ma,结合前人对矿区内侵入体的年代学研究(霏细斑岩,533Ma),大致反映沉积铁矿的形成时代为新元古代至早寒武世。电子探针显示,条带状磁铁矿中的TiO_2、AL_2O_3、MgO、MnO含量较低,标型组分含量与沉积变质型磁铁矿颇为接近,在磁铁矿单矿物成因图解中,条带状磁铁矿整体显示磁铁矿为沉积变质型铁矿;浸染状矿石和块状矿石的组成与典型沉积变质型铁矿的偏离反映了后期岩浆-构造热事件对条带状铁矿石的改造;上述结果显示赞坎铁矿整体属于沉积变质型铁矿(BIF)。调查发现赞坎高品位铁矿体与早寒武世侵入的霏细斑岩联系密切,高品位矿石及其围岩发育一定程度的矽卡岩化,如阳起石化、碳酸盐化和黄铁矿化。本文推测高品位铁矿石的成因可能为霏细斑岩的岩浆热液溶解并运移早期沉积变质铁矿中的含铁物质,在构造发育处充填交代形成块状磁铁富矿石。在早寒武世侵入到矿区中部的霏细斑岩体中,同时发育有角砾状磁铁矿和脉状磁铁矿,因此,岩浆热液改造原生条带状铁矿石形成高品位铁矿石的时代应为早寒武世。  相似文献   

15.
Abstract. Rare earth, major and trace element geochemistry is reported for the Kunimiyama stratiform ferromanganese deposit in the Northern Chichibu Belt, central Shikoku, Japan. The deposit immediately overlies greenstones of mid-ocean ridge basalt (MORB) origin and underlies red chert. The ferromanganese ores exhibit remarkable enrichments in Fe, Mn, P, V, Co, Ni, Zn, Y and rare earth elements (excepting Ce) relative to continental crustal abundance. These enriched elements/ Fe ratios and Post-Archean Average Australian Shale-normalized REE patterns of the ferromanganese ores are generally analogous to those of modern hydrothermal ferromanganese plume fall-out precipitates deposited on MOR flanks. However in more detail, Mn and Ti enrichments in the ferromanganese ores are more striking than the modern counterpart, suggesting a significant contribution of hydrogenetic component in the Kunimiyama ores. Our results are consistent with the interpretation that the Kunimiyama ores were umber deposits that primarily formed by hydrothermal plume fall-out precipitation in the Panthalassa Ocean during the Early Permian and then accreted onto the proto-Japanese island arc during the Middle Jurassic. The presence of strong negative Ce anomaly in the Kunimiyama ores may indicate that the Early Permian Panthalassa seawater had a more striking negative Ce anomaly due to a more oxidizing oceanic condition than today.  相似文献   

16.
内蒙古柳坝沟金矿床位于华北地台北缘,是一个典型的以广泛发育钾长石化为重要特色的金矿床.柳坝沟矿床中矿体的石英和黄铁矿的稀土元素特征显示其早期(钾长石化阶段)成矿流体为高温、相对还原的,晚期成矿流体温度逐渐降低.石英和黄铁矿Eu正异常大小是本区寻找石英-钾长石脉型金矿的重要标型特征,Eu正异常越明显,含矿性越好.柳坝沟矿区313#脉矿体中部(163勘探线附近)以及163勘探线以东区域为下一步找矿重点区域,深部寻找石英-钾长石脉型金矿的可能性较大.  相似文献   

17.
The San Jorge porphyry copper deposit (SJPCD) is hosted by Carboniferous clastic sedimentary rocks and Permian intrusions located within the Permo-Triassic belt of Chile and Argentina. Its hypogene mineralization and alteration are products of superposed orthomagmatic and hydrothermal events that were strongly fault controlled. Copper related to orthomagmatic processes includes disseminated chalcopyrite in the matrix of porphyritic granodiorite and andesite, and chalcopyrite with tourmaline and quartz in breccias, both of which have accompanying potassic alteration. Soon thereafter, disseminated chalcopyrite is associated with a structurally controlled silicification of the sedimentary sequence. Finally, multiple episodes of hydrofracturing, probably driven by a deep-seated intrusion, deposited sulfide minerals in veinlets throughout the sedimentary sequence; the centers of these systems are characterized by potassic alteration. Total sulfides, which include chalcopyrite, pyrite, arsenopyrite, and pyrrhotite, and pyrite:chalcopyrite form a linear NNE trend, parallel to the main faults. Quartz–sericite is the dominant alteration and is ubiquitous. Zones of potassic alteration can be delineated even though phyllic alteration can be superposed. Much of the system evolved under reducing conditions. Despite uplift along a reverse fault during the Tertiary, and subsequent erosion, the system is preserved at high levels. Supergene processes redistributed copper in secondary oxides and sulfides. These processes were more effective where the deposit is covered by unconsolidated alluvial sediments. The unique history of the San Jorge deposit renders it an important variation of porphyry copper-style mineralization.  相似文献   

18.
Intrusion of quartz‐monzodioritic igneous bodies of Oligocene age into Eocene lithic crystal tuffs and trachy‐basalts resulted in the occurrence of a widespread argillic alteration zone in the Jizvan district (northern Iran). Mineralogically, the argillic alteration zone includes minerals such as kaolinite, quartz, smectite, pyrophyllite, muscovite‐illite, alunite, rutile, calcite, feldspar, chlorite, hematite and goethite. Therefore, the non‐CHARAC behaviour for trace elements in the argillic samples is reflected in the non‐chondritic Y/Ho and Zr/Hf ratios and the irregular REE patterns, which appear related to the tetrad effect phenomenon. The chondrite‐normalized REE distribution patterns indicate both concave (W‐shaped) and convex (M‐shaped) tetrad effects in the argillic samples. Based on the field evidence and the results from geochemical studies, it can be concluded that the samples from the argillic alteration zone having high fourth tetrad effect values (>0.30) were developed in the fault and breccia zones. The results indicate that factors such as preferential scavenging by Mn‐oxides, crystallization of clay minerals, fluid‐rock interaction, overprint of hypogene mineral assemblage by supergene ones, and the structural control, have all played an important role in the occurrence of tetrad effects in samples of the argillic zone in the Jizvan district.  相似文献   

19.
The Great Barrier Island subvolcanic silver-gold deposits comprise a number of essentially east striking, quartz filled, mineralized fissures, which transect andesitic volcanics and an unconformably overlying, bedded sinter deposit of upper Tertiary to Quaternary age. Wall rock alteration is characterized by a propylitic assemblage in the least altered andesite, with argillic assemblages and silicification developed in close proximity to the veins. Some twentyfive hypogene and supergene ore minerals have been recognized, of which pyrite is the most common and finely disseminated pyrargyrite constitutes the main source of silver. The mineral assemblage is dominantly hypogene with minor supergene alteration occurring at surface exposures, and includes mainly sulfides, selenides and native metals. Fineness of electrum derived from two electron microprobe analyses is approximately 500, while total silver to gold ratio from a number of bulk chemical analyses is 30:1. Maximum depth of deposition is estimated to be in the order of 500 m and for some surface exposures 100 m. The mineralization is regarded as subvolcanic and along with other hydrothermal fissure deposits of Hauraki Province is considered to be of Pliocene-Pleistocene age, and hence is believed to be associated with the late phase extrusions and intrusions of acid magma in the volcanic belt.  相似文献   

20.
<正>Jinshan gold deposit is located in northeastern Jiangxi,South China,which is related to the ductile shear zone.It has a gold reserve of more than 200 tons,with 80%of gold occurring in pyrite. The LREE of gold-bearing pyrite is as higher as 171.664 ppm on average,with relatively higher light rare earth elements(LREE;159.556 ppm) and lower HREE(12.108 ppm).TheΣLREE/ΣHREE ratio is 12.612 and(La/Yb)_N is 11.765.These indicate that pyrite is rich in LREE.The(La/Sm)_N ratio is 3.758 and that of(Gd/Yb)_N is 1.695.These are obvious LREE fractionations.The rare earth element(REE) distribution patterns show obvious Eu anomaly with averageδEu values of 0.664,andδCe anomalies of 1.044.REE characteristics are similar to those of wall rocks(regional metamorphic rocks),but different from those of the Dexing granodiorite porphyry and Damaoshan biotite granite.These features indicate that the ore-forming materials in the Jinshan gold deposit derived from the wall rocks, and the ore-forming fluids derived from metamorphic water.The Co/Ni ratio(average value 0.38) of pyrite suggests that the Jinshan gold deposit formed under a medium-low temperature.It is inferred from the values of high-field strength elements,LREE,Hf/Sm,Nb/La,and Th/La of the pyrite that the ore-forming fluids of the Jinshan gold deposit derived from metamorphic water with ClF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号