首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The generation of low-frequency waves in the solar wind by the flux of protons accelerated in the magnetosheath is considered. It is shown that pulsations are produced in two partly overlapping frequency ranges. The growth rate of waves is maximal when the angle θ between the direction of the interplanetary magnetic field and the front of the bow shock is not equal π2. The dependence of the increment of perturbation on the solar wind velocity is analysed. A satisfactory agreement between theory and experimental results on the connection of Pc3–4 properties and parameters of the solar wind is obtained.  相似文献   

2.
Reginald  Nelson L.  Davila  Joseph M. 《Solar physics》2000,195(1):111-122
MACS for Multi-Aperture Coronal Spectrometer is a fiber-optic-based spectrograph designed and used to perform global measurement of the solar wind velocity and the thermal electron temperature of the solar corona during the total solar eclipse on 11 August 1999. The motivation for the construction of MACS was provided by the theory formulated by Cram (1976) for the formation of the K-coronal spectrum and a method for determining the radial profile of the thermal electron temperature of the solar corona. Based on this theory a subsequent application was carried out by Ichimoto et al. (1996) using a slit-based spectroscopic study during the total solar eclipse on 3 November 1994. We have modified Cram's theory to incorporate the role of the solar wind velocity in the formation of the K-corona and have identified wind and temperature sensitive intensity ratios. Instead of a slit-based spectrograph MACS consists of twenty fiber optic tips placed at the focal plane of the telescope and positioned to see different radii and latitudes of the solar corona. Another fiber is placed at the center of the frame and uses the lunar shadow for a measure of the background signal. The other ends of the fibers are vertically aligned and placed at the primary focus of the collimating lens of the spectrograph thus providing simultaneous spectra from all of the fibers. In this first paper (Paper I) we describe our instrument and the obtained coronal spectra. The final and complete results will be presented in Paper II (Reginald and Davila, 2000).  相似文献   

3.
孙何雨 《天文学报》2023,64(3):29-117
电子是太阳风粒子中最为重要的组分之一,它可以通过多种机制对太阳风产生影响.太阳风中的电子通常具有温度各向异性和束流两种非热平衡分布特征,这些偏离热平衡分布的特征可以通过波粒相互作用激发电子不稳定性和等离子体波动,激发的等离子体波动又可以通过波粒相互作用调制太阳风粒子的分布,从而加热太阳风中的背景粒子.因此电子动力学不稳定性在太阳风的演化过程中扮演了极为重要的角色.详细介绍了太阳风中常见的电子动力学不稳定性,并基于等离子体动力论,详细介绍太阳风传播过程中所出现的各种不稳定性,尤其是在近日球层和太阳大气区域所出现的电子声热流不稳定性以及低混杂热流不稳定性,并分析其波粒相互作用机制,以便更加深入地研究太阳风传播过程中的电子分布函数演化.  相似文献   

4.
借助于弱散射理论和模式拟合方法,单站行星际闪烁观测可以诊断太阳风速度,本文讨论了太阳风参数和射电源角尺度对闪烁谱的影响,以及太阳风速度的积分效应,结果表明,闪烁谱的特征是与视线上距太阳最近处的太阳风速度直接相关的。  相似文献   

5.
The influence of the momentum addition, which may be associated with the average or fluctuation transverse component of the magnetic field or others, on the acceleration the solar wind or stellar wind is studied in a local streamtube. The results show that the larger the momentum addition the stronger the acceleration of the wind. For example, if the typical transverse magnetic field is about 0.1 of the longitudinal field, the velocity of the solar wind at 1 AU may be increased by 40%. The coronal hole may be considered as a streamtube, the presence of a high stream from the coronal hole may be explained by the existence of an average or fluctuation transverse magnetic field in the streamtube. A similar conclusion may be applied to the polar region, where the velocity of the solar wind will be larger than elsewhere as if there is a transverse component of magnetic field, as well as to the stellar wind. The influence of other parameters on the acceleration of the solar wind is also discussed. From the viewpoint of the solar wind mechanism, the present paper shows that the momentum addition in the subsonic flow region can increase the velocity of the solar wind at 1 AU.  相似文献   

6.
P. Kovitya  L. Cram 《Solar physics》1983,84(1-2):45-48
The electrical conductivity, thermal conductivity and viscosity of models of the quiet photosphere and the umbra of a sunspot have been calculated using LTE ionization equilibria and the Chapman-Enskog theory of transport coefficients. The results are presented in tabular form, and compared with previous calculations.  相似文献   

7.
At MHD scales density fluctuation in the solar wind generally have a relative amplitude less than 0.1. The nearly incompressible MHD theory would seem then appropriate to describe a major part of the compressive turbulence at these scales. As a test of the theory, we focus on the scaling properties of density fluctuations with turbulent Mach numbers and on the level of correlation between density and temperature fluctuations. Our findings do not appear in favour of an extended applicability of the nearly incompressible theory to MHD compressive turbulence in the solar wind.  相似文献   

8.
The current state of the theory of Jupiter's outer atmosphere is briefly reviewed. The similarities and dissimilarities between the terrestrial and Jovian upper atmospheres are discussed, including the interaction of the solar wind with the planetary magnetic fields. Estimates of Jovian parameters are given, including magnetosphere and auroral zone sizes, ionospheric conductivity, energy inputs, and solar wind parameters at Jupiter. The influence of the large centrifugal force on the cold plasma distribution is considered. The Jovian Van Alien belt is attributed to solar wind particles diffused in towards the planet by dynamo electric fields from ionospheric neutral winds and consequences of this theory are given.  相似文献   

9.
The initially supersonic flow of the solar wind passes through a magnetic shock front where its velocity is supposed to be reduced to subsonic values. The location of this shock front is primarily determined by the energy density of the external interstellar magnetic field and the momentum density of the solar wind plasma. Interstellar hydrogen penetrating into the heliosphere undergoes charge exchange processes with the solar wind protons and ionization processes by the solar EUV radiation. This results in an extraction of momentum from the solar wind plasma. Changes of the geometry and the location of the shock front due to this interaction are studied in detail and it is shown that the distance of the magnetic shock front from the Sun decreases from 200 to 80 AU for an increase of the interstellar hydrogen density from 0.1 to 1.0 cm−3. The geometry of the shock front is essentially spherical with a pronounced embayment in the direction opposite to the approach of interstellar matter which depends very much on the temperature of the interstellar gas. Due to the energy loss by the interaction with neutral matter the solar wind plasma reduces its velocity with increasing distance from the Sun. This modifies Parker's solution of a constant solar wind velocity.  相似文献   

10.
Kinetic theory is used to calculate the power dissipated by obliquely propagating Alfvén waves to heat the solar wind protons, using the Generalized (r, q) distribution function. The evolution of power dissipation of protons with increasing heliocentric distance is subsequently determined. Comparison between theoretical and observational results with data shows good agreement, especially for the slow solar wind streams. Previous results where a Maxwellian distribution function was used to calculate the power dissipated did not match well with observations.  相似文献   

11.
Chian  Abraham C.-L.  Abalde  José R. 《Solar physics》1999,184(2):403-419
Close temporal correlation between high-frequency Langmuir waves and low-frequency electromagnetic whistler waves has been observed recently within magnetic holes of the solar wind. In order to account for these observations, a theory is formulated to describe the nonlinear coupling of Langmuir waves and whistler waves. It is shown that a Langmuir wave can interact nonlinearly with a whistler wave to produce either right-hand or left-hand circularly polarized electromagnetic waves. Nonlinear coupling of Langmuir waves and whistler waves may lead to the formation of modulated Langmuir wave packets as well as the generation of circularly polarized radio waves at the plasma frequency in the solar wind. Numerical examples of whistler frequency, nonlinear growth rate and modulation frequency for solar wind parameters are calculated.  相似文献   

12.
太阳风源自太阳大气,在行星际空间传播过程中被持续加热,然而究竟是何种能量加热了太阳风至今未研究清楚.太阳风普遍处于湍动状态,其湍动能量被认为是加热太阳风的重要能源.然而,太阳风湍流通过何种载体、基于何种微观物理机制加热了太阳风尚不明确,这是相关研究的关键问题.将回顾人类对太阳风加热问题的研究历史,着重介绍近年来我国学者在太阳风离子尺度湍流与加热方面取得的研究进展,展望未来在太阳风加热研究中有待解决的科学问题和可能的研究方向.  相似文献   

13.
Correlation analysis of solar wind parameters, namely solar wind velocity, pro- ton density, proton temperature and mean interplanetary magnetic field (IMF) from the ACE spacecraft data near Earth, was done. To our best knowledge, this study is a novel one since we consider here only the parameters inside the solar wind, including the mean IMF and, hence, the solar wind is a self consistent system. We have proposed a Multiple Linear Regression (MLR) model for the prediction of the response variable (solar wind velocity) using the parameters proton density, proton temperature and mean IMF mea- sured as dally averages. About 60% of the observed value can be predicted using this model. It is shown that, in general, the correlation between solar wind parameters is sig- nificant. A deviation from the prediction at the solar maximum is interpreted. These results are verified by a graphical method.  相似文献   

14.
The flux rate of cosmic rays incident on the Earth’s upper atmosphere is modulated by the solar wind and the Earth’s magnetic field. The amount of solar wind is not constant due to changes in solar activity in each solar cycle, and hence the level of cosmic ray modulation varies with solar activity. In this context, we have investigated the variability and the relationship of cosmic ray intensity with solar, interplanetary, and geophysical parameters from January 1982 through December 2008. Simultaneous observations have been made to quantify the exact relationship between the cosmic ray intensity and those parameters during the solar maxima and minima, respectively. It is found that the stronger the interplanetary magnetic field, solar wind plasma velocity, and solar wind plasma temperature, the weaker the cosmic ray intensity. Hence, the lowest cosmic ray intensity has good correlations with simultaneous solar parameters, while the highest cosmic ray intensity does not. Our results show that higher solar activity is responsible for a higher geomagnetic effect and vice versa.  相似文献   

15.
Since the 1950s, a wide variety of radio observations based on scattering by electron density fluctuations in the solar wind has provided much of our information on density fluctuations and solar wind speed near the source region of the solar wind. This paper reviews recent progress in the understanding of the nature of these density fluctuations and their relationship to features on the Sun. The results include the first measurements of fine-scale structure within coronal streamers and evidence for structure in solar wind speed in the inner corona.  相似文献   

16.
Wang  S.  Wang  X.Y.  Wu  C.S.  Li  Y.  Chao  J.K.  Yeh  T. 《Solar physics》2001,202(2):385-393
In this note a kinetic interaction process between a fast plasmoid ejected by the Sun, which represents another form of CME, and the background solar wind in the corona is discussed. We consider a system which consists of the plasmoid ions moving faster than the solar wind. We are interested in the time evolution of the ion distribution functions due to wave–particle interactions. Simulation results show that both perpendicular and parallel temperatures of the solar wind ions increase when the relative velocity between the plasmoid and the solar wind is sufficiently greater than the Alfvén velocity of the plasmoid ions. We suggest that this process is significant for the heating and acceleration of the solar wind in the low-heliographic latitude regions near the Sun.  相似文献   

17.
An analysis of monthly data from nine world-wide neutron monitoring stations over the period 1965–1975 is carried out for the study of the long-term cosmic-ray modulation. In an attempt to gain insight into the relationships which exist between solar activity, high-speed solar wind streams and various terrestrial phenomena an empirical relation for the cosmic-ray modulation has been found. Accordingly the modulated cosmic-ray intensity is equal to the galactic cosmic-ray intensity corrected by a few appropriate solar, interplanetary and terrestrial activity indices which causes the disturbances in interplanetary space, multiplying with the corresponding time-lag of cosmic-ray intensity from each of these indices. This relation is well explained by a generalization of the Simpson solar wind model which has been proved by the spherically symmetric diffusion-convection theory.  相似文献   

18.
We developed kinetic theory for the charging processes of small dust grains near the lunar surface due to interaction with the anisotropic solar wind plasma. Once charged, these dust grains, which are exposed to the electric field in the sheath region near the lunar surface, could loft and distribute around such heights off the surface where they reach equilibrium with the local gravitational force. Analytical solutions were derived for the charging time, grain floating potential, and grain charge, characterizing the charging processes of small dust grains in a two-component and in a multi-component solar wind plasma, and further highlighting the unique features presented by the high streaming plasma velocity. We have also formulated a novel kinetic theory of sheath formation around an absorbing planar surface immersed in the anisotropic solar wind plasma in the case of a negligible photoelectric effect and presented solutions for the sheath structure. In this study we combined the results from these analyses and provided estimates for the size distribution function of dust that is expected to be lofted in regions dominated by the solar wind plasma, such as near the terminator and in nearby shadowed craters. Corresponding to the two dominant streaming velocity peaks of 300 and 800 km/s, mean dust diameters of 500 and 350 nm, respectively, are expected to be found at equilibrium at heights of relevance to exploration operations, e.g., around 1.5 m height off the lunar surface. In shadowed craters near the terminator region, where isotropic plasma should be dominating, we estimate mean lofted dust diameter of 800 nm around the same 1.5 m height off the lunar surface. The generally applicable solutions could be used to readily calculate the expected lofted size distribution near the lunar surface as a function of plasma parameters, dust grain composition, and other parameters of interest.  相似文献   

19.
The solar wind at larger distances is known to be a multicomponent plasma. The different components, solar ions, pick-up ions, and anomalous ions, are without collisional coupling but they are all coupled to the intrinsic wave turbulences by nonlinear wave-particle interactions. Since quite a long time it is not understood why dynamical processes associated with the loading of the primary solar wind by secondary pick-up ions neither lead to a recognizable heating nor to a deceleration of the solar wind at larger distances. While the inefficient heating seems to be explained by the fact that pick-up ions do not assimilate quickly enough to the solar wind distribution function, the unobservable deceleration of the distant solar wind always remained mysterious. Different from all theoretical approaches up to now, here we intend to show that the wave-induced pick-up ion pressure has to be introduced into the equations of motion in an adequate non-polytropic form to correctly describe the multicomponent plasma dynamics. If this is done it becomes clear that the deceleration of the solar wind is considerably reduced or even vanishing.  相似文献   

20.
《Planetary and Space Science》2006,54(13-14):1482-1495
Venus has no internal magnetic dynamo and thus its ionosphere and hot oxygen exosphere dominate the interaction with the solar wind. The solar wind at 0.72 AU has a dynamic pressure that ranges from 4.5 nPa (at solar max) to 6.6 nPa (at solar min), and its flow past the planet produces a shock of typical magnetosonic Mach number 5 at the subsolar point. At solar maximum the pressure in the ionospheric plasma is sufficient to hold off the solar wind at an altitude of 400 km above the surface at the subsolar point, and 1000 km above the terminators. The deflection of the solar wind occurs through the formation of a magnetic barrier on the inner edge of the magnetosheath, or shocked solar wind. Under typical solar wind conditions the time scale for diffusion of the magnetic field into the ionosphere is so long that the ionosphere remains field free and the barrier deflects almost all the incoming solar wind. Any neutral atoms of the hot oxygen exosphere that reach the altitude of the magnetosheath are accelerated by the electric field of the flowing magnetized plasma and swept along cycloidal paths in the antisolar direction. This pickup process, while important for the loss of the Venus atmosphere, plays a minor role in the deceleration and deflection of the solar wind. Like at magnetized planets, the Venus shock and magnetosheath generate hot electrons and ions that flow back along magnetic field lines into the solar wind to form a foreshock. A magnetic tail is created by the magnetic flux that is slowed in the interaction and becomes mass-loaded with thermal ions.The structure of the ionosphere is very much dependent on solar activity and the dynamic pressure of the solar wind. At solar maximum under typical solar wind conditions, the ionosphere is unmagnetized except for the presence of thin magnetic flux ropes. The ionospheric plasma flows freely to the nightside forming a well-developed night ionosphere. When the solar wind pressure dominates over the ionospheric pressure the ionosphere becomes completely magnetized, the flow to the nightside diminishes, and the night ionosphere weakens. Even at solar maximum the night ionosphere has a very irregular density structure. The electromagnetic environment of Venus has not been well surveyed. At ELF and VLF frequencies there is noise generated in the foreshock and shock. At low altitude in the night ionosphere noise, presumably generated by lightning, can be detected. This paper reviews the plasma environment at Venus and the physics of the solar wind interaction on the threshold of a new series of Venus exploration missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号