首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of dyes by low-cost adsorbents is an effective method in wastewater treatment. Iranian natural clays were determined to be effective adsorbents for removal of a basic dye (methylene blue) from aqueous solutions in batch processes. Characterizations of the clays were carried out by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis and field-emission scanning electron microscopy. Effects of the operational parameters such as adsorbent dosage, initial dye concentration, solution pH and temperature were investigated on the adsorption performance. Adsorption isotherms like Langmuir, Freundlich and Temkin were used to analyze the adsorption equilibrium data and Langmuir isotherm was the best fit. Adsorption kinetics was investigated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models and the results showed that the adsorption system conforms well to the pseudo-second-order model. The thermodynamic parameters of adsorption (ΔS°, ΔH° and ΔG°) were obtained and showed that the adsorption processes were exothermic.  相似文献   

2.
Vitis vinifera (grape) leaf litter, an abundant agricultural waste in South Africa was chemically modified with H3PO4 and carbonized for use as biosorbent. Characterization and the potential application of the adsorbent in simultaneous removal of 4-nitrophenol and 2-nitrophenol from aqueous solutions were investigated. The adsorbent was characterized using FTIR, SEM and EDX elemental microanalysis. The EDX and FTIR analysis revealed the presence of surface oxygen moieties capable of binding to adsorbate molecules while the SEM micrographs showed the development of pores and cavities in the adsorbent. Batch adsorption experiments were conducted at a varying contact time, adsorbent dosage, pH and initial adsorbate concentration to investigate optimal conditions. The maximum adsorption capacity of the adsorbent was 103.09 and 103.10 mg/g for 4-nitrophenol and 2-nitrophenol, respectively. The adsorption process was best fitted into Freundlich isotherm while the adsorption kinetics followed a pseudo-second-order model. Liquid film and intra-particle diffusion contributed to the adsorption process. Thermodynamic parameters of ΔG°, ΔH° and ΔS° were evaluated. The adsorption was exothermic, feasible and spontaneous. The results suggest a possible application of grape leaf litter as a precursor for activated carbon and for cheaper wastewater treatment technologies.  相似文献   

3.
This study assesses the ability of two low-cost adsorbents made from waste of Rapanea ferruginea treated with ethanol (WRf) and its H2SO4-treated analog (WRf/H2SO4) for the removal of two cationic dyes methylene blue (MB) and crystal violet (CV) from aqueous solutions. The adsorbent was characterized by scanning electron microscopy, Fourier transform infrared spectrometry, thermogravimetric analysis, point of zero charge (pHpzc), specific surface, and functional groups. The adsorption of dye onto the adsorbents was studied as a function of pH solution (2–12), contact time (up to 120 min) and initial concentration (20–120 mg/L), and temperature (25, 35, and 55 °C). The influence of these parameters on adsorption capacity was studied using the batch process. The response surface methodology (RSM) was used in the experimental design, modeling of the process, and optimizing of the variables and was optimized by the response involving Box–Behnken factorial design (15 runs). The results show that the data correlated well with the Sips isotherm. The maximum adsorption capacities of MB and CV onto WRf were found to be 69 and 106 mg/g, and onto WRf/H2SO4, the adsorption capacities were 33 and 125 mg/g, respectively. The kinetic data revealed that adsorption of cationic dyes onto the adsorbents closely follows the pseudo-second-order kinetic model. Regression analysis showed good fit of the experimental data to the second-order polynomial model, with coefficient of determination (R2) values for MB (R2?=?0.9685) and MB (R2?=?0.9832) for WRf and CV (R2?=?0.9685) and CV (R2?=?0.9832) for WRf/H2SO4 indicated that regression analysis is able to give a good prediction of response for the adsorption process in the range studied. The results revealed that waste from R. ferruginea is potentially an efficient and low-cost adsorbent for adsorption of MB and CV.  相似文献   

4.
This work aimed to investigate the adsorption characteristics, both kinetically and thermodynamically, of Cu(II) and Pb(II) removal from aqueous solutions onto mixed-waste activated carbon, as well as to study the competitive behavior found in mixed heavy metal solution systems. This study shows that activated carbon prepared from mixed waste is an effective adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions, with the aim of detoxifying industrial effluents before their safe disposal onto water surfaces. The adsorption process was characterized in terms of kinetic and thermodynamic studies. In addition, the influence of presence of Cu(II) and Pb(II) in a competitive system was investigated. The results showed that the maximum adsorption capacities were gained at a pH of 6 with a contact time of 180 min, a metal solution concentration of 300 ppm, and an adsorbent dose of 0.3 g/L. The adsorption process was found to follow a pseudo-first-order kinetic model. Thermodynamic parameters such as ΔG o, ΔH o, and ΔS o showed that the sorption process was spontaneous and endothermic in nature. A competitive study demonstrated the applicability of mixed-waste activated carbon to adsorb Cu(II) and Pb(II) from a solution of mixed metals. In addition, the adsorption capacity was found to be as effective as other adsorbents reported in the literature. The developed adsorptive removal procedure was applied for treatment of real wastewater samples and showed high removal efficiency.  相似文献   

5.
Evans blue (EB) dye has been successfully removed from aqueous solution through chemisorption process with synthetic layered double hydroxides (LDH) [Zn1?x Al x (OH)2NO3·nH2O, x = 0.2–0.33]. Detailed evaluation of dye adsorption characteristics in aqueous medium has been studied for different layer charged hydroxides. The objective of the study was efficient removal of a dye by LDH and understanding the structure–property relationship of the LDH on its adsorption behaviour. Highest Langmuir monolayer adsorption capacity (Qt) of 113.64 mg g?1 was observed for highest layer charge x = 0.33, and it is higher than previously reported values for the LDH-EB dye system. Under optimized condition, 99% of EB dye is removed from aqueous solution within 60 min at 313 K. The monotonous increase in Qt value with increasing layer charge is correlated with layer charge density (LCD) and lower particle size of the synthetic LDH. The variation in Qt among different layer charged materials is marginal (3.46–4.17%) with respect to the respective anion exchange capacity (AEC) of LDH NO3. The limited contribution of AEC surmises the occurrence of surface-only adsorption and absence of intercalation as validated by the XRD analysis. The spontaneity of the EB dye removal increases with increasing temperature and LCD. The chemisorption nature of the adsorption reaction is well supported by the thermodynamics values.  相似文献   

6.
This paper presents the first attempt to investigate the potential of Tunisian palygorskite-rich clay (Pal-clay) on the effectiveness of a textile dye “Direct orange 34” (DO34) removal. Important parameters which affect adsorption, such as initial solution pH, contact time, adsorbent mass, initial dye concentration, and temperature, were investigated. The raw Pal-clay was characterized using X-ray diffractometer (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), cation exchange capacity (CEC), specific surface area (SSA) analysis, and point of zero charge (PZC) determination. The results showed that the Pal-clay has a high selectivity for DO34 and had maximum removal efficiency reaching up to about 91 %. The highest adsorption capacity was obtained at 25 °C and pH of 2. The dye uptake process fitted well to the pseudo-second-order kinetic expression and was best described by the Langmuir and Freundlich isotherms. Intra-particle diffusion studies showed that the adsorption mechanism was not exclusively controlled by the diffusion step and was more likely to be governed by external mass transfer. Thermodynamic parameters such as change in free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also calculated. The parameters revealed that the adsorption of dye by the raw clay is spontaneous and exothermic. The results indicate that the Pal-clay has a moderate adsorption capacity towards anionic dye.  相似文献   

7.
Acacia nilotica was used for the adsorption of Reactive Black 5 (RB5) dye from an aqueous solution. Both the raw and activated (with H3PO4) carbon forms of Acacia nilotica (RAN and ANAC, respectively) were used for comparison. Various parameters (including dye concentration, contact time, temperature, and pH) were optimized to obtain the maximum adsorption capacity. RAN and ANAC were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The maximum experimental adsorption capacities for RAN and ANAC were 34.79 and 41.01 mg g?1, respectively, which agreed with the maximum adsorption capacities predicted by the Langmuir, Freundlich, and Dubinin–Radushkevich equilibrium isotherm models. The adsorption data of ANAC showed a good fit to the isotherm models based on the coefficient of determination (R 2): Langmuir type II (R 2 = 0.99) > Freundlich (R 2 = 0.9853) > Dubinin–Radushkevich (R 2 = 0.9659). This result suggested monolayer adsorption of RB5 dye. The adsorption of RB5 dye followed pseudo-second-order kinetics. The RAN adsorbent reflected an exothermic reaction (enthalpy change, ΔH = ?0.006 kJ mol?1) and increased randomness (standard entropy change, ΔS = 0.038 kJ mol?1) at the solid–solution interface. In contrast, ANAC reflected both exothermic [?0.011 kJ mol?1 (303–313 K)] and endothermic [0.003 kJ mol?1 (313–323 K)] reactions. However, the ΔS value of ANAC was lower when the RB5 adsorption increased from 313 to 323 K. The negative values for the Gibbs free energy change at all temperatures indicated that the adsorption of RB5 dye onto RAN and ANAC was spontaneous in the forward direction.  相似文献   

8.
A simple one-step synthetic approach using rice husk has been developed to prepare magnetic Fe3O4-loaded porous carbons composite (MRH) for removal of arsenate (As(V)). The characteristics of adsorbent were evaluated by transmission electron microscope, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, and thermogravimetric analysis. On account of the combined advantages of rice husk carbons and Fe3O4 nanoparticles, the synthesized MRH composites showed excellent adsorption efficiency for aqueous As(V). The removal of As(V) by the MRH was studied as a function of contact time, initial concentration of As(V), and media pH. The adsorption kinetics of As(V) exhibited a rapid sorption dynamics by a pseudo-second-order kinetic model, implying the mechanism of chemisorption. The adsorption data of As(V) were fitted well to the Langmuir isotherm model, and the maximum uptake amount (q m ) was calculated as 4.33 mg g?1. The successive regeneration and reuse studies showed that the MRH kept the sorption efficiencies over five cycles. The obtained results demonstrate that the MRH can be utilized as an efficient and low-cost adsorbent for removal of As(V) from aqueous solutions.  相似文献   

9.
This study investigated the removal efficiency of pharmaceuticals from aqueous solutions supported on chemically treated fly ash. The coal fly ash was supplied by the electric power station in Krakow, Poland. There are plenty of studies showing the utilization of fly ash as a low-cost adsorbent for wastewater containing heavy metals or dyes. Adsorption and immobilization of pharmaceuticals and personal care products on fly ash is a relatively new method but it is a very promising one. In this study, the adsorptive removal of diclofenac, ketoprofen, carbamazepine, bezafibrate, bisphenol A, 17α-ethinyl estradiol and estriol by HCl- and NaOH-treated fly ash was assessed. Chemical treatment of fly ash changed structures of particles and enhanced specific surface areas. HCl-treated fly ash was characterized by the highest BET specific surface area 47.9 m2 g?1 and unburned carbon content 8.1%. Isotherms for all compounds except for 17α-ethinyl estradiol (EE2) and estriol (E3) were linear. Higher linear regression coefficients (R 2) obtained for isotherms of EE2 and E3 show that the Freundlich model better describes their sorption. Adsorption coefficients K d varied between 109.5 (L kg?1) for bisphenol A and 471.5 (L kg?1) for bezafibrate. Freundlich constants (K F) for EE2 and E3 were 62.3 and 119.9 (µg1?1/n L1/n kg?1), respectively. Acid treatment of fly ash increased adsorption of diclofenac, ketoprofen, carbamazepine, bezafibrate and bisphenol A. Comparison of the octanol–water partitioning coefficients (log K OW) with the partitioning coefficients normalized on unburned carbon content (log K UC) revealed similarities but no strong correlation. The increasing of unburned carbon increased sorption of compounds to fly ash.  相似文献   

10.
Bimetallic Fe/Ni nanoparticles were synthesized and used for the removal of profenofos organophosphorus pesticide from aqueous solution. These novel bimetallic nanoparticles (Fe/Ni) were characterized by scanning electron microscopy, energy-dispersive X-ray analysis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The effect of the parameters of initial pesticide concentration, pH of the solution, adsorbent dosage, temperature, and contact time on adsorption was investigated. The adsorbent exhibited high efficiency for profenofos adsorption, and equilibrium was achieved in 8 min. The Langmuir, Freundlich, and Temkin isotherm models were used to determine equilibrium. The Langmuir model showed the best fit with the experimental data (R 2 = 0.9988). Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were tested to determine absorption kinetics. The pseudo-second-order model provided the best correlation with the results (R 2 = 0.99936). The changes in the thermodynamic parameters of Gibb’s free energy, enthalpy, and entropy of the adsorption process were also evaluated. Thermodynamic parameters indicate that profenofos adsorption using Fe/Ni nanoparticles is a spontaneous and endothermic process. The value of the activation energy (E a = 109.57 kJ/mol) confirms the nature of the chemisorption of profenofos onto Fe/Ni adsorbent.  相似文献   

11.
Here, a novel one-dimensional composite of poly(m-phenylenediamine)s coating on filamentous Streptomyces was successfully constructed via a controllable polymerization reaction. The synthesized composites were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Their adsorption isotherm and kinetics for aqueous hexavalent chromium were also systematically examined. The results of scanning electron microscopy analysis indicated that the obtained composites based on Streptomyces were showed a uniform and stable one-dimensional morphology with distinct core–shell configuration. Moreover, the Langmuir isotherm model (R 2 > 0.96) and pseudo-second-order equation (R 2 = 0.9996) described well the equilibrium adsorption behavior and kinetics of hexavalent chromium adsorption by the composites. In addition, bath adsorption experiments demonstrated the highest adsorption capacity of hexavalent chromium by the composites reached 320.03 mg g?1 in an acid solution, which was 5.6 times as that of the pure Streptomyces filaments. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses suggested that the adsorption of hexavalent chromium by the composites possibly involved the protonation, redox, and chelation reactions. Therefore, a promising application of these composites in treating acid hexavalent chromium-contaminated wastewater is expectable.  相似文献   

12.
The main objective of this study was to investigate the efficiency of biological treatment of azo dye-containing wastewater with a sequencing batch reactor system, followed by ultrafiltration. The performance of the system was quantified by measuring the chemical oxygen demand and azo dye concentration. The biodegradation was carried out under combined alternating anaerobic and aerobic conditions with Nylosan Yellow E2RL SGR as a model azo dye contaminant. The bioprocess revealed a maximal reduction in chemical oxygen demand and dye removal efficiency of 91 and 85%, respectively. After ultrafiltration of effluent from the biological treatment, the efficiency increased to 94% for chemical oxygen demand and to 97% for the azo dye decolourisation. Samples of activated sludge from the bioprocess were collected for microbial characterisation. Bacteria and fungi were isolated and identified by 16S rRNA gene and ITS1-5.8S rDNA-ITS2 sequence analysis, respectively. Serratia marcescens and Klebsiella oxytoca were the most common bacteria with the highest number present during the aerobic and anaerobic phases of the bioprocess. In addition, a high number of Elizabethkingia miricola, Morganella morganii, Comamonas testosteroni, Trichosporon sp. and Galactomyces sp. were detected. Taken together, our results demonstrated that the sequencing batch reactor system combined with ultrafiltration is an efficient technique for treatment of wastewater containing azo dye. Moreover, the ultrafiltration effectively removes the microbiota from the final effluent resulting in stable product water.  相似文献   

13.
Data-driven modeling of removal of color index name of Acid Yellow 59 from aqueous solutions using multi-walled carbon nanotubes by multiple (non)linear regression and artificial neural networks (ANN) models based on leave-one-out cross-validation to predict the adsorbed dye amount per unit mass of adsorbent (mg g?1) and performance evaluation of the proposed multiple (non)linear regression and ANN models is the main novel contributor of the present study. Initial dye concentration, adsorbent concentration, reaction time, and temperature were determined as explanatory variables and input neurons for multiple (non)linear regression and ANN models, respectively. The total number of experiments was determined as 1280 statistically. The results showed that multilayer perception ANN model (\(R^{2}_{\text{training}}\) = 0.9997, \(R^{2}_{\text{testing}}\) = 0.9993, RMSE = 0.7678, MAE of 0.0007) predicted q t better than multiple (non)linear regression model (\(R^{2}_{\text{adj}}\) = 0.9645, \(R^{2}_{\text{pred}}\) = 0.9633, SE = 9.55) and MLR (R 2 = 0.9543, SE = 10.87) models. The results justified the accuracy of ANN in prediction of q t , significantly.  相似文献   

14.
The study of low-cost techniques for the tertiary treatment of wastewater is of global interest; above all low-energy techniques that do not require the use of chemicals. In this study, a wastewater treatment technology based on the filtration by a zooplanktonic population (Daphnia magna) is studied in controlled laboratory and mesocosm experiments for different hydraulic retention times (HRT). The efficiency of the treatment is evaluated in terms of particle removal efficiency. From laboratory experiments, HRT over 12 h and Daphnia concentrations above 50 individuals l?1 guarantee a particle removal efficiency greater than 30 %. However, low HRT of 6 h would require Daphnia concentrations above 70 individuals l?1 in order to obtain a particle removal efficiency of 20 %. The minimum removal efficiency of 2 % was for HRT = 3 h, independent of the Daphnia concentration. In the mesocosm, the growth of Daphnia individuals enhanced Daphnia magna filtering rates and higher removal efficiencies than those in the laboratory for the same HRT range. In the mesocosm experiments E. coli concentrations were reduced to a maximum of 2 logarithmic units. A balance equation model is proposed to predict particle removal efficiencies for varying HRT.  相似文献   

15.
New bio-adsorbent carbon materials were synthesized from the leaves and veins of Mucuna pruriens and Manihot esculenta plants, which are locally available in abundance. The synthesized carbons were activated using 0.01N HNO3. Surface area of the activated carbons from M. pruriens and M. esculenta plants was found to be quite high, i.e., 918 and 865 m2/g, respectively. Scanning electron microscopy analysis of the carbons reflects complex disorganized surface structures of different open pore sizes, shapes and dimensions. These properties of the newly synthesized activated carbons led to the development of a sand-supported carbon column, for its possible use in the removal of coliform bacteria and Escherichia coli (E. Coli) from raw water samples. The removal percentage of E. coli was found to be 100% with both the types of carbon adsorbents, as confirmed from the McCardy most probable number table. Similarly, the removal percentage of coliform bacteria was found to be 99 and 98.7% by M. pruriens and M. esculenta carbon columns, respectively. These activated carbons synthesized from locally available plants possess the characteristics of good low-cost adsorbents which can be easily used for the removal of bacteria from water by adsorption method.  相似文献   

16.
This article presents the use of ionic liquid in the removal process of thallium ions using solid–liquid extraction by impregnating ionic liquid (1-n-hexyl-3-methylimidazolium chloride) onto an inorganic solid support (Florisil). The influence of impregnation was studied in order to improve the adsorption capacity of the material obtained. Impregnation was realized with the help of a rotavapor. Stirring time and temperature used were varied. Ionic liquid-impregnated materials obtained at different conditions of impregnation were characterized using scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier transform infrared spectroscopy. In order to determine the most efficient adsorbent material, the materials obtained were used in the removal process of thallium ions from aqueous solutions, varying the initial concentration of thallium ions and the stirring time used in the adsorption process. It was observed that for the improving the adsorption capacity of the obtained ionic liquid-impregnated material, it is not necessary to increase the stirring time of the impregnation process but to increase the temperature. The experimental data obtained in the adsorption process were fitted with the Langmuir isotherm. Adsorption of thallium ions onto Florisil impregnated with 1-n-hexyl-3-methylimidazolium chloride ionic liquid corresponds to a pseudo-second-order kinetic model.  相似文献   

17.
In this research, the stems of Onopordom Heteracanthom which is a kind of weed were converted to biochar particles, and their characteristics were investigated. The morphology and purity of these particles were examined by SEM and EDX techniques, respectively. Specific surface area was obtained as 5.73 m2 g?1 by BET method. The biochar particles obtained from Onopordom Heteracanthom were evaluated as an adsorbent to remove Cr(VI) from aqueous environments. The effect of some parameters such as initial concentration of Cr(VI), dosage of adsorbent, and pH were investigated on the adsorption capacity of Cr(VI) onto the adsorbent. The equilibrium data were analyzed by various isotherm models. The results revealed that in this process, the adsorption isotherm and kinetics have more conformity with Langmuir isotherm and pseudo-second-order kinetics, respectively. The multi-linearity of the Weber and Morris adsorption kinetic model indicates that the intra-particle diffusion is not merely the rate-controlling step for the whole adsorption process.  相似文献   

18.
Moringa oleifera seed was used as a biosorbent for the removal of water treatment disinfection by-products, haloethers, trihalomethanes and haloketones from water samples. M. oleifera seed has polar functional groups such as O–H, C=O, C–N and others which facilitate the extraction of these disinfection by-products. Experiments were conducted in batch and fixed bed column modes. Using batch mode, different parameters were optimized such as M. oleifera seed dosage, sample pH, contact time and agitation speed. The effect of the thickness layer and flow rate were also studied using the fixed bed mode. Maximum adsorption occurs using the batch mode with removal efficiencies of 120.5, 114 and 111.5 mg/g for haloethers, trihalomethanes and haloketones, respectively. Adsorption equilibrium followed Langmuir model, and the kinetic data obeyed the pseudo-second-order model, revealing that the M. oleifera seed had higher adsorption capacity than other reported sorbents. Shorter removal time with higher adsorption capacity of disinfection by-products by M. oleifera seed suggests that this material was effective for water treatment, in dealing with the removal of the disinfection by-products considered.  相似文献   

19.
Graphene oxide nanosheets were synthesized by electrochemical exfoliation. X-ray diffraction, scanning electron microscopy, atomic force microscopy, Raman spectrometry and Fourier transform infrared spectrometry were used to characterize crystal structure, particle size, thickness and function groups of the nanosheets. The nanosheets were examined for adsorption of methyl orange, an anionic dye, in aqueous solution at different pHs and temperatures. The maximum adsorption capacity of methyl orange on graphene oxide nanosheets obtained from the Langmuir isotherm was 138.69 mg/g at pH 2.0, which is larger than that of other carbonaceous adsorbents. The large adsorption affinity of graphene oxide nanosheets to methyl orange might be due to the presence of hydrogen bonding and ππ interaction between methyl orange and graphene oxide nanosheets. Adsorption kinetics followed a pseudo-second-order kinetic model, and the isotherm adsorption results were fitted with Langmuir isotherm model in a monolayer adsorption manner. The thermodynamic studies indicated that the adsorption reaction was a spontaneous physisorption process.  相似文献   

20.
Because of their physicochemical properties, biochars can be used as sorption materials for removal of toxic substances. The purpose of the present study was to determine whether biochar obtained from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst) could be used as a sorbent for Cd2+, Pb2+ and Co2+ in aqueous solutions. So far, this feedstock had not been tested in this respect. The material was subjected to pyrolysis at 500 and 600 °C for the duration of 5, 10 and 15 min. The obtained pyrolysates were found to differ in terms of pH and the contents of the essential macroelements. The different values of these parameters were determined for varying temperature, duration of the pyrolysis process and type of feedstock. Sorption capacities of the biochars for removal of Cd2+, Pb2+ and Co2+ were examined using simulated contamination of aqueous solutions with salts of these metals. The findings showed the highest, nearly complete, removal for Pb2+ were maximum 99.7%, and almost three times lower value for Cd2+ and Co2+ (respectively, 35.7 and 24.8%). It was demonstrated that pyrolysis of conifer cones produced optimum sorption capacities when the process was conducted at a temperature of 500 °C for the duration of 5 min. It was shown that products of spruce cone pyrolysis were characterized by better sorption capacity in comparison with products of larch cone pyrolysis. The properties of conifer cone biochar create the possibility of using it as an adsorbent in water and wastewater treatment as well as in production of filters and activated carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号